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The Higgs Potential, in the MSSM at tree-level

V= m?|Hi|* + m3|Hz|? + m?,(Hy A Ha + h.c.)
1 g2
+ @ I~ [Ha*)? + S| H )

with Hi A Ho = H HSe,p, (€12 = —ea1 = 1,¢55 = 0).

HO + 0 — 0 5
o, = i _ (v1 + 7 _7401)/\/_  Yg, =1
H, —%1
- -
Hy (v2 + 5 +1i3)/V2

Opposite hypercharges, in principle distinguishable
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The Higgs Potential, in the MSSM at tree-level
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The Higgs Potential, in the MSSM at tree-level
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The Higgs Potential, in the MSSM at tree-level

V= m?|Hi|* + m3|Hz|? + m?,(Hy A Ha + h.c.)
1 2
+ 56 g (I — |He)? + T |
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‘/linear

Vmass

Thetreelevel Higgs potential

V = Veonst + ‘/linear + Vinass + chbic + unartic )

0 0
T¢(1) »1 + T¢(2) ®2,

(80 o) )M | )

DN | =

-
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‘/linear

Vmass

Thetreelevel Higgs potential

V = Veonst + ‘/linear + Vinass + chbic + unartic )

T¢(1)¢1 +T¢(2)¢27 T¢(1) = myqv1 +m127)2+ —(
1 ( 2 ¢(1)
R Y ) Mo
0
2 (;52
1 9 my
1 0 0 2 1 2 _ 4+ _ M
5 ( Y1 P2 )Mcpo 0 ’ Msoo =T V1V Nep
Y2
+ 2 2
_ _ Y1 2 M2 9
M2 : M — T _ =
( Y1 P2 ) ot 80;_ + v (1}1’02 4
T, o
i3t 0 fvg —V1V2
— vl T o : Ngp = ;
0 b5 —V1V2 ‘U%
v

-

v? — v3)v1, — Tadpoles
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Thetreelevel Higgs potential

V = Veonst + ‘/linear + Vinass + chbic + unartic )

2 12
_|_
Viinear = T¢(1) ¢ + T¢(2) b9, T¢(1) = m3v1 + miqvs + u(v% — v3)v1, — Tadpoles
1 o3
Vimass — - ( ¢? ¢g ) M20
2 ¢ ¢g
1 1 2 mi,
+ () ey )M C M2 =T, - D2y
o\ Y1 ¥2 @0 Y Y v vivg CF
+ 2 2
_ _ Y1 2 M2 9
M? . M?*,. =T, — — L | N
+ ( Y1 P2 ) ot 30;_ pE ’ (1}1’02 4 ) P
T, o
fl 0 fvg —V1V2
770 == 1 T .0 ) NGP — o )
0 P2 —V1V2 %
v

det(Ngp) =0 Tr(Ngp) = v2 + v32
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Tadpoles and invariants

® The requirement that v; and vy correspond to the true vacua is a requirement on the
vanishing of the tadpoles. To = 0 can be seen as a trade off for m and m3.

e det(Ngp) = 0 implies massless Goldstones.

o -
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Tadpoles and invariants

® The requirement that v; and vy correspond to the true vacua is a requirement on the
vanishing of the tadpoles. To = 0 can be seen as a trade off for m and m3.

e det(Ngp) = 0 implies massless Goldstones.

M3 = Tr(MZ) = —mi, U?m = m? +m3,
M?Ii = Mio —+ M‘%Vi from Tr <M§i> :
M2y + M2, = M2, + M2, from Tr (M;O)
M2, M2, = M2, M%,c2; from det (Mﬁo) |

o -
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Tadpoles and invariants

® The requirement that v; and vy correspond to the true vacua is a requirement on the
vanishing of the tadpoles. To = 0 can be seen as a trade off for m and m3.

e det(Ngp) = 0 implies massless Goldstones.

Mo + Mipo

2 2
M2, M?,

Mio —+ M‘%Vi from Tr (M§i> :

¢
Mio M%O C%B from det (Mzo) .

MEXO + M%O from Tr (MQO)

c3 3, from book-keeping device cg = 2L, s5 = 22

o
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Tadpoles and invariants

® The requirement that v; and vy correspond to the true vacua is a requirement on the
vanishing of the tadpoles. To = 0 can be seen as a trade off for m and m3.

e det(Ngp) = 0 implies massless Goldstones.

Mo + Mipo

2 2
M2, M?,

MEXO + M%O from Tr (MQO)

2 2
Mo M7

Mio —+ M‘%Vi from Tr (M§i> :

¢
2 2
0 Cop from det (M(PO) :

c3 3, from book-keeping device cg = 2L, s5 = 22

Usually one takes M 40, M ;0 (v?), tg(cgﬁ) as input parameters, and derive M0 and Mo

put What Is tan 57

o
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Basis and Rotations

The mass eigenstates in the Higgs sector are given, through rotation, by
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Basis and Rotations

The mass eigenstates in the Higgs sector are given, through rotation, by

() o) (2 ) (5)
h ¢2 —Sa Co 2

An angle used for a change of basis is physical?
vg /v1 angle same as this rotation angle?

o -
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Basis and Rotations

The mass eigenstates in the Higgs sector are given, through rotation, by

() o) (2 ) (5)
h ¢2 —Sa Co 2

An angle used for a change of basis is physical?
vg /v1 angle same as this rotation angle?

Not necessarily so...at higher orders
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Basis and Rotations

The mass eigenstates in the Higgs sector are given, through rotation, by

() o) (2 ) (5)
h ¢2 —Sa Co 2

An angle used for a change of basis is physical?
vg /v1 angle same as this rotation angle?

Not necessarily so...at higher orders

At the quantum level mixing between fields will be re-introduced, (like in the SM Z — ~
mixing,..) and one has to re-diagonaliseagain,

not exactly the same and equivalent as to how tan 3 will be renormalised, defined

. -
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At the guantum level, at one-loop (and higher)

-

B Here you have to address the issue of loops. Were it not for the quantum corrections

the MSSM would have been a forgotten elegant idea,...Mh < Mz.

o -
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At the guantum level, at one-loop (and higher)

Here you have to address the issue of loops. Were it not for the quantum corrections

the MSSM would have been a forgotten elegant idea,...Mh < Mz.

Definition of tan 6 and thus its physical meaning is given by a choice of a

renormalisation scheme ...
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At the quantum level, at one-loop (and higher)

-

B Here you have to address the issue of loops. Were it not for the quantum corrections

the MSSM would have been a forgotten elegant idea,...Mh < Mz.

O Definition of tan 6 and thus its physical meaning is given by a choice of a

renormalisation scheme ...

B This choice is crucial not only in extracting the numerical value of this quantity

o -
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At the quantum level, at one-loop (and higher)

Here you have to address the issue of loops. Were it not for the quantum corrections

the MSSM would have been a forgotten elegant idea,...Mh < Mz.

Definition of tan 6 and thus its physical meaning is given by a choice of a

renormalisation scheme ...
This choice is crucial not only in extracting the numerical value of this quantity

but is directly related to gauge invariance
the relation between tan ﬁ and observables better be gauge independent

otherwise a physical interpretation is not possible

-
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At the quantum level, at one-loop (and higher)

-

® Here you have to address the issue of loops. Were it not for the quantum corrections

the MSSM would have been a forgotten elegant idea,...Mh < Mz.

® Definition of tan 6 and thus its physical meaning is given by a choice of a

renormalisation scheme ...

°

This choice is crucial not only in extracting the numerical value of this quantity

°

but is directly related to gauge invariance
the relation between tan 6 and observables better be gauge independent

otherwise a physical interpretation is not possible

P scheme dependence
in particular this means that the corresponding counterterm (choice of
input/definition) even if gauge invariant and leads to finite results has to be a good

one: the (finite) corrections should not be excessively large because of a bad choice of

input
(perturbation should be maintained or trusted).
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tan 3 ubiquitous in the MSSM

|Higgs Potentiall
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tan ( ubiquitous in the MSSM

|Higgs Potentiall

@ <Coup|ings of Higgses to fermions>
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tan ( ubiquitous in the MSSM

|Higgs Potentiall

@ <Coup|ings of Higgses to fermions>

D terms fermion masses,...,

chargino and neutralino properties (mixing)

-
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How to track gauge invariance

Practical, gauge parameter independence through a generalised gauge-fixing

slightly a be a bit more formal is Freitas-Stockinger hep-ph /0205281

o -
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Non-linear gauge implementation

1
Lor = ——\8-W++§WQ’UG+|2
Ew 2

1 g 042 1 2
——— (0.7 G — —(0.A
252( ‘|‘£Z26 v+ GY) 257( )

This only affects the propagators. Usually calculations done with £ = 1, otherwise large
expressions, higher rank tensors, unphysical thresholds,..

1 kuky
gV_(]‘_€W) ’
k? — Mg, ( : k2 — &w My,

o -
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Non-linear gauge implementation

‘ 1 - _ J
LaF = _€—|(au —ieaA, —igew B2 ) WHT + gwg(v + 0h + oH + ipA° + GG
w
1 9 ~ ~ 042 1 2
——(0.Z+ &2 (v+ch+~vH)G")* — —(0.A)
2¢ 2cwy 2¢-,

® quite a handful of gauge parameters, but with & = 1, no “unphysical threshold”, no
higher rank tensors, gauge parameter dependence in gauge/Goldstone/ghosts vertices.
® more important: no need for higher (than the minimal set)for higher rank tensors and

tedious algebraic manipulations

p () pa (V) p3(p)

Dy b v
w- w A e[g“ (p1 — p2)”

+(L+ a/sw)(p5g"” — P g™”)
+(1 —a/&w)(phg"” — pTg“”)]
D3, p

w- w+ Z e [g“u(ll’l —p2)’
Sw -
+(1 4 5/&w) (59" = p59™)
pv +(1 = B/ew) Wha" — o]

‘ ® we take the gauge fixing to be renormalised (not necessary to have all Green’s functions
inite.)
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renormalisation: Parameters and counterterms

- .

® From X; = (m1,m2,m12,9,9 ,v1,v2) We take e, My, M (as in SM) and
M 4o, T¢?’T¢8; On Shell scheme, Gl with “¢3” to be defined.

o -
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renormalisation: Parameters and counterterms

-

From X = (ml,mg,mlg,g,g’,vl,vg) we take e, My, Mz (as in SM) and
M 40, T¢(1) , T¢8; with “¢3” to be defined.

shifts in parameters X; — X, + X, implies
e — €+5€,T¢9 — T¢(1) —|—5T¢(1),'°"U7; — V; — 5vi(t5 — 13 +6t5)

-
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renormalisation: Parameters and counterterms

-

From X = (ml,mg,mlg,g,g’,vl,vg) we take e, My, Mz (as in SM) and
M 40, T¢? , T¢8; with “¢3” to be defined.

shifts in parameters X; — X, + X, implies
e — €+5€,T¢9 — T¢(1) —|—5T¢(1),'°"U7; — V; — 5?Ji(t5 — 13 +6tﬁ)

this means that mass mixing “masses" will appear: A°Z9, Hh, ... and diagonal
masses shifted

-
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renormalisation: Parameters and counterterms

-

From X = (ml, mo,Mmiz, g, g’, ’Ul,’Ug) we take e, My, M5 ( as in SM) and
M 40, T¢‘1’ , T¢8; with “¢3” to be defined.

shifts in parameters X; — X, + X, implies

e — e+ 5€,T¢(1) — T¢(1) —|—5T¢(1), R e 5v7;(t5 —1g + 5t5)

this means that mass mixing “masses" will appear: A°Z9, Hh, ... and diagonal
masses shifted

but the angles defined in the rotation matrices are renormalised (no shift)

GO 0 GO 0
0 = U(B) (’O(l) implies also 0 = U(B) (’O(l)
S 72 /g 4 7z

-
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renormalisation: Parameters and counterterms

-

From X = (ml, mo,Mmiz, g, g’, ’Ul,’Ug) we take e, My, Mz ( as in SM) and
M 40, T¢? , T¢8; with “¢3” to be defined.

shifts in parameters X; — X, + X, implies

e — e+ 5€,T¢(1) — Tqb(l) —|—5T¢(1), R e 5vi(t5 —1g + 5t5)

this means that mass mixing “masses" will appear: A°Z9, Hh, ... and diagonal
masses shifted

but the angles defined in the rotation matrices are renormalised (no shift)

GO 0 GO 0
0 = U(B) (70(1) implies also 0 = U(B) (’O(l)
S 72 /g A 72

In any case filed renormalisation (before or after rotation) still needed
this will imply

Zp
A 1/2 1/2
0 _ . \ GO _ ZG/OGo ZG/OAO GO
0 - U(ﬁ)ZchU(_B) 0 - 1/2 1/2 0 :
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Example of two-point functions

=

Sa0go(q?) = Sgogo(q?) + M2, — 26 Z g0

26040(¢%) = XGo40(¢?) + M2 10 — 5020 Zqo g0 — (4% — M2,)8Z yo o

3 4040(¢%) =B 40.40(q%) + M3, — (¢ — M%,)8Z 40

Satat(@®) =St (¢®) + M2 — ¢*6Zq+

ZGiHi(QQ) = LgEtp+ (¢*) + 5MC2;iHi - %q25ZGiHi - %(QQ - M?{i)CSZHiGi

iHiHi (¢%) = it gt (¢*) + 6M1%[i —(¢* - Méi)CSZHi

21070 (q%) = Spop0(g?) + M2 — (¢° — M?7,0)8Z o
2 170 1,0 (q2) = LHO0p0 (q2) + 5M12qoho - %(QZ - M?IO)‘SZHOhO - %(q2 - M;%o)‘SZhOHO
2h010(q%) = Zpopo(q?) + M2 — (¢° — M7?4)0Zpo

-

F. BOUDJEMA, tan (3 and Gauge Invariance, Lisbon, Sep. 09 — p. 11/:



Renormalisation Conditions, On-Shell in...Nut Shell

(e, My, Mz) as in the SM
The minimum condition requires the one-loop tadpole contribution generated by
one-loop diagrams, T(';gp is cancelled by the tadpole counterterm. 67,0 = _T(';gp

Higgs masses as pole masses. Taking M 40 as an input 5Mio = —ReX 40 40 (Mflo) :

-
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Renormalisation Conditions, On-Shell in...Nut Shell
(e, My, Mz) as in the SM
The minimum condition requires the one-loop tadpole contribution generated by
one-loop diagrams, T(';’gp is cancelled by the tadpole counterterm. 67,0 = —T"°

Higgs masses as pole masses. Taking M 40 as an input 5Mio = —ReX 40 40 (Mflo) :

charged Higgs mass gets corrected

sum rule for neutral CP Higgs get corrected

Mio,lloop + MI2—IO,1100p - MZO + Méo + Rezhoho (M}QLO) + ReZHOHO (MIQ_IO)
n 2M9 (Ca_ 50T 0 — So 55Tho> — ReX 40 40 (M30) — RellL, 0 (M%) .
W=t

-
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Renormalisation Conditions, On-Shell in...Nut Shell
® (e, My, My) as in the SM

» The minimum condition requires the one-loop tadpole contribution generated by

one-loop diagrams, T(';’Sp is cancelled by the tadpole counterterm. 5T¢? = —T(';gp

® Higgs masses as pole masses. Taking M 40 as an input M2, = —ReX 40 40 (M3,) -

® charged Higgs mass gets corrected

® sum rule for neutral CP Higgs get corrected

Mo 1100p T M 70 1100p = Mg + MZo + ReXp050 (Mpo) 4 ReX gro o (M)
g
+ T <ca_ﬁ5THo — sa_B(STh()) — ReX 40 40 (M30) — RellL, 0 (M%) .

W=

® But need to define tan 3 to predict either one, or use one of the CP even Higgs masses as
a definition for tan 3.

o -
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Renormalisation Conditions, On-Shell in...Nut Shell
® (e, My, My) asinthe SM

® The minimum condition requires the one-loop tadpole contribution generated by

one-loop diagrams, T(';’gp is cancelled by the tadpole counterterm. 5T¢? = —T(';’gp
® Higgs masses as pole masses. Taking M 40 as an input sM%, = —ReX 40 40 (M3,) -
® charged Higgs mass gets corrected
® sum rule for neutral CP Higgs get corrected
Mo 1100p T M 70 1100p = Mg + MZo + ReXp050 (Mpo) 4 ReX gro o (M)
Ly (ca_ 36T 0 — Se— BéTho> — ReX 40 40 (M30) — RellL, 0 (M%) .
W=

® But need to define tan 3 to predict either one, or use one of the CP even Higgs masses as

a definition for tan 3.
® Wave function renormalisation takes care of residue 1 and no mixing when on shell

Reg:]Avo (Mio) = Rez:]HiHi (M?{i) - RezHoHo (M?IO) — Rezhoho (Mﬁo) —
ReX joj0(M7o) = ReXgogo(M7y) =0

o -
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Renormalisation Conditions, On-Shell in...Nut Shell
® (e, My, My) asinthe SM

® The minimum condition requires the one-loop tadpole contribution generated by
one-loop diagrams, 7"°% is cancelled by the tadpole counterterm. 0T 40 = 7%

¢ b
® Higgs masses as pole masses. Taking M 40 as an input sM%, = —ReX 40 40 (M3,) -
® charged Higgs mass gets corrected
® sum rule for neutral CP Higgs get corrected
Mio,lloop + MI2{O,1100p - Mio + Méo + RezhOhO (M}QLO) + RQZHOHO (MIQ_IO)
Ly (ca_ 36T 0 — Se— 55Tho> — ReX 40 40 (M30) — RellL, 0 (M%) .
W=

® But need to define tan 3 to predict either one, or use one of the CP even Higgs masses as

a definition for tan 3.

® \Wave function renormalisation takes care of residue 1 and no mixing when on shell

/ /

A ~/ ~ ~_/
ReonAo (Mio) = RezHiHi (M?Ii) = ReEHoHo (Miro) = Rezhoho (MELO) =

ReiHoho(M?IO) :RGEHOhO(Mﬁo) =0 J
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tan 3, X 40 zo and gauge invariance

-

Dabelstein-Chankowski-Pokorski-Rosiek Scheme (DCPR)

-

5tﬁDCPR 1
28 ReY. M2,) .
tﬁ MZOSQﬁ ‘ AOZO( AO)

This is not gauge invariant! based on iAoZo (Mjo) = 0 which is widely used (together with
f]AoGo (Mjo) = 0) but which is not true in all gauges.

There is a strong constraint coming from a Ward identity.

o -
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tan 3, X 40 zo and gauge invariance

-

Dabelstein-Chankowski-Pokorski-Rosiek Scheme (DCPR) T

5tﬁ DCPR 1
t 3 B

— ReY M2,) .
MZOSQﬁ ‘ AOZO( AO)

This is not gauge invariant! based on iAoZo (Mjo) = 0 which is widely used (together with
f]AoGo (Mjo) = 0) but which is not true in all gauges.

There is a strong constraint coming from a Ward identity.

Moreover in our approach éZ,o0 40 and d tan 8 come together

. M ot
20 40 z0 (q2) = 2 40 z0 (q2) + QZO <5ZG0A0 + 325?5_5)

o -
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tan 8 Ward identity

BRST transformation on the (“ghost”) operator
(0[c# (x)A%(y)|0) = 0, —

~ ~ 1 €2M 0 .~
Y p020(¢°) + Mzo¥4060(¢%) = (¢2 — M3,) ()2 52 2= sopFax (@)
2W
MZO 2 2 1 262 ~ =~ 2 5tﬁ
— M For —— — 07 :
+ 9 (C] AO) ((47‘(‘)2 Sgw cc (C] ) -+ 523 tg A0GO

]—"g’jl(q2) and <27 (¢?) are functions which vanish in the linear gauge with ¢ = 5 = 0.

The constraint shows that even in the linear gauge ¢2% 40 70 (¢?) + M 70X 4050 (¢?) is zero
only for ¢* = M?, and not for any ¢°.

but in linear gauge can impose both 3 40 40 (M%) = 3 o0 (M3) = 0

no longer in a general gauge!

similar thing in the charged sector

o

-
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we can still avoid one-loop corrections and counterterms in the external legs associated with
an external pseudoscalar A°. Of concern to us are the transition A9 — Z9 and A% — GP°.

A ~ GO A ZO AO,G,
GOAO(Mi) - — —l_ - - 'A/lext. leg
Va %3
MAO,G,Z o ZAOGO(]WEXO)VG + q°VZEAOZ0(MiO)
ext. leg Mio _ M%o
Ve

- 2 2 XAJAOGO(M,ZO) + MzoiAOZo(MZO) .
MAO o MZO

o -
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we can still avoid one-loop corrections and counterterms in the external legs associated with
an external pseudoscalar A°. Of concern to us are the transition A9 — Z9 and A% — GP°.

A ~ GO A ZO AO,G,
I GOAO(Mi) - — —l_ - :'A/lext.leg
Va %3
MAO,G,Z o ZAocﬂ)(jwflo)VC? + q°VZEAOZ0(MiO)
ext. leg Mio _ M%o
Ve

- 2 2 XAJAOGO(M,ZO) + MzoiAOZo(MZO) .
MAO o MZO

Impose
EAJAOGO (Mio) —I_ MZOEAOZO (Mio) — 0
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we can still avoid one-loop corrections and counterterms in the external legs associated with

an external pseudoscalar A°. Of concern to us are the transition A9 — Z9 and A% — GP°.

A/ G A Z e
GOAO(Mi) —_ — _|_ - - 'A/lext. leg
Va VZ"
MAO,G,Z o zAjfxoc;o(jwflo)VG + q°VZiAOZ0(MiO)
ext. leg MZO - M%o
Va (A 2 - 2
= Sa0go(Mo) + MzoS40z0(M30)) -
M2, — M2, A A
A 1 . 1 e2M,o -~
3 M2,) = — S a0m0(M?2,) = Z- 5o FS (M2,).
AOZO( AO) MZO AYG ( AO) (47_(_)2 S%W 20 GA( AO)

L To be consistent with the Ward identity

-
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we can still avoid one-loop corrections and counterterms in the external legs associated with
an external pseudoscalar A°. Of concern to us are the transition A9 — Z9 and A% — GP°.

A/ G A Z e
GOAO(Mi) - _|_ - - 'A/lext. leg
Vo %53
MAO,G,Z o zAjfxoc;o(jwflo)VG + q°VZiAOZ0(MiO)
ext. leg o Mio - M%O
Va 2 2 S 2
— YR (EAOGO(MAO) + MZOZAOZO(MAO)) .
A0 AY
otg 30 0 (M30) 2 el - =
6z = —s —oAZ " A sagFet (M32,).
GOAD 26 ta M 4o (47)2 ng 26 Ga(Mjo)

o -
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Schemes for tang, 1

e

~--scheme.

tan 8 7ys7 AY

® ;s extracted from the decay A° — 777~ to which the QED corrections have been
subtracted, which in this neutral decay constitutes a gauge invariant subset. This leads
to a gauge-independent counterterm and is physically unambiguous defined. Not
exactly a definition from within the Higgs potential but nonetheless from Higgs
physics/phenomenology.

® Criticism that it is not defined from 2—point functions is unfounded. Remember
G . /Myy . Technically one has the tools

» sureitis flavour dependent

o -
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Schemes for tang, 2

e DCPR-scheme .

Stg DCPR 1 ,
—= = — ReX. M i
tg Mzsop A0z0 AO)

(in DCPR H; — (1+ 5625, )H; i =1,2  thenv; — v; (1 - 22 + $6Zy, )
impose ‘%1 = %2 such that in effect ?—BB = 1(6Zp, — 6Zm,),

a physical quantity related to a wave function renormalisation constant is (almost) always
dubious!)

o -
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Schemes for tang, 3

e M H-scheme.

RefJHoHo (MI2{0) =0
Here the heaviest CP-even Higgs mass M ;o is taken as input. This definition is obviously
gauge independent and process independent, but expect it to be unstable

o -
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Schemes for tang, 3

e M H-scheme.

RefJHoHo (MIQJO) =0

Here the heaviest CP-even Higgs mass M ;o is taken as input. This definition is obviously
gauge independent and process independent, but expect it to be unstable

from

M 40 M 40 + M0 \/Mio + M2, — M2,

tg =
\ M 40 M 40 — M0 \/Mio M2, — M2,
otg 1 ( 5Mio n 5MI2{0>
—_— - 2 2 .
U M MR, -1 Mo M

— 0 in the decoupling regime

o -
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-

D R-scheme.

9

Schemes for tang, 4

-

In this scheme the counterterm for tan 3 is taken (from some quantity to be a pure
divergence proportional to the ultraviolet (UV) factor, Cyyyy = 1/e + ..., in dimensional
reduction.

In HHW prescription of Hollik, Heinemeyer and Weiglein (not Gl in
DR—HHW

ot / /
general)t—[f = 5o (ReX, o,0(M25) — ReX 0 40 (M7,0))> -

Pierce and Papadopoulos have defined 6tz by relating it to the divergent part of
M2, = M2, (G

-
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Examples, non gauge invariance

Parameter Value Parameter | Value Constant | Value
SW 0.48076 my, 0.1057 ms 0.2
e 0.31345 mr 1.777 me 174.3
Js 1.238 Moy, 0.046 mp 3
M o 91.1884 mgy 0.046 M 40 500
Me 0.000511 Me 1.42 3;50
mhmax Value nomix | Value || large u Value
L4 -200 L4 -200 L4 1000
Mo 200 Mo 200 Mo 400
M3 800 M3 800 M3 200
Mg, 1000 My 1000 My 400
M r 1000 M r 1000 M r 400
Ay 2000+1/t3 Ay w/ts Ay -300+u/t 3

-
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Examples, finite and infinite part of tan 3

-

St = 6t + 6t3 Cuy nlgs = 10 » & = 10,8 = 10, .........

o -
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-

o

Examples, finite and infinite part of tan 3

nlgs = 10 » & = 10,8 = 10, .........

tg = oty + 0tz Cuvy
5th nigs=0 nigs = 10
DCPR | -3.19x1072 | -1.04 x10—!
OSn,, | -3:19%1072 | -3.19x10~2
OSa. . | -3.19x1072 | -3.19x1072
DR-HHW | -3.19x1072 | +5.32 x10~2
DR-PP | -3.19x1072 | -3.19x10~2

for the set mhmax attg = 3.

-
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o

Examples, finite and infinite part of tan 3

tg = 6t + 6t Cuy nlgs = 10 » & = 10,8 = 10, .........
oty nlgs=0 nlgs = 10 5t‘g‘ nlgs =0 nlgs = 10
DCPR | -3.19x1072 | -1.04 x10~! DCPR -0.10 -0.27
OSnr,, | -3.19%x1072 | -3.19%x1072 OSyns,, | +0.92 (30%) | +0.92 (30%)
OS4 . | -3.19x1072 | -3.19x10~2 OSA__ -0.10 (3%) -0.10 (3%)
DR-HHW | -3.19x1072 | +5.32 x10~2 DR-HHW 0 0
DR-PP | -3.19x1072 | -3.19x10~2 DR-PP 0 0

for the set mhmax at tg = 3.

-
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scheme dependence in the usual linear gauge (finite part) with {7z 4 =1

tg =3 | mhmax | large u | nomix tg = 50 | mhmax large u nomix
DCPR -0.10 -0.06 -0.08 DCPR +3.42 +14.57 +0.48
OS gy +0.92 -1.31 +0.64 OSpry | -385.53 | -2010.84 | -290.18
OSa__ -0.10 -0.06 -0.08 OSa__ +0.12 -4.72 +0.16
DR 0 0 0 DR 0 0 0
Stg DCPR tg g2 1 , .
? ~ _825 > M2 4 (3mbBo(M 0, mi,mi) +mZBo(M3,, m ,mZ2))
2

-
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Examples, Mass of M),

tg = mhmax | large . | nomix
Ml = 7251

DCPR 134.28 97.57 | 112.26

OSry, 140.25 86.68 | 117.37

OSa 134.25 97.59 | 112.27

DRt = M 40 134.87 98.10 112.86
DR 1w = M; 134.47 97.55 112.38

tg = 50 mhmax | large p | nomix
Ml =91.11

DCPR 14450 | 35.88 | 124.80

OS sy, 143.76 | 13.21 | 124.16

OSa 144.50 35.73 124.80

DR = M 40 144.50 35.77 124.80
DR 1w = My 144.50 35.77 124.80

-
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A9 — 77—, thenon QED one-loop corrections

tg =3 mhmax large nomix
'L =940 x 1073
DCPR +3.56x107°% | -8.71x1076 | -7.37x10~°
OSnp, +6.41x107% | -7.82x107° | +4.56x1077
OSa._ . 0 0 0
DR i = M 40 +6.51x10~% | +3.94x10~% | +5.18x10~*
DR It = M; +2.30x107% | -2.66x107° | +9.67x10°
tg = 50 mhmax large p nomix
'L =261 x 109
DCPR +3.45x10~1 | +2.01x10° | +3.35x102
OS, -4.03x 10! -2.09x 102 -3.03x10!
OSa._ 0 0 0
DRI = M 40 -1.21x1072 | +4.92x10~! | -1.66x10~2
DRt = M; -3.00x1072 | +4.75x10~1 | -3.44x102

-
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HY — 7979 and A° — ZORO (suppressed at tree-level)

tg =3 mhmax large u nomix
't =897 x 1073
DCPR +1.59x1072 | -6.32x1073 | +8.47x1073
OSary, +1.40x1072 | -4.00x1073 | +7.12x10~°
OSa._ +1.59%x1072 | -6.32x1073 | +8.47x1073
DR = M 40 +1.57x1072 | -6.44x1073 | +8.32x1073
DR & = M; +1.58x1072 | -6.32x1073 | +8.44x103
tg =50 mhmax large nomix
I'TE —=6.40 x 1072
DCPR +2.18x107° | -5.14x10~% | +3.89x107°
OSnry, +1.01x1072 | +4.66x1073 | +7.81x10~4
0S4, +3.02x107° | -4.65x10~% | +3.97x107°
DRI = M 40 +3.05x107° | -4.77x10~% | +4.01x107°
DRt = M; +3.09x107° | -4.76x10~% | +4.05x10°

-
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Neutralino masses, (M 4
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Conclusions 1
» Many more examples, for other decays and cross sections (including relic density

calc.), worked out and scheme dependence investigated

o -
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Conclusions 1
® MV H-scheme is Gl but most often not recommended (cancelation of large terms from

2-point function of CP even Higgses in Higgs sector not at work), true for other
formal Gl schemes defined from the Higgs potential (see Freitas and Stockinger,

hep-ph-0205281)

® DCPR not Gl and even in linear gauge may also show problems, introduces large

corrections, for high tan

o -
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Conclusions 1
M H-scheme is Gl but most often not recommended (cancelation of large terms from

2-point function of CP even Higgses in Higgs sector not at work), true for other
formal Gl schemes defined from the Higgs potential (see Freitas and Stockinger,

hep-ph-0205281)

DCPR not Gl and even in linear gauge may also show problems, introduces large

corrections, for high tan
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Conclusions 1
M H-scheme is Gl but most often not recommended (cancelation of large terms from

2-point function of CP even Higgses in Higgs sector not at work), true for other
formal Gl schemes defined from the Higgs potential (see Freitas and Stockinger,

hep-ph-0205281)

DCPR not Gl and even in linear gauge may also show problems, introduces large

corrections, for high tan

A+ scheme seems best: Gl and stable with results in most cases very close to DR.
But will it be chosen in practice when data are there? Depends on how precisely it is
extracted experimentally.

-
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Conclusions 1
M H-scheme is Gl but most often not recommended (cancelation of large terms from

2-point function of CP even Higgses in Higgs sector not at work), true for other
formal Gl schemes defined from the Higgs potential (see Freitas and Stockinger,

hep-ph-0205281)

DCPR not Gl and even in linear gauge may also show problems, introduces large

corrections, for high tan

A+ scheme seems best: Gl and stable with results in most cases very close to DR.
But will it be chosen in practice when data are there? Depends on how precisely it is
extracted experimentally.

This does require a specific flavour dependent observable, goes against intuition of
tan (3 totally within the Higgs potential (see parameterisation invariants of 2HDM )
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Conclusions 1
M H-scheme is Gl but most often not recommended (cancelation of large terms from

2-point function of CP even Higgses in Higgs sector not at work), true for other
formal Gl schemes defined from the Higgs potential (see Freitas and Stockinger,

hep-ph-0205281)

DCPR not Gl and even in linear gauge may also show problems, introduces large

corrections, for high tan

A+ scheme seems best: Gl and stable with results in most cases very close to DR.
But will it be chosen in practice when data are there? Depends on how precisely it is
extracted experimentally.

This does require a specific flavour dependent observable, goes against intuition of
tan (3 totally within the Higgs potential (see parameterisation invariants of 2HDM )

Issue of mixing very subtle (renormalisation of CKM matrix in the SM, many people),
sfermion mixing in the MSSM (see Baro and FB'09, Espinosa and Yamada
hep-ph/0207351)

-
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Conclusions 1
M H-scheme is Gl but most often not recommended (cancelation of large terms from

2-point function of CP even Higgses in Higgs sector not at work), true for other
formal Gl schemes defined from the Higgs potential (see Freitas and Stockinger,

hep-ph-0205281)

DCPR not Gl and even in linear gauge may also show problems, introduces large

corrections, for high tan

A+ scheme seems best: Gl and stable with results in most cases very close to DR.
But will it be chosen in practice when data are there? Depends on how precisely it is
extracted experimentally.

This does require a specific flavour dependent observable, goes against intuition of
tan (3 totally within the Higgs potential (see parameterisation invariants of 2HDM )

Issue of mixing very subtle (renormalisation of CKM matrix in the SM, many people),
sfermion mixing in the MSSM (see Baro and FB'09, Espinosa and Yamada
hep-ph/0207351)

Scheme dependence of the MSSM needs to be further studied J
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N. Baro, FB, G. Chalons, S. Hao, Ninh Le Duc, A. Semenov, (D. Temes)

-

LOOP

R,

® Need for an automatic tool for susy calculations

® handles large numbers of diagrams both for tree-level

P and loop level

o v =20

® ability to check results: UV and IR finiteness but also gauge parameter independence

for example

P ability to include different models easily and switch between different renormalisation

schemes

® Used for SM one-loop multi-leg: new powerful loop libraries (with Ninh Le Duc)

o -
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Strategy: Exploiting and interfacing modules
from different codes T

Lagrangian of the model
defined in LanrHEP

- particle content

- interaction terms

- shifts in fields and parameters

- ghost terms constructed by BRST

1 l
Generic MOCICI C|asses |\/|ode|

-kinematical structures -Feynman rules, including CT

U

Evaluation via
FeynArts-FormCalc

LoopTools modified!!
tensor reduction inappropriate for small relative velocities
(Zero Gram determinants)

| Renormalisation scheme I

- definition of renorm. const. in the classes model
Non-Linear gauge-fixing constraints, gauge parameter dependence checks
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vector

A/A: (photon, gauge),

Z/Z:(°Z boson’, mass MZ = 91.1875, gauge),

W+’/°W-’: (°W boson’, mass MW = MZ*CW, gauge) .
scalar H/H:(Higgs, mass MH = 115).

transform A->Ax(1+dZAA/2)+dAZAZ*Z/2, Z->Z*(1+dZZZ/2)+dZZA*A/2,
WA => W+ *x (1+dZW/2) , W= => W-"* (1+dZW/2) .

transform H->H*x(1+dZH/2), ’Z.f’->’Z.f’>*(1+dZ2Zf/2),
WAL => W+ £ (1+dZWE/2) , °W-. £’ =>’W-. £’ *x (1+dZWf/2) .

let pp = { -i*x’W+.f’, (vev(2*xMW/EE*SW)+H+i*’Z.f’)/Sqrt2 1},
PP=anti (pp) .

lterm —-2*lambda* (pp*anti(pp)-—v**2/2)**2
where
lambda=(EE*MH/MW/SW) **2/16, v=2*MW*SW/EE .

let Dpp mu~a = (deriv mu+i*gl/2*B0O mu)*pp~a +
i*g/2*taupm”a b~ ckxWW mu~cxpp~b.
let DPP"mu~a = (deriv mu-i*gl/2*B0 mu)*PP a
—i*g/2*taupm”~a b c*{’W-’"mu,W3 mu, ’W+’ "mu} " cxPP b.
lterm DPP*Dpp.

Gauge fixing and BRS transformation

let G_Z = deriv*Z+(MW/CW+EE/SW/CW/2*nlexH)*’Z.f’ .
lterm —-G_A**2/2 — G_Wp*G_Wm - G_Z**2/2.

lterm -’Z.C’*brst(G_Z) .
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vector

A/A: (photon, gauge),

Z/Z:(°Z boson’, mass MZ = 91.1875, gauge),

W+’ /°W-’: (’W boson’, mass MW = MZ*CW, gauge).
scalar H/H:(Higgs, mass MH = 115).

transform A->A* (1+dZAA/2)+dAZAZ*Z/2, Z->Zx(1+dZZZ/2)+dAZZA*A/2,
W+ > W+ k (1+dZW/2) , > W-> >’ W-" % (1+dZW/2) .

transform H->H* (1+dZH/2), ’Z.f’->’Z.f’>*(1+dZZf/2),
CWHLE2=> W+ £k (1+dZWE/2) ,PW—. £ > W-. £’ * (1+dZWf/2) .

let pp = { -ix’W+.£f’, (vev(2*xMW/EE*SW)+H+i*’Z.f’)/Sqrt2 },
PP=anti (pp) .

lterm -2*lambda* (pp*anti(pp)-v**2/2)**2
where
lambda=(EE*MH/MW/SW) **2/16, v=2*xMW*SW/EE .
let Dpp™mu~a = (deriv mu+i*gl/2*BO mu)*pp-a +
i*g/2*taupm”a”b”c*WW mu~c*pp~b.
let DPP"mu"a = (deriv ™ mu-i*gl/2*B0 mu)*PP a
—ixg/2*taupm~a b cx{’W-’"mu,W3 mu, W+’ “mu} " c*PP"b.
lterm DPP*Dpp.

Gauge fixing and BRS transformation

let G_Z = deriv*Z+(MW/CW+EE/SW/CW/2*nle*H)*’Z.f’> .
lterm —-G_A**2/2 — G_Wp*G_Wm - G_Z**2/2.

lterm -’Z.C’*brst(G_Z) .

Output of Feynman Rules
with Counterterms !!
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vector

A/A: (photon, gauge),

Z/Z:(°Z boson’, mass MZ = 91.1875, gauge),

W+’ /°W-’: (’W boson’, mass MW = MZ*CW, gauge).
scalar H/H:(Higgs, mass MH = 115).

transform A->A* (1+dZAA/2)+dZAZ*Z/2, Z->Zx(1+dZZZ/2)+dAZZA*A/2,
W+ > W+ k (1+dZW/2) , > W-> >’ W-" % (1+dZW/2) .

transform H->H* (1+dZH/2), ’Z.f’->’Z.f’>*(1+dZZf/2),
CWHLE2=> W+ £k (1+dZWE/2) ,PW—. £ > W-. £’ * (1+dZWf/2) .

let pp = { -ix’W+.£f’, (vev(2*xMW/EE*SW)+H+i*’Z.f’)/Sqrt2 },
PP=anti (pp) .

lterm -2*lambda* (pp*anti(pp)-v**2/2)**2
where
lambda=(EE*MH/MW/SW) **2/16, v=2*xMW*SW/EE .
let Dpp™mu~a = (deriv mu+i*gl/2*BO mu)*pp-a +
i*g/2*taupm”a”b”c*WW mu~c*pp~b.
let DPP"mu"a = (deriv ™ mu-i*gl/2*B0 mu)*PP a
—ixg/2*taupm~a b cx{’W-’"mu,W3 mu, W+’ “mu} " c*PP"b.
lterm DPP*Dpp.

Gauge fixing and BRS transformation

let G_Z = deriv*Z+(MW/CW+EE/SW/CW/2*nle*H)*’Z.f’> .
lterm —-G_A**2/2 — G_Wp*G_Wm - G_Z**2/2.

lterm -’Z.C’*brst(G_Z) .

RenConst [ diHisq ] := ReTilde[SelfEnergy[prt["H"] -> prt["H'], MH]]
RenConst[ dZH ] := -ReTilde[DSelfEnergy[prt["H"] -> prt["H"], MH]]
RenConst [ dZZf ] := -ReTilde[DSelfEnergy[prt["Z.£"] -> prt["Z.£"],
MZ]] RenConst[ dZWf ] := -ReTilde[DSelfEnergy[prt["W+.f"] ->
prt["W.£"], MW]]

Output of Feynman Rules

with Counterterms !!
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SloopS for SUSY at tree-level

IREE LEVEL CALCULATIONS

Comparison with public codes: Grace and CompHEP

Cross-section [ph] 8loops CompHED Grace
P syt et 3emyl

1133 U 1/3VS I P

et - ffy 280 om0 agsxio?

gt —wtr eyl eemxi~! eyl
Decay [GeV]

U Wf ko wmxe Y !
-t s sea? ses !
Hond s aswxw? 75w

r -y usxeh st sy

. .7 200 processes checked

-
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SloopS: SUSY renormalisation at one-loop

-

B Default: on-shell, Gl, renormalisation in ALL sectors

o -
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SloopS: SUSY renormalisation at one-loop

-

B Default: on-shell, Gl, renormalisation in ALL sectors

B possibility to switch to other schemes easily (DRbar,..)

o -
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o o ©

SloopS: SUSY renormalisation at one-loop

Default: on-shell, Gl, renormalisation in ALL sectors
possibility to switch to other schemes easily (DRbar,..)

Mixing and rotations: no renormalisation of diagonalisation matrices! ditto

gauge-fixing

-
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o o ©

SloopS: SUSY renormalisation at one-loop

Default: on-shell, Gl, renormalisation in ALL sectors
possibility to switch to other schemes easily (DRbar,..)

Mixing and rotations: no renormalisation of diagonalisation matrices! ditto

gauge-fixing

-
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o o ©

SloopS: SUSY renormalisation at one-loop

Default: on-shell, Gl, renormalisation in ALL sectors
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Mixing and rotations: no renormalisation of diagonalisation matrices! ditto

gauge-fixing

Issues with definition of tan 6 many defs not gauge invariant!
Same for mixing angle in the sfermion sector.

Good scale dependence of ren. csts.
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