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Why to study general 2HDM?

Two-Higgs-doublet model suggested by T.D.Lee in 1973:

φ1 =

(

φ+
1

φ0
1

)

φ2 =

(

φ+
2

φ0
2

)

.

Constructing the model:

◮ the scalar and Yukawa sectors has dozens of free parameters;
some of them are restricted by experiment.

◮ interesting phenomenology in the scalar and fermion sectors
appears even with very few non-zero free parameters.

◮ → many specific variants of 2HDM have been developed in
the past decades.
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Why to study general 2HDM? (cont.)

Instead of specific variants of 2HDM, I will discuss scalar sector of
the general 2HDM, i.e. the Higgs potential with all possible
EW-invariant quadratic and quartic combinations of φ1 and φ2.

Why does the general case require a special treatment?
Because of an “algebraic barrier”: explicit minimization of the
potential is impossible.

I will show a geometric approach to 2HDM, which allows one to
bypass the algebraic barrier and get at least some insight into the
general 2HDM without the need to explicitly minimize the
potential.
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Why to study general 2HDM? (cont.)

For phenomenology, one needs to looks simultaneously at the
Higgses and at the fermions. However, recently the properties of
the Higgs potential alone (even at the tree level!) have attracted
much attention.

◮ logically, one first minimizes the potential and only then calculates
the masses and interactions of physical particles.

◮ sometimes different sets of parameters of the potential lead to
similar phenomenology→ idea of hidden symmetry.

◮ → The “space of 2HDM models” must have some structure: some
parameters of the potential are essential, some are redundant. How
to know which are which?

◮ What symmetries are in principle possible in the scalar sector of
2HDM? How are they related with the parameters of the potential?
Which of them can be extended to the fermion sector?
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Why to study general 2HDM? (cont.)

The notions of hidden symmetry and equivalence between models
is made precise with the technique of reparametrization
transformation.

◮ Reparametrization transformations are transformations of the
Higgs fields, which leave the general form of the Higgs
potential unchanged, but just induce some transformation of
the parameters.

◮ If two models with different sets of parameters are related by
a certain reparametrization transformation, they lead to the
same physics.

◮ Only reparametrization-invariant combinations of the
parameters are essential; all the other are redundant.

But even if we start from a very restricted 2HDM,
reparametrization transformations will lead us to the most general
2HDM.
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Why to study general 2HDM? (cont.)

What could we learn, if we had a complete description of the scalar
sector in the general 2HDM?

◮ One would get the entire spectrum of possibilities offered by
the second doublet.

◮ Relations among particular models the specific models should
become clearer.

◮ Construction of models with predefined symmetries → a
useful experience for even more complicated Higgs sectors.

◮ One would understand how stable are the results obtained in
specific models.

General 2HDM should be viewed as a useful tool rather than an
attempt to accurately describe Nature.
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STEP ONE:

Finding structure behind 2HDM
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Structure behind 2HDM

The most general Higgs potential: V = V2 + V4

V2 = −1

2
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4 + 10 = 14 free parameters

The main problem: it cannot be minimized explicitly (coupled
algebraic equations of high order);
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Structure behind 2HDM (cont.)

Think of φ1 and φ2 as components of Φ =

(

φ1

φ2

)

.

The key property of the generic potential: if we perform any linear
transformation of Φ,

Φ→ Φ′ = A · Φ , A ∈ GL(2,C ) ,

we still obtain the generic potential, but with reparametrized
coefficients m2

ij and λi .

It is always possible to perform simultaneous transformations of φi

and of coefficients so that the potential does not change at all →
we have reparametrization freedom with the reparametrization
group GL(2,C ).

GL(2,C ) = overall multiplication × SL(2,C ).
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Structure behind 2HDM (cont.)

Potential depends on (φ†
i φj), i , j = 1, 2 (EW orbits). Let’s organize

them into combinations:

r0 = (Φ†Φ) ≡ (φ†
1φ1) + (φ†

2φ2) ,

ri = (Φ†σiΦ) ≡







2Re (φ†
1φ2)

2Im (φ†
1φ2)

(φ†
1φ1)− (φ†

2φ2)






.

When Φ is transformed by A ∈ SL(2,C ), r0 and ri transform as a
single 4-vector rµ = (r0, ri ). The reparametrization group in the
orbit space is the proper Lorentz group SO(1, 3).
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Structure behind 2HDM (cont.)

The shape of the orbit space

rµrµ = 4
[

(φ†
1φ1)(φ

†
2φ2)− (φ†

1φ2)(φ
†
2φ1)

]

≥ 0

r0 = (φ†
1φ1) + (φ†

2φ2) ≥ 0

The orbit space is the surface
and interior of the “future light-
cone” (LC+) in the Minkowski
space.

+
LC



page 13 of 31

Structure behind 2HDM (cont.)

The Higgs potential is just quadratic form in the orbit space:

V = −Mµrµ +
1

2
Λµνr

µrν .

The kinetic term in the lagrangian must be also treated in the
reparametrization invariant way:

K = Kµρµ , ρµ ≡ (DαΦ)†σµ(DαΦ) .

the “standard” Kµ being (1, 0, 0, 0).

All properties of the most general 2HDM come from the relative
”orientation” of Λµν , Mµ, Kµ.
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Structure behind 2HDM (cont.)

Mµ =
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Structure behind 2HDM (cont.)

Positivity constraint

V4 > 0 for all non-zero φi

→ Λµν rµrν > 0 on and inside LC+. This holds, iff Λµν can be
diagonalized by an SO(1, 3) transformation, and after
diagonalization Λµν takes form









Λ0 0 0 0
0 −Λ1 0 0
0 0 −Λ2 0
0 0 0 −Λ3









with Λ0 > 0 and Λ0 > Λ1,Λ2,Λ3 .

One can establish this without any need to know the explicit
expressions of Λi in terms of original λ’s of the potential!
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STEP TWO:

Geometric analysis of extrema
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Search for the extrema

Three kinds of extrema:

◮ EW-symmetric vacuum: 〈φi 〉 = 0 → 〈rµ〉 = 0.

◮ Charge-breaking vacuum: 〈φ1〉 and 〈φ2〉 are not proportional:

〈φ1〉 =
1√
2

(

0
v1

)

, 〈φ2〉 =
1√
2

(

u

v2

)

with u 6= 0. Then 〈r2〉 > 0: the interior of the lightcone. The
extremum is unique; conditions when it is the global minimum
are known.

◮ Neutral vacuum: doublets 〈φ1〉 and 〈φ2〉 are proportional to
each other (u = 0) → 〈r2〉 = 0: the surface of the lightcone.
Up to six extrema (minima or saddle points).

The question is to find how many among these six are minima and
what are their properties.
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Telling a minimum from a saddle point

Physically realizable rµ lies on and inside LC+. But consider V in
the entire Minkowski space. If Λµν is non-singular, then

V = −Mµrµ +
1

2
Λµνr

µrν =
1

2
Λµν(rµ −mµ)(rν −mν) + V0 ,

where mµ = (Λ−1)µνMν .

An equipotential surface is simply a 3-quadric (3-hyperboloid,
3-ellipsoid) Λµνp

µpν constructed from pµ = rµ −mµ.

The family of equipotential surfaces is just the family of nested
3-quadrics.



page 19 of 31

Telling a minimum from a saddle point (cont.)

The problem of minimization is reduces to study of intersections of
the equipotential surfaces with LC+.

The unique equipotential surface that only touches but does not
intersect LC+ gives the lowest possible value of V realizable in the
physical Higgs space. Their contact points are the positions of the
global minimum 〈rµ〉 → 〈φ1〉, 〈φ2〉.
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Telling a minimum from a saddle point (cont.)

◮ Since we study contact of second-order manifolds, the global
minimum cannot be degenerate more than twice.

◮ Less trivial result: There cannot be more than two distinct
minima at all.

NB: existence of a second minimum is very often overlooked,
especially when one parametrizes the Higgs potential starting from
a minimum. One must always check that the so constructed
potential does not possess a deeper minimum!
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Symmetries and their violation

Geometric approach offers a novel look at the symmetries of
2HDM.

◮ It is usually believed that symmetries are very atypical for a
general 2HDM,

◮ However, one can show that the quartic part of the potential

V4 =
λ1

2
(φ†

1φ1)
2 +

λ2

2
(φ†
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†
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†
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†
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†
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+
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2
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†
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2 + λ∗
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2φ1)
2
i

+
nh

λ6(φ
†
1φ1) + λ7(φ

†
2φ2)

i

(φ†
1φ2) + h.c.

o

subject to positivity constraints always has at least a
(Z2)

3-symmetry. It is highly non-trivial if you look at this form
of V4, but it becomes obvious in the geometric approach.
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Symmetries and their violation (cont.)

◮ Similarly, the quadratic part of the potential always has at
least an O(2)-symmetry. The same is valid for the kinetic
term.

◮ The symmetry group of the model is the intersection of these
three symmetry groups: the Higgs lagrangian has an
additional explicit symmetry, iff Λµν rµrν , Mµrµ, Kµρµ are
invariant under some transformation of the Minkowski space.

◮ Another insight: the tree-level potential can have symmetries
not shared by the kinetic term. They play a special role in the
analysis of the 2HDM and deserve a closer study.
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Symmetries and their violation (cont.)

All possible explicit symmetries as well as their spontaneous
violation can be studied within the above geometric approach.

Classes of possible explicit symmetries (in the orbit space):
Z2, (Z2)

2, (Z2)
3, O(2), O(2)× Z2, O(3).

Criterion for the existence of an explicit symmetry:

There exists an eigenvector of Λµν which is orthogonal
to both Mµ and Kµ.
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Symmetries and their violation (cont.)

Explicit CP-conservation means that the Higgs lagrangian is
invariant under reflection of the second axis (the one coupled to

Im(φ†
1φ2)): in the Λµν-diagonal frame, M2 = 0, K2 = 0.

Necessary and sufficient conditions for spontaneous CP-violation:

◮ existence of extremum: Mµ lies inside the ellipse:

M2
1

(Λ1 − Λ2)2
+

M2
3

(Λ3 − Λ2)2
<

M2
0

(Λ0 − Λ2)2
.

◮ the extremum is minimum: Λ2 > Λ1,Λ3.
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Symmetries and their violation (cont.)

Some further theorems:

◮ For any explicit discrete symmetry, the symmetry-conserving
and symmetry-violating minima cannot coexist.

◮ Any explicit discrete symmetry is given by the group (Z2)
k ,

k = 1, 2, 3. The maximal spontaneous violation consists in
removing just one Z2 factor (= too symmetric 2HDM cannot
have spontaneous CP-violation).
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Masses of the general 2HDM

◮ Masses of the physical Higgs bosons are
reparametrization-invariant quantities → they must be
expressible in terms of Λµν , Mµ, Kµ.

◮ However, electroweak indices “open up”, when one
differentiates the potential. Intermediate calculations must be
conducted in terms of fields, not bilinears rµ.

◮ The mass-matrixM is reparametrization-dependent, but its
eigenvalues (the masses) are not. CalculateM in a specific
basis, find Tr(Mn), rewrite them in rep.-covariant way.

◮ Non-diagonal kinetic term must be taken into account.
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Masses of the general 2HDM (cont.)

Sketch of the procedure:

◮ Switch from two complex doublets φi to 8 real fields ϕa:

rµ = φ†
i σ

µ

ij φj ≡ ϕaΣ
µ

abϕb .

8× 8 real symmetric matrices Σµ

ab share some of the properties of
σµ.

◮ Calculate the hessians of the kinetic term and potential:

Kab =
∂2K

∂(∂µϕa) ∂(∂µϕb)
, Hab =

∂2V

∂ϕa ∂ϕb

.

◮ The mass matrix is M = K−1H .

◮ One can calculate the traces and express them in a covariant way.
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Masses of the general 2HDM (cont.)

Example: charge-breaking vacuum.

Kab = KµΣµ
ab ; Hab = 2ΛµνΣµ

aa′
〈ϕa′〉〈ϕb′〉Σν

b′b ,

where 〈ϕa〉 indicates fields at the extremum:

〈ϕa〉Σµ
ab〈ϕb〉 = (Λ−1)µνMν .

Trace of the mass matrix:

Tr(M) = 4KµMµ − 2TrΛ Kµ(Λ−1)µνMν .

Traces of powers of M are also calculable → properties of its
eigenvalues can be inferred.
Mass matrices for the neutral vacua are analyzed in a similar way.
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Conclusions

usual parameters

λi , m2
ij

↓×
phenomenology:

vi ,MHi , symmetries

Cross × indicates an “algebraic barrier”.
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Conclusions (cont.)

usual parameters Λµν-diagonal frame:

λi , m2
ij →× Λi , Mµ, Kµ

↓× ↓
phenomenology: general results:

vi ,MHi , symmetries ←× minima, coexistence, symmetries

Cross × indicates an “algebraic barrier”.
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Conclusions (cont.)

Conclusions:

◮ The Higgs sector of the most general 2HDM can be studied
without explicitly solving the high-order algebraic equations.
The key step is the observation that the space of all 2HDM
models has the Minkowski space structure.

◮ The number, the properties and the coexistence of the minima
of the Higgs potential can be studied in geometric terms →
phase diagram of the general 2HDM can be reconstructed.

◮ Higgs mass spectrum of the general 2HDM can be analyzed in
a reparametrization-invariant way.
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Extra slides

Many of these questions can be answered in the geometric
approach, at least, in the tree-level approximation:

◮ How many minima can the 2HDM potential have?

◮ When is the global minimum degenerate? How is it related to
the symmetries of the model? What are the possible
symmetries of 2HDM and when they are spontaneously
broken?

◮ What is the phase diagram of the model and what phase
transitions can take place upon continuous change of
parameters?
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Extra slides (cont.)

Another insight: the tree-level potential can have symmetries, not
shared by the kinetic term.

Such symmetries play a special role:

◮ Degeneracy of two local minima automatically implies
existence of a discrete symmetry of the potential, but not
necessarily of the entire lagrangian.

◮ Possible first-order thermal phase transitions are associated
with a momentary restoration of a discrete symmetry of the
potential.

Such symmetries deserve a closer study.
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Extra slides (cont.)

Three kinds of extrema depending on position of 〈rµ〉:
◮ 〈r2〉 > 0 if and only if doublets φ1 and φ2 are not proportional.

〈φ1〉 =
1√
2

(

0
v1

)

, 〈φ2〉 =
1√
2

(

u

v2

)

with u 6= 0. Photon is coupled to the Higgs field → is
becomes massive → charge-violating vacuum (might have
taken place in the early Universe).

◮ 〈r2〉 = 0 if and only if doublets φ1 and φ2 are proportional.
Then u = 0, and photon is massless → neutral vacuum

◮ 〈rµ〉 = 0 → EW-symmetric vacuum.
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Extra slides (cont.)

Two situations:

◮ 〈r2〉 > 0 : ∂V /∂rµ = −Mµ + Λµν〈rν〉 = 0.
For a non-degenerate Λµν a solution always exists, but it is
physically realizable only if 〈rµ〉 lies inside LC+. It is a
minimum if and only if Λµν is positive definite in the entire
Minkowski space. (= all Λi < 0).

◮ r2 = 0: Lagrange multipliers method,
−Mµ + Λµν〈rν〉 − λ〈rµ〉 = 0.
Up to six solutions (minima or saddle points) are possible,
depending on position of Mµ.

NB: negative Lagrange multiplier, λ < 0, automatically
corresponds to saddle points.
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Extra slides (cont.)

Potential stable in a strong sense:

◮ at least one neutral extremum
exists if Mµ lies outside LC−,

◮ if Mµ lies inside LC+, at least two
neutral extrema exist;

◮ if Mµ, in addition, lies inside
caustic cones, two additional
extrema (per cone) appear.

LC

LC
+

_

caustic cone

Potential stable in a weak sense: if Mµ lies outside LC−, there is
only one non-trivial extremum (= global minimum).
Phase diagram of 2HDM at the tree-level.

Example: all coefficients and Higgs fields are real → second axis
can be dropped → 1 + 2-Minkowski space.
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Extra slides (cont.)

M1, M3-slice of the phase diagram at Λ3 > Λ1, Ki = 0.

I: 1 minimum, no symmetry;

II: 2 minima, no symmetry;

Ic: 1 minimum, symmetry conserved;

IIc: 2 minima, symmetry conserved;

IIv: 2 minima, symmetry violated;

thick line: first-order phase transition;

end points: critical points.

1

3

I
II

IIv
IIc

Ic
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Ginzburg-Landau model with two order parameters

The same approach can be used to study condensed matter
problems that can be formulated via Ginzburg-Landau model with
two order parameters (two-band superconductors, e.g. MgB2;
charge density waves, non-conventional superfluidity etc.)

Initial analysis (I.P.I., PRE 79, 021116 (2009)) includes:

◮ Extrema/minima/symmetries of the Landau potential;

◮ Complete description of the phase diagram;

◮ Complete description of the surfaces/lines/points of the 1st or
2nd-order phase transitions;

◮ Calculation of some critical exponents via geometry;

◮ Origin of metastable topologically non-trivial configurations.


