WS on Multi-Higgs Models

CIUL, Lisbon, 18 Sep. 2009

focus on two processes :

▶ pp → H (→ bb) 2j + γ

Gabrielli, Maltoni, B.M., M.Moretti, Piccinini, Pittau, NPB 781 (2007) 64

▶ pp → H / A (→ $\tau\tau$) + γ

Gabrielli, B.M., Rathsman, PRD 77 (2008) 015007

(in the MSSM)

b

Barbara Mele

A / H

HIGGS TOTAL CROSS SECTIONS

but interesting O's are of the order of few fb's (after BR's + cuts for enhancing signal/bckg)

Hbb coupling dominant in light-H decay!

[BR(H→bb) ~ 70% at m_H ~ 120 GeV]

but QCD bb continuum tends to swamp any EW bb resonance at hadron colliders !

Can one constrain the Hbb coupling at all?

Constraining Hbb coupling for light H

most studied channel :

 $pp \rightarrow ttH \rightarrow ttbb$

after including detector simulation, initial "optimistic" expectations vanished !

Also, an expected k~1.8 factor on bckgd at NLO*** makes everything even worse !

(***Bredenstein, Denner, Dittmaier, Pozzorini, 2008) CIUL, 18/9/2009 6

Alternatives :

$pp \rightarrow H (\rightarrow bb) + 2j$ (VBF fusion)

- 9
- light Jets with large invariant mass $p_T(j) \approx 40 \text{ GeV}$ widely separated in rapidity (forward/backward)
- Higgs decay products lying at intermediate rapidity

potential <u>difficult</u> to assess (4-jet final state...??) Mangano, Moretti, Piccinini, Pittau, Polosa (2003)

recent proposal :

new strategy for $pp \rightarrow H (\rightarrow bb) W, Z (\rightarrow \ell\ell)$

* increase (tiny) S/B for pp → HW(Z) → bb{t' by looking to events with very high-p_T H and W(Z) (p_T>200,300 GeV) → S/B improves (but O drops ...)!

<u>challenge</u> : high-p_T H→bb quite collimated → may give a single jet → using a (QCD-motivated) subjet analysis could help !

Jet definition	$\sigma_{\scriptscriptstyle S}/{ m fb}$	$\sigma_{\scriptscriptstyle B}/{ m fb}$	$S/\sqrt{B \cdot \mathrm{fb}}$
CA, $R = 1.2$, MD-F	0.57	0.51	0.80
$K_{\perp}, R = 1.0, y_{\rm cut}$	0.19	0.74	0.22
SISCONE, $R = 0.8$	0.49	1.33	0.42

TABLE I. Cross section for signal and the Z + jets background in the leptonic Z channel for $200 < p_{TZ}/\text{GeV} < 600$ and $110 < m_J/\text{GeV} < 125$, with perfect *b*-tagging; shown for our jet definition, and other standard ones at near optimal Rvalues.

measurement of ghbb challenging at LHC !

LHC potential not yet really established !

$$qq \rightarrow qq H + \gamma$$

q'

Н

q'

н

from naive QED scaling :

 $(S/\sqrt{B})|_{H\gamma jj} \sim \sqrt{\alpha} \left(S/\sqrt{B}\right)|_{Hjj} \lesssim 1/10 \left(S/\sqrt{B}\right)|_{Hjj}$

Actual S/JB much better than this !!!!

IRREDUCIBLE BCKGD

Barbara Mele

Also, destructive interf.s in central γ emissions off q_{in} and q_{fin} in a t-channel gluon diagram

bckg suppressed by requiring a central photon by O(1/10) compared to naive QED scaling!

dominant contribut. (suppressed by b-quark electric charge)

CIUL, 18/9/2009

Barbara Mele

switching off the ybb coupling in irred. bckg

what about signal ?
W charged current spoils
destructive interference
at large angle !

$$(WW \rightarrow H) \quad \frac{\sigma^{(C)}(H\gamma jj)}{\sigma^{(C)}(Hjj)} = 0.013$$

but Z neutral current
follows BCKG pattern !!!
 $(ZZ \rightarrow H) \quad \frac{\sigma^{(N)}(H\gamma jj)}{\sigma^{(N)}(Hjj)} = 0.0016$
 $p_T^* \ge 20 \text{ GeV}$
 $(UU, 189/2009$ 15

basic cuts :

SELECTION $p_{\mathrm{T}}^{j} \geq 30 \,\mathrm{GeV}, \quad p_{\mathrm{T}}^{b} \geq 30 \,\mathrm{GeV}, \quad \Delta R_{ik} \geq 0.7,$ $|\eta_{\gamma}| \le 2.5, \quad |\eta_b| \le 2.5, \quad |\eta_j| \le 5,$ $m_{ii} > 400 \,\text{GeV}, \quad m_H(1 - 10\%) \le m_{b\bar{b}} \le m_H(1 + 10\%),$ 1) $p_{\rm T}^{\gamma} \ge 20 \, {\rm GeV},$ 2) $p_{\rm T}^{\gamma} \ge 30 \, {\rm GeV},$ then, look at distrib's : $d\sigma \quad d\sigma \quad d\sigma \quad d\sigma$ $d\sigma$

$$dm_{jj}$$
, dp_{T}^{j1} , dp_{T}^{b1} , $dm_{\gamma H}$,

lacktriangleright the second s

 $m_{ii} \ge 800 \,\text{GeV}, \quad p_{\rm T}^{j1} \ge 60 \,\text{GeV}, \quad p_{\rm T}^{b1} \ge 60 \,\text{GeV},$ $|\Delta \eta_{jj}| > 4$, $m_{\gamma H} \ge 160 \,\text{GeV}$, $\Delta R_{\gamma b/\gamma j} \ge 1.2$. well isolated photon CIUL, 18/9/2009

16

 $\Delta \eta_{ii}$

EVENT

Mjj distribution critical to enhance S/B (even more than in plain VBF !!!)

Barbara Mele

irreducible b	ockgr O's	(optimized	cuts) $p_{ m T}^{\gamma}$	$f_{\rm F} \geq 20 { m GeV}$
sub-processes	σ_i (pb)	σ_i/σ	σ_i^{γ} (fb)	$\sigma_i^\gamma/\sigma^\gamma$
$gq \to b\bar{b}gq(\gamma)$	57.2(1)	55.3~%	17.3(1)	51.6~%
$gg \to b\bar{b}gg\left(\gamma\right)$	25.2(1)	24.4~%	3.93(3)	11.7~%
$qq' \rightarrow b\bar{b}qq'\left(\gamma\right)$	7.76(3)	7.5 %	4.04(2)	12.1~%
$qq \rightarrow b\bar{b}qq(\gamma)$	6.52(2)	6.3~%	4.49(3)	13.4~%
$q\bar{q}' \to b\bar{b} q\bar{q}' (\gamma)$	4.60(2)	4.4 %	2.28(2)	6.8~%
$q\bar{q} \rightarrow b\bar{b}q\bar{q}(\gamma)$	2.13(2)	2.1~%	1.21(2)	3.6~%
$gg \to b\bar{b}q\bar{q}(\gamma)$	0.0332(7)	0.03~%	0.124(3)	0.37~%
$q\bar{q} \rightarrow b\bar{b}gg\left(\gamma\right)$	0.0137(2)	0.01 %	0.094(2)	0.28 %
$q\bar{q} \to b\bar{b}q'\bar{q}'(\gamma)$	0.000080(3)	0.00007 %	0.00080(8)	0.002 %

 $(m_H=120 GeV)$

bckg(γ) / bckg ~ 33 fb / 103 pb ~ 1/3000 cf. signal(γ) / signal ~ 1/100

note : conservative choice of QCD scales in the bckg evaluation !

requirement of a central photon also suppresses contamination from $g^*g^* \rightarrow H \parallel \eta \gamma$ (induced by top loop) g <u>200000</u> (q) * d **g** (q) н ("bckg" to Higgs from VBF) t g g (q) (q) $\widehat{\ } \sigma (H \gamma jj)_{g^{*}g^{*}} \rightarrow_{H} \sim 8 \times 10^{-4} \sigma (H jj)_{g^{*}g^{*}} \rightarrow_{H}$ $\widehat{\ } \sigma (H \gamma jj) \sim 8 \times 10^{-4} \sigma (H jj)_{g^{*}g^{*}} \rightarrow_{H}$

 $\Im (H \gamma jj)_{g^{*}g^{*} \to H} \sim 0.21 \text{ fb} \quad \text{negligible } !$ $\Im (H \gamma jj) \sim 0.21 \text{ fb} \quad \text{negligible } !$

$\sigma's: pp \rightarrow H\gamma j j vs$ irrid. bckgr

PDF : CTEQ5L

(ALPGEN + MADEVENT)

		-						_
	$p_{\mathrm{T}}^{\gamma,cut}$	$m_{H} = 120$	GeV	$m_H = 130$) GeV	$m_{H} = 14$	$40 {\rm GeV}$	
$\sigma[H(\to b\bar{b})\gamma jj]$	$20 \mathrm{GeV}$	$3.59(7) { m ~fb}$		2.92(4) fb		1.98(3) f	īb	
	$30 { m GeV}$	2.62(3) fb		2.10(2) fb		1.50(3) f	fb	
$\sigma[bar{b}\gamma jj]$	$20 \mathrm{GeV}$	33.5(1) fb		37.8(2) fb		40.2(1) f	fb	
	$30~{\rm GeV}$	25.7(1) fb		27.7(1) fb		28.9(2) f	fb	
$\sigma[H(\to b\bar{b})jj]$		320(1) fb		254.8(6) f	b	167.7(3)	fb	
$\sigma[bar{b}jj]$		103.4(2) p	b	102.0(2) p	ob	98.4(2)]	pb	
for $m_{H}=120 \text{ GeV}$: $S/B(\gamma) \sim 1/10 \sim 30 S/B_0$!							, !	
$ \epsilon_{b} = 60\% \text{ (b tagging eff.)} $ $ \epsilon_{b\bar{b}} \simeq 70\% \text{ (finite mbb resolution)} \text{ (finite mbb resolution)} \text{ (finite mbb resolution)} $						/20		
	L=100 fb	-1 $p_{\mathrm{T}}^{\gamma,cut}$	m_H =	= 120 GeV	$m_H =$	$130 { m ~GeV}$	$m_H = 1$	$140 {\rm GeV}$
	$S/\sqrt{B} _{H\gamma j}$	$_j$ 20 GeV	2.6		2.0		1.3	
	$S/\sqrt{B} _{H\gamma j}$	$_{j}$ 30 GeV	2.2		1.7		1.2	
	$S/\sqrt{B} _{Hjj}$		3.5		2.8		1.9	
Barbara Mele			CIUL, 18/	9/2009			•	21

Nevents for red. vs irred. bckgs (mH=120 GeV)					
$ \overbrace{ \epsilon_{b\bar{b}} \simeq 70\% }^{\epsilon_{b} = 60\%} $			L=100 fb ⁻¹		
		$p_{\rm T}^{\gamma} \ge 20 { m ~GeV}$	$p_{\rm T}^{\gamma} \ge 30 {\rm ~GeV}$		
(signal)	$pp \to \gamma H(\to b\bar{b}) + 2j$	90	66		
(irred)	$pp \to \gamma b\overline{b} + 2j$	1206	925		
(nod)	$pp \rightarrow \gamma + 4j$	23	17		
(red.)	$pp \rightarrow b\overline{b} + 3j$	440	324		
	$pp \rightarrow 5j$	14	11		
•	S/\sqrt{B}	2.2	1.8		
$\epsilon_{fake} = 1$ eff for mislight-jet as	1% tagging $\gamma_j = 1/5000$ γ_j rejection factor ζ_j	tirre d	ed. bckg is ominant !		
Barbara Molo	(CMS can do better th	18/0/2000	22		

Parton shower effect central-jet veto he	:ts and lp S/	d B
	q w Ş	q'
on the contrary, in bckg t-channel virtual gluons	(q , g)	(q , g)
higher-order QCD radiation much more relevant for bckg than for signal !	ore	
Θ in bckg, m_{jj} and $ \Delta \eta_{jj} $ for light tagging jets expected to decrease with respect to partonic configuration	ns	

<u>ALPGEN + HERWIG</u>

jet cone as in GETJET $p_{\rm T}^j > 20 \,{ m GeV} \quad |\eta_j| < 5$ R = 0.7

Gentification of light tagging jets not uniquely defined, due to extra QCD radiation

2 different algorithms for jets :

a_1 -highest and second highest p_T with $p_T(j_1)$ > 60 GeV $p_T(j_2)$ > 30 GeV

a₂-pair of jets with highest invariant mass, pT(j₁)> 60 GeV pT(j₂)> 30 GeV

distributions after parton shower

(j_1, j_2) rapidity difference distribution

p_{T1} > 60 GeV, p_{T2} > 30 GeV

COMBINING ALL :

 $\Rightarrow bckg drops by a factor ~ 4 \Rightarrow factor ~ 2 gain in S/JB!$ (signal almost unaffected!) $S/JB ~ 5 (m_{H}=120 \text{ GeV})!$

summary on pp \rightarrow H (\rightarrow bb) 2j + γ

- measurement of g_{Hbb} not yet established at LHC pp \rightarrow H jj + γ offers
 - a) trigger on γ b) improved S/B
- S/JB ~ 2.5 at parton level → S/JB ~ 5 expected after central-jet veto , (L=100 fb⁻¹, m_H= 120 GeV)
- Could provide a new independent test of Hbb and HWW couplings (sensitivity to HZZ drops) !
- If problems with H → γγ, could even have a crucial role in light Higgs searches !

 $\begin{array}{c} \widehat{\bigoplus} & pp \rightarrow H \ jj + \gamma \ deserves \ complete \ detector \ effect \\ \hline simulation \ \dots \ (now \ ongoing \ in \ both \ ATLAS \ and \ CMS) \\ \hline Barbara \ Mele \end{array} \right) \\ \begin{array}{c} Barbara \ Mele \end{array}$

focus on two processes :

→ Pp → H (→ bb) 2j + γ

Gabrielli, Maltoni, B.M., M.Moretti, Piccinini, Pittau, NPB 781 (2007) 64

 $pp \rightarrow H / A (\rightarrow \tau \tau) + \gamma$

Gabrielli, B.M., Rathsman, PRD 77 (2008) 015007

(in the MSSM) ^b γ

at large $\tan \beta = v_2/v_1$ enhanced couplings to down quarks and leptons !

in MSSM $\sigma(b\bar{b} \to A/H) \approx \sigma(gg \to A/H)$ (at moderate tanß, too) [in SM $\sigma(b\bar{b} \to A/H) \ll \sigma(gg \to A/H)$]

$b\bar{b} \rightarrow A/H$ sensitive to $Y_{bbA/H}$ coupling and to b-quark parton densities

in b-quark parton density presently derived perturbatively by g(x)! [no direct measurement of b(x)] $\Rightarrow \Delta g(x)$ propagates to $\Delta b(x)$

in SM one plans to determine b(x) studying $bg \rightarrow bZ/b\gamma$

$$b\bar{b} \rightarrow h$$
 would be more sensitive to b(x),
but swamped by $gg \rightarrow h$

in MSSM $\sigma(b\bar{b} \rightarrow A/H) \approx \sigma(gg \rightarrow A/H)$

but how to disentangle bb from gg?

we consider : $b\bar{b} \rightarrow \phi \gamma \rightarrow \tau \tau \gamma$

 $BR(A/H \rightarrow \tau \tau) \simeq 10\%$ for large tanß, almost insensitive to m_H

- irreducible BCKGs have EW origin (manageable !)
- tau-tau signature extensively studied in SM and MSSM (can help in Higgs discovery)
- Note: the complete tau-tau invariant mass can be fully reconstructed, provided the two taus are neither back-to-back nor collinear in lab frame (due to undetected neutrinos)

a large- p_T photon naturally satisfies the above condition !

Large SUSY radiative corrections on b-Yukawa factorizes, residual dependence is small

in MSSM, mA ~ mH (at large tanβ)
 gives a factor 2 of enhancement in the x-section

assumed tau-pair efficiency = 0.2 comes from

$pp \rightarrow \tau^{+} \tau^{-} \gamma \qquad (\sigma_{A} + \sigma_{H} \approx 2 \sigma_{A})$ n(S) $\Rightarrow b\bar{b} \rightarrow \phi \gamma \rightarrow \tau \tau \gamma$ n(B) $\Rightarrow \text{ irred. bckgs}$

Barbara Mele

comments $on_{\gamma}pp \rightarrow H/A (\rightarrow \tau\tau) + \gamma$

cross section varies by 20% within LHAPDF; actual uncertainty on b(x) could well be larger than that (see Thorne arXiv:0711.2986)

- Given Hbb coupling (tanβ) can be determined via complementary processes ($gg \rightarrow b\bar{b}H/A$); then $b\bar{b} \rightarrow \phi\gamma$ cleaner probe of b(x) densities
 - needs inclusion of QCD corrections

(Carloni Calame, Gabrielli, BM, Piccinini, in progress)

needs full exp simulation to assess its actual potential