Tri-bi-maximal mixing in a viable family symmetry unified model

Ivo de Medeiros Varzielas

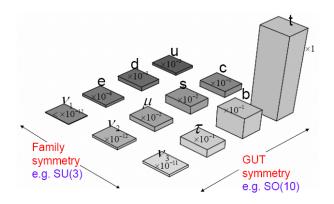
Centro de Física Teórica de Partículas Instituto Superior Técnico

WMHM, Lisbon, 2009/09/17

Outline

- Introduction
 - The data
 - Neutrinos
- TBM through seesaw
 - Overview
 - Terms and diagrams
- Conclusion

Summary of data: masses



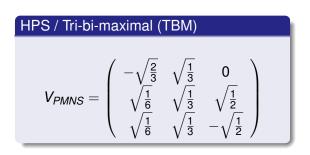
Summary of data: quark mixing

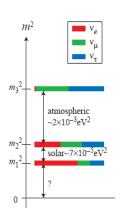
Wolfenstein

$$V_{CKM} \simeq \left(\begin{array}{ccc} 1 & \lambda & \lambda^3 \\ -\lambda & 1 & \lambda^2 \\ \lambda^3 & -\lambda^2 & 1 \end{array} \right)$$

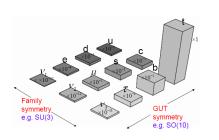
 $\lambda \simeq 0.23$

Summary of data: lepton mixing





Seesaw mechanism



Type I: formula

$$m_{\nu} = \left(M_D\right) \left(M_{RR}\right)^{-1} \left(M_D\right)^T$$

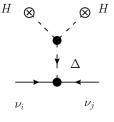
$$(M_D)^{i1} \qquad (M_D^T)^{1j}$$

$$\uparrow \qquad \qquad \downarrow$$

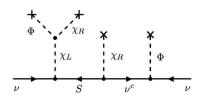
$$\nu_i \qquad \nu_1^c \qquad \nu_1^c \qquad \nu_j$$

More seesaws

Type II



Linear seesaw: Malinsky, Romão, Valle (hep-ph/0506296)



Ingredients

Familons

- The fermions ψ_i , ψ_i^c are triplets
- The familions ϕ^i_{Δ} are (anti-)triplets
- Invariant mass terms e.g.: $\phi_{A}^{j}\psi_{i}\phi_{B}^{j}\psi_{i}^{c}H$

Desired familon vevs

$$\langle \phi_3 \rangle \propto (0,0,1)$$

 $\langle \phi_{23} \rangle \propto (0,1,-1)$
 $\langle \phi_{123} \rangle \propto (1,1,1)$

Relatively easy to align with discrete non-Abelian symmetries (see Graham's talk)

Effective neutrino superpotential

Effective terms

$$P_{\nu} = \lambda_{0}(\phi_{23}^{i}\nu_{i})(\phi_{23}^{j}\nu_{j})HH + \lambda_{\odot}(\phi_{123}^{i}\nu_{i})(\phi_{123}^{j}\nu_{j})HH$$

These give the ν TBM (as Graham mentioned). Enforced by effective Z_2 symmetry:

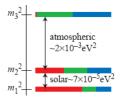
- $\phi_{123} \rightarrow \phi_{123}$

Try to remember

Once again:

$$\langle \phi_{23}
angle \propto$$
 (0, 1, -1)

$$\langle \phi_{123} \rangle \propto (1,1,1)$$



Getting the effective terms I

Dirac

dMV, Ross (hep-ph/0507176); dMV, King, Ross (hep-ph/0607045); dMV (0804.0015)

$$P_{Y} = (\phi_{23}^{i} \nu_{i}) (\phi_{123}^{j} \nu_{j}^{c}) H \rightarrow \mathbb{Q}$$

$$+ (\phi_{123}^{i} \nu_{i}) (\phi_{23}^{j} \nu_{j}^{c}) H \rightarrow \odot$$

$$+ (\phi_{3}^{i} \nu_{i}) (\phi_{3}^{j} \nu_{i}^{c}) H \rightarrow 0$$

Also for all fermions, consistent with SO(10)! (extra Georgi-Jarlskog factor - see Graham's talk)

Getting the effective terms II

Majorana

```
dMV, Ross (hep-ph/0507176);
dMV, King, Ross (hep-ph/0607045);
dMV (0804.0015)
```

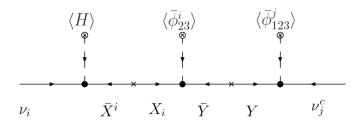
$$egin{aligned} P_M &= (\phi^i_{123}
u^c_i) (\phi^j_{123}
u^c_j) (...)_{@}
ightarrow @ \ &+ (\phi^i_{23}
u^c_i) (\phi^j_{23}
u^c_j) (...)_{\odot}
ightarrow \odot \ &+ (\phi^i_{3}
u^c_i) (\phi^i_{3}
u^c_i) (...)_{3}
ightarrow 0 \end{aligned}$$

The (...) don't affect the structure but control the magnitude. Have $(...)_3 \gg (...)_{@, \bigcirc}$.

Drawing TBM 1

Step 1: Dirac

$$P_{Y} = (\phi_{23}^{i} \nu_{i}) (\phi_{123}^{j} \nu_{i}^{c}) H \rightarrow 0$$



Drawing TBM 2

Step 2: ... (Majorana)

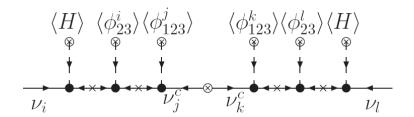
$$P_{M} = (\phi_{123}^{j} \nu_{i}^{c})(\phi_{123}^{k} \nu_{k}^{c})(...) \rightarrow \mathbb{Q}$$

$$\begin{array}{ccc} \langle \phi_{123}^j \rangle & \langle \phi_{123}^k \rangle \\ & & & \downarrow \\ & & \downarrow \\ \hline \nu_i^c & & \nu_k^c \end{array}$$

Drawing TBM 3

Step 3: Profit! (desired effective neutrino)

$$P_{Y} = (\phi_{123}^{k} \nu_{k}^{c})(\phi_{23}^{l} \nu_{l})H \rightarrow 0$$



Added symmetry

Unwanted terms

$$P_T = (\phi_{23}^i \nu_i)(\phi_{23}^j \nu_j^c)H$$

It "seesaws" into $P_{\nu_{mix}}$, spoiling TBM:

$$ightarrow$$
 $P_{
u_{ extit{mix}}}=(\phi_{23}^{i}
u_{i})(\phi_{123}^{j}
u_{j})HH$

- Added symmetry blocks terms like P_T
- The added symmetry contributes to produce effective Z₂

Very large Majorana $(...)_3$ decouples the ϕ_3 (SD)

Extended seesaw application

TBM with extra singlets

Bazzochi, dMV (0902.3250)

$$P_{Y} = (\phi_{23}^{i} \nu_{i})(\phi_{23}^{j} \nu_{j}^{c})(...) \rightarrow 0$$

$$+(\phi_{123}^{i}\nu_{i})(\phi_{123}^{j}S_{j})(...)\rightarrow\odot$$

$$P_{M,S} = (\phi_{23}^i \nu_i^c)(\phi_{23}^j \nu_j^c)(...) \to 0$$

$$+(\bar{S}^{j}S_{j})(...)+(\bar{S}^{j}\nu_{j})(...)\rightarrow \odot$$

Summary

TBM through seesaw

 Tri-bi-maximal mixing through seesaw mechanisms is an interesting aspect of unified family symmetries.