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Introduction

One of the community’s favourite multi-Higgs models is supersymmetry.

Lately superymmetry has been looking like it is in trouble; LHC exclusions
are pushing SUSY to higher energy.

Summary of CMS SUSY Results* in SMS framework ICHEP 2014

e

B . There is still room for a lightish
e JE stop, but this is shrinking fast.
o B What happens when it is

CMS Preliminary

For decays with intermediate mass, O n e ?
hntermediate = X Mopner T X) My "

.....

3
3
3
.'R
AT T 1 T T R T
0 1000 1200 1400 1600 1800
*Obser imits, theory uncertainties not include Mass scales [GeV]
Only a tion of available mass limits
Probe 0* the g d mass limi

Heavy mass spectrum msssl» fine-tuning

What does this mean for GUT theories?
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-ine-tuning In supersymmetry

As usual, 1t is the Higgs boson that causes the problem.

At tree-level the Z-boson mass is given by

2
tan? 3

Mz = -2 (m%{u—l—m\z) — (m%{d—m%{u) —|—(9(1/tan45)

If mpy, or u are large, natural fluctuations will give large fluctuations in Mz.

Measure fine-tuning by A = max{Ap } with Ap = Pi OMj
" m M3 OP;
[Barbieri and Guidice, 1988]
4] p]?
Then A, R >

For A, < 10 weneedtohave p S +/5/2Mz ~ 150 GeV
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Partial fine-tuning

But u is an peculiar parameter anyway. It suffers from the p-problem.

It Is not a supersymmmetry breaking parameter like the other mass scales
but sits in the superpotential W D uH, H; .

Could the susy fine-tuning problems be originating from p alone”
Note:

* | am not saying fine-tuning in p is not a problem. It is. But maybe this
problem is tied up with the y-problem?

* | have no fix for this problem [neither Guidice-Masiero nor NMSSM help].

e This wouldn’t work for the unconstrained MSSM since one would also
have fluctuations in mpg,,. However, in GUT models, my, is not a
fundamental parameter either.



SU(5) & SO(10) GUTs

We examined SU(5), SO(10) and an orbifold model to confront them with:

* New Higgs mass bounds
e | HC SUSY searches

¢ Flectroweak precision

e Dark Matter

® Fine-tuning

However, In this talk | will not discuss proton decay bounds and the
doublet-triplet splitting problem.

SU(5) breaks to the SM trivially, SU(5) — SU(3) x SU(2) x U(1)



SO(10) may break via SU(5)...
SO(10) - SUB) xU(l)x = SUB) x SU2) xU(1)z xU(1)x — Gsm

16 - 1 5@ 53D 10_1, 1 — (1,1),,
10 — 5, @ 5_, 5 — (1,2);®(3,1)_,,
5 (1,2)_;®(3,1),,
10 — (1,1)54 (3,1)_, & (3,2),,

...either “normal” or “flipped” (er <> Nr and ugr < dr)

or via Pati-Salam...
SO(10) - SU4) x SU2), x SUR2)r = SUB) x SU(2), x SU2)g x U(1)w — Gsum,

16 — (4,2,1) @ (4,1,2), (4,2,1) = (1,2,1); 6 (3,2,1)_,,

10 — (1,2,2) 3 (6,1,1), (4,1,2) —» (1,1,2)_;®(3,1,2),,

(4,1,2) = < T ) (1,2,2) — (1,2,2),,
f A dl, éf
(4,2,1) = <Zx Ii) !
‘L bt B ...again either “normal” or “flipped”



30undary Conditions

Scalar masses: SU(5)
Kig 0 0 ,
mQQj (0) = mig (0) = 0 Ki60 m16 +910D mMio
0 0 1
Ki¢ 0 O o
m% ; (O) = O K16 O m16 — BglOD mg
0 0 1
Kig 0
0 Ky 0 m16 + 5919 D)
0 1
O m2 29700,
2u ; +126 — 910 } mg/
mir, (0) = Mmig 126 + 293D,
- : _ L L L at (O) — asg/,
Trilinear couplings: a: (0) = ap (0) = a- (0) = a0

The four different SO(10) embeddings give the same scalar masses and D-

terms but give different gaugino masses, depending on how they are broken

To quantify our non-universal Gaugino masses we set: M; /p1 = My /ps = = My 5
/



heoretical and Experimental Constraints

mg > 1.4TeV
LHC susy constraints: mg > 1.7TeV | mgz > 1.2TeV €—— ms > 0.8TeV

for SU(H)

LHC Higgs mass constraint  mpg = 125.7 £ 2.1GeV

Direct Dark Matter constraint from LUX or XENON100 (for SU(5))

Relic Abundance Q.h? = 0.1157 £ 0.0023 (WMAP)

Other low energy constraints from b — sv, Bs — utu~, B = 1v,, a,

Piot = Ppy, - Pooh* Possy - Pr. - PBoospp - Pa, > 1077

We also implement vacuum stability as described\ Only if deviation

by Casas, Lleyda, Munoz (1996) greater than in
SM



0TeV,4TeV]| —4TeV,4TeV]| 11, 60]
Y } N / '

: 2 .
Inputs: mig, mio+126, Mi1/2, 910D, a10, K16, p1, p2, tan f, sign u

Y

(—10TeV, 10 TeV] [0, 15]

We used:

SOFTSUSY 3.3.0 (Allananch 2002) for the RGE running and fine-tuning
measure.

micoOMEGAs 2.4.5 (Belanger et al 2000) for Relic density, Dark Matter
nucleon cross-section and other low energy constraints.



Universal Gaugino Masses

First we looked at scenarios with universal gauging masses p1 = p2 =1

@
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Green points have the correct relic density, while blue points have too little.

Although there are plenty of viable points, we could only find ones that are
fine-tuned, even neglecting fine-tuning from .
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These scenarios have heavy spectra.

6000/
5000/
4000
3000}
20000 e -

[ [ ]

» o
1000 %o 0% L2 °

1000} °

0 \ \ 0

0 1000 2000 3000 4000 5000 123 124 125 126

m;](GeV) m(Gel’)

The Higgs boson is in the decoupling regime, so the light Higgs would
look exactly like the SM Higgs.
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Non-Universal Gauginos

Generally one might expect the gauginos to have non-universal masses at
the high scale. For example, if the symmetry is broken by some hidden
sector field X with an F-term F'x then we generate masses of the form

1 <F§> 0fas S5
2 (Refap) \ Op?*

If Xis a singlet, this gives universal gauginos, but if it is not we will find
non-universal gaugino masses.

At the GUT scale we set

Mi/p1 = Ma/ps = M3 = M 5
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Lots of scenarios open up, some with
quite light stops.

But it is very difficult to get a small
and the correct relic density.
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-ine-tuning
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Fine-tuning arising from scalar masses (and D-terms, trilinears) grows with
the mass but M1 seems to allow low fine-tuning even for large values.
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M% = —2 ( %]u + |,LL|2) + (m%{d — m%{u) + O (1/tan4 B)

tan? 3

\, mp,, 1S Not an input parameter. It is a complicated
function of the other inputs.

If we set all the masses other than M2 to zero then one expects m%,u = aMf/Q

However, adding radiative corrections
at the low scale, makes this more
complicated and a also becomes M1
dependent.

The dependence of mpg, on M1 gains
a minimum.

M]/Z(TQV)

This plot was made with SOFTSUSY. This behaviour persists also with
Spheno, but the position of the minima moves.
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Set the scalar masses and trilinear < 150 GeV (they will fed by M ;5 during
running) and see what happens:

L3

| Light:
| 10< A <100

Dark:
A < 10

I The symbols are
each a different

| embedding at the
i GUT scale.

JO(10)

10 \ 15

The yellow triangle is a Pati- 200 of SU(5)
Salam embedding in SO(10).
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An Example: Pati-Salam Embedding

PS breaking (the yellow triangle) {SO(lO) — SU(4) x SU(2)r
770 — (1,1)
_ 135
=700 77 2
. | All scenarios with the correct relic

40;

density have higgsino LSP and
charging NLSP.
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| Dark:
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Unfortunately the mass spectrum is very heavy, so this is very challenging
to see.
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gen. squarks

Since the scalar masses are generated by M, /5 these models predict

de ~ O.9m§
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Orbifolds

We have also examined Orbifold models by Brignole, Ibanez and Mufnoz
(1994).

In this model supersymmetry is broken by compactification of e.g. String
Theory in higher dimensions, via F-terms of dilaton and moduli fields in a
hidden sector. This gives rise to a goldstino

i — & din g N T oos ) goldstino angle

/ \

dilaton moduli

Transformation properties of moduli ===l modular weights

BIM O-l:  ng, —ng, — 1, BIMO-IIl: n; = —1
Nup = —2, sinf — 0
nLL — neR — _37
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3IM O-]

Gaugino masses at the “GUT” scale:

[ 51
M, = 1.18\/§m3/2 sin  — (g + 5GS) 2.9 x 1072 cos 0] :

My = 1.06v3mgs [sind — (7 + dgs) 2.9 x 107 % cos 0],

M; = \/§m3/2 [Sinﬁ — (6 4+ dgg) 2.9 x 1072 cos 8] ,
Vol

Green-Schwarz counterterm for anomaly cancellation: choose dgg = —5

. 2 _ 02 . cog2
Scalar masses: m; = m3 (1 — n;cos”0)

2 .2 _ 2 2 .2

Mg = Mmg =M_; = Mg,sin 0,
2 .2 2 . 2
mﬂR—m_Q—m3/2(1 2 cos” 0)

m%L:ng:m%S :m§/2 (1—300826’) «——— sin?6 >2/3

m%[u = m%]d = mg/Q (1 — 2cos” «9)

Trilinear: ag = —Mgz /s (\/§ sin @ 4+ npy, cos 6)
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Note that these scenarios all suffer from fine-tuning A ~ 1000.
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Interestingly, this model also predicts squarks and gluinos close in
mass, even though the scalar GUT scale masses are not small.
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M3 /9
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g
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3IM O-lI

Gaugino masses at the “GUT” scale:

' —33
My = 1.18V3mg 5 |sin6 — (T + 5Gs) 4.6 x 10~* cos 9] ,

My = 1.06v/3ms 5 [sin 6 — (—1 + dgs) 4.6 x 10~ * cos 6],
Msz = \/§m3/2 sinf — (3 + dag) 4.6 X 10~* cos 0] .

Since sinf — 0, LHC limits imply mg /5 2 126 TeV

mg S m3/2( 5(;5) x 1073 (10 TeV)2

ag = —\/§m3/2 sin 6
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Bino dominated DM
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Higgsino dominated DM
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4000 6000 3000 10 000 12 000
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Lose the correlation between squark and gluino masses due to the
really large GUT scale scalar mass.
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Summary of Key Points

Saw SUSY scenarios with non-universal gaugino masses where the only
fine-tuning arises from .

Challenge the community to think up theories where p is fixed by the UV
completion.

In our SO(10) & SU(5) GUTs, constraints from the Higgs discovery and
Dark Matter constrain the parameter space much more than direct SUSY
searches.

These models can have a very heavy spectrum that will be difficult to see.

We see similar effects in models motivated by orbifolds.
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Backup Slides



200 of SU(5)

Consider a 200 of SU(5) or {
P1 — 10, P2 = 2

SO(10) — SU((b) x U(1)
770 — 220

Although this is close to the ellipse is it very difficult to get low fine-tuning
and the correct relic density.

1 | | | | | | In this plot,
1 | Light:
e g, | 80 < A < 100
H25 %‘ f Dark:
Y A < 80
20 . l
15t

300 350 400 450 500 550 600
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All of these scenarios have too little Dark Matter.
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An example SO(10) Pati-Salam scenario:

mie

Kie

mio0+126

113.8
12.3
132.5
-6674
-116.7
2471
1.90
2.90

125.0
3842
3842
3843
907.5
19.13

5785
4481
5786
4417
4036
1765
4035

4.76
1.32
33.62
453.5
0.0934
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