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Introduction Motivation

Motivation

The Standard Model→ SU(3)c × SU(2)L × U(1)Y

LSM = −1
4

F a
µνF aµν+iψ /Dψ+h.c.−ψi (yl )ij ψjφ+h.c.+(DµH)† (DµH)−V

(
H†H

)

V
(
H†H

)
=

m2

2
H†H +

λ

4
(H†H)4

H =
1√
2

(
G+

v + h + iG0

)
, v = 246 GeV

Besides its success, the SM does not explain

the existence of Dark Matter

the baryon asymmetry of the
Universe

Charge quantization

Fermion masses and mixings

Hard to reconcile with the theory of
General Relativity
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Introduction The xSM Model

The xSM Model
[See e.g. Barger et. al. ,Phys.Rev. D79 (2009) 015018, [arXiv:0811.0393]] and ref therein. For real singlet see T. Robens

talk Friday

Extend the SM with a complex singlet S =
1√
2

[vS + S + i(vA + A)]

Impose a discrete Z2 symmetry to the imaginary component: A→ −A

The xSM scalar potential

VxSM =
m2

2
H†H +

λ

4
(H†H)2 +

δ2

2
H†H|S|2 +

b2

2
|S|2 +

d2

4
|S|4 +

(
b1

4
S2 + a1S + c.c.

)

Spontaneously break the Z2 symmetry when vA 6= 0 −→
∣∣VxSM − V ′

xSM

∣∣ = Ab1vA

Electroweak baryogensis through a strong 1st-order phase transition

Two distinct phases
1 vA = 0→ Z2-symmetric phase: S and h mix and A is stable→ Dark Matter

2 vA 6= 0→ broken phase: A no longer dark→ δ2vA

4
Ah2 +

d2vA

4
AS2 → S,A and h

mix
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Introduction The xSM Model

1 Symmetric or Dark Matter phase:

→ 2 mixed + 1 DM scalarH1
H2
A′

 =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

h
S
A



2 Broken phase: → 3 mixed scalarsH1
H2
H3

 =

M1h M1S M1A
M2h M2S M2A
M3h M3S M3A

h
S
A

 ≡
κ1 M1S M1A
κ2 M2S M2A
κ3 M3S M3A

h
S
A



κj ≡
λ
(p)
Hj

λ
(p)
hSM

λ
(p)
hSM

Coupling of particle p to the SM Higgs

λ
(p)
Hj

Coupling of particle p to the new scalar
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Renormalization of the xSM The effective potential

The effective potential

Effective potential Veff defined as the effective energy density at a
constant field φ0

Γ[φ0] = −
∫

dx4Veff (φ0) , Γ[φ]→ effective action

Γ[φ] generates correlation functions G(n)(φ1, . . . , φn) by taking functional
derivatives

Vacuum diagrams contain information on all G(n)(φ1, . . . , φn)

To determine Veff → compute vacuum diagrams

Scale invariance of G(n)(φ1, . . . , φn) (Callan-Symanzyk eq.)

Veff is scale invariant
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Renormalization of the xSM The effective potential

What is our aim?
Investigate the stability of the xSM model with energy/RG scale µ

Use the scale invariance of the effective potential to derive the RGEs

Apply stability constraints to the RG evolved couplings using ScannerS
(bottom-up approach)

For each generated point, determine the scale up to where VxSM is stable
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Renormalization of the xSM Renormalization Group Equations
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Renormalization of the xSM Renormalization Group Equations

Renormalization Group Equations (RGEs)

Generic loop expansion of Veff

Veff =
+∞∑
n=0

εnV (n) (L, vi , µ) , ε =
~

16π2

Scale invariance:µ ∂

∂µ
+
∑

L

βL
∂

∂L
−
∑
i,j

γijvi
∂

∂vj

Veff = 0

βL(µ) = ε
+∞∑
n=0

εnβ
(n+1)
L (µ) , γij (µ) = ε

+∞∑
n=0

εnγ
(n+1)
ij (µ)

1-loop −→ truncate to first order n = 1

Veff = V (0) +
~

16π2 V (1) +O(~2)
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Renormalization of the xSM Renormalization Group Equations

Veff = V (0) +
~

16π2 V (1) +O(~2)

V (0) is VxSM evaluated at the minimum

We use for V (1) the Coleman-Weinberg potential

V (1) =
1

64π4

∑
i

niTr
[
m4

i

(
log

m2
i

µ2 − ki

)]

~ = 1 , ns,f ,v = (1,−2,3) , ks,f ,v =

(
3
2
,

3
2
,

5
6

)
Extract β(1)

L (µ) functions→ evolution of the xSM couplings L

We use the full one-loop xSM RGEs + two-loop contributions from the SM
(For 1-loop xSM RGEs see [Gonderinger et. al. , Phys. Rev. D 86, 043511, 1202.1316 [hep-ph]] )

(2-loop SM RGEs taken from [Ford et. al. , 0111190 (Nucl.Phys. B), hep-ph/0111190] )

Ongoing work: Full two-loop RGEs for xSM
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Scans over the Parameter Space Theoretical and Experimental Constraints

Theoretical Constraints

Check boundedness from below of the scalar potential (all scales)

Check perturbative unitarity in 2→ 2 processes (all scales)

|λ| ≤ 16π , |d2| ≤ 16π , |δ2| ≤ 16π ,

∣∣∣∣∣∣32λ+ d2 ±

√(
3
2
λ+ d2

)2

+ d2
2

∣∣∣∣∣∣ ≤ 16π

Check that the minimum we chose is global (low scale only)

Compare with EW precision observables S, T, U (low scale only)

Costa, Morais, Sampaio, Santos Renormalization Group Analysis of the xSM model and implementation in the ScannerS ToolSeptember 2, 2014 15 / 29



Scans over the Parameter Space Theoretical and Experimental Constraints

Theoretical Constraints

Check boundedness from below of the scalar potential (all scales)

Check perturbative unitarity in 2→ 2 processes (all scales)

|λ| ≤ 16π , |d2| ≤ 16π , |δ2| ≤ 16π ,

∣∣∣∣∣∣32λ+ d2 ±

√(
3
2
λ+ d2

)2

+ d2
2

∣∣∣∣∣∣ ≤ 16π

Check that the minimum we chose is global (low scale only)

Compare with EW precision observables S, T, U (low scale only)

Costa, Morais, Sampaio, Santos Renormalization Group Analysis of the xSM model and implementation in the ScannerS ToolSeptember 2, 2014 15 / 29



Scans over the Parameter Space Theoretical and Experimental Constraints

Experimental Constraints

Collider searches for SM Higgs boson

Experiments provide exclusion limits on various signal strengths µi normalized to the
SM
Cross sections σ and decay widths Γ for the new scalars are rescaled by κ2

i

µi =
σnew (Hi )Brnew (Hi → XSM)

σSM(hSM)BrSM (hSM → XSM)
= κ2

i
Brnew (Hi → XSM)

BrSM (hSM → XSM)

Due to the new scalars the ratio of BRs is

Brnew (Hi → XSM)

BrSM (hSM → XSM)
=

κ2
i Γ (hSM → XSM)

κ2
i Γ (hSM → XSM) +

∑
Γ (Hi → HjHk )

We know κi (generated) and calculate
∑

Γ (Hi → HjHk )

Use HDECAY to calculate Γ (hSM → XSM)

Provide Γ for each scalar to HiggsBounds and HiggsSignals

exclude points with µi above limits

exclude points beyond 3σ
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Scans over the Parameter Space Theoretical and Experimental Constraints

Dark Matter searches

Ωcdmh2 = 0.1196± 0.0031 (WMAP)

LUX bounds

micrOMEGAS (v2.4.5) to calculate relic density ΩAh2 and exclude a point
if above WMAP bounds

Calculate σscaled for SI WIMP-nucleon scattering

Reject point if σscaled > σLUX with σscaled = σA
ΩAh2

0.1196
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Scans over the Parameter Space Theoretical and Experimental Constraints

Input Parameters

Broken phase inputs

Fixed input parameters: v = 246 GeV , mh = 125.7 GeV

Free parameters: vA, vS,mH1,2 ∈ [0 ,500] GeV , κ1,2,3 ∈ [0 ,1]

Our convention→ mH1,2 ≡ mHlight ,heavy

Dark Matter phase inputs

Fixed input parameters: vA = 0 GeV

Free parameters: a1 ∈
[
−108 ,0

]
GeV3 , φ ∈ [0 ,1]

Our convention→ mH1,2 ≡ mHDM ,new
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Scans over the Parameter Space Dark Matter Phase

Dark Matter Phase: Theoretical tests only

Dark matter phase:

initial λ

log10(
µ

GeV )

No restrictions
λ < 0
ss

Dark matter phase:

mHnew

λ log10(
µ

GeV )

Run from µ = Mz to MPl ∼ 1019 GeV

Perturbative unitarity conditions dominant

Blue layer→ V becomes UFB

Narrow range 0.5 . λ . 1.0 survives to
large scales

Favours a new visible particle with mass
mHnew & 140 GeV if we insist in RG stability

Minimum conditions + Higgs mass

λ =
1
v2

[
m2

Hnew
+ m2

H126
±
√

(m2
Hnew
−m2

H126
)− (vsδ2)2

]
No mixing limit (vs → 0) we obtain

λ = 2m2
Hnew

/v2 or λ = 2m2
H126

/v2
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Scans over the Parameter Space Dark Matter Phase

Dark Matter Phase: Theoretical tests

Dark matter phase:

mHnew

κH126 log10(
µ

GeV )
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Scans over the Parameter Space Dark Matter Phase

Dark Matter Phase: Phenomenological tests

Dark matter phase:

mHnew

κHnew log10(
µ

GeV ) Dark matter phase:

mHnew

κHnew

No restrictions s
mHnew < 2mDM:

P > 3σ
P > 2σ
P > σ

sss

Contour cut from HiggsBounds and P value from Higgs signals

The new scalar has a sizable coupling to the SM, κHnew ∼ 0.4 with P > 1σ (green/blue
boundary)

If 200 . mHnew . 350 GeV→ RG stable point (yellow region)

Grey points→ P > 3σ and new particle decays to DM
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Scans over the Parameter Space Dark Matter Phase

Dark Matter Phase: Phenomenological tests

Dark matter phase:
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GeV ) Dark matter phase:
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No restrictions s
mHnew < 2mDM:

P > 3σ
P > 2σ
P > σ

sss

Higgs coupling to the SM suppressed to κH126 ∼ 0.9 for P > 1σ (green/blue boundary)

If 200 . mnew . 350 GeV→ RG stable point (yellow region)

For both κHnew and κH126 most of the points within 2σ

If not at the decoupling limit (κHnew → 0 and κH126 → 1) region may be probed at
the 14 TeV LHC runs
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Outline
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Scans over the Parameter Space Broken Phase

Broken Phase: Theoretical tests

Broken phase:

mHlight

κH126 log10(
µ

GeV ) Broken phase:

mHheavy

κH126 log10(
µ

GeV )

Three states mixing

New heavy particle predicted to be mHheavy & 140 GeV if we insist in RG stability
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Scans over the Parameter Space Broken Phase

Broken Phase: Phenomenological tests

Broken phase:

mHheavy

κHheavy
log10(

µ
GeV ) Broken phase:

mHheavy

κHheavy

No restrictions s
mHheavy

< 2mHlight
:

P > 3σ
P > 2σ
P > σ

sss

Harder to find RG stable points with P > σ in comparison with the broken phase

For κHheavy ∼ 0.4 and P > σ → stable up to ∼ 1015 GeV
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Conclusions

Conclusions

Studied the xSM model with a Z2 symmetry in the imaginary component
of the extra complex singlet

Analyzed both the symmetric (Dark Matter) and broken phases

Studied the low scale and RG stability of the scalar potential

Imposed collider and Dark Matter phenomenological cuts→ constraints
on the parameter space

Plenty of solutions which can be probed at the 14 TeV runs of the
LHC
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Decay widths for Hi → HjHk and Hi → HjHj

Γ (Hi → HjHk ) =
g2

ijk

16πmi

√
1−

(mj + mk )2

m2
i

√
1−

(mj −mk )2

m2
i

Γ (Hi → HjHj ) =
g2

ijj

32πmi

√
1−

4m4
j

m2
i
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