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Despite several good motivations,!
there is the need to suppress potentially dangerous FCNC: 

Two Higgs Doublet Models

- discrete symmetry leading to NFC
Weinberg, Glashow (1977);  Paschos (1977)

- assume existence of suppression factors
Antaramian, Hall, Rasin (1992); Hall, Weinberg (1993); Joshipura, 

Rindani (1991)

- first models of this type

Without HFCNC

With HFCNC

with no ad-hoc assumptions
suppression by small elements of VCKM

Branco, Grimus, Lavoura (1996)

Minimal Flavour Violation

- aligned two Higgs doublet model Pich, Tuzon (2009)























Introduction BGL models with FCNC Results Conclusions

Neutral couplings in BGL models
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It all comes from the symmetry

Miguel Nebot CFTP-IST Lisbon





















FCNC in both up and down sectors. It has been argued that out of the models verifying

Eqs. (2.18) and (2.19) and their generalization to the leptonic sector, only BGL type models

can be enforced by some symmetry [11]. Furthermore, in Ref. [18] it was shown that BGL

models are the only models of this type that can be enforced by abelian symmetries.

Similarly, for the leptonic sector, the symmetries of Eqs. (2.10) or, in alternative (2.11),

imply

P�
k⇧2 = ⇧2 , P�

k⇧1 = 0 , (2.21)

P�
k⌃2 = ⌃2 , P�

k⌃1 = 0 , (2.22)

where � stands for neutrino (⌫) or for charged lepton (`) respectively. In this case

P`
k = U`LPkU

†
`L , P⌫

k = U⌫LPkU
†
⌫L , (2.23)

where U⌫L and U`L are the unitary matrices that diagonalize the corresponding square

mass matrices
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†
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�

, (2.24)

with M` and M⌫ of the form

M` =
1p
2
(v1⇧1 + v2e

i✓⇧2) , M⌫ =
1p
2
(v1⌃1 + v2e

�i✓⌃2) . (2.25)

In the leptonic sector, the PMNS mixing matrix U ⌘ U †
`LU⌫L, has large mixings, unlike

the CKM matrix V . Therefore, the Higgs mediated FCNC are not strongly suppressed.

However, models where the Higgs mediated leptonic FCNC are present only in the neutrino

sector can be easily accommodated experimentally due to the smallness of the neutrino

masses.

In the next sections we label each of the thirty six di↵erent models we analyse by

the pair (�j , �k): the generation numbers j, k refer to the projectors Pj,k involved in each

sector �,�. For example, the model (up3, `2) = (t, µ) will have no tree level neutral flavour

changing couplings in the up quark and the charged lepton sectors while the neutral flavour

changing couplings in the down quark and neutrino sectors will be controlled, respectively,

by Vtdi
V ⇤
tdj

and Uµ⌫aU
⇤
µ⌫b

.

In BGL models the Higgs potential is constrained by the imposed symmetry to be of

the form:

V� = µ1�
†
1�1 + µ2�

†
2�2 �
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†
1�2 + h.c.

⌘

+ 2�3
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⌘2
, (2.26)

the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 ! 0
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potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 ! 0

– 6 –

where ⌧ 6= 0,⇡, with all other quark fields transforming trivially under the symmetry. The

index j can be fixed as either 1, 2 or 3. Alternatively the symmetry may be chosen as:

Q0
Lj ! exp (i⌧) Q0

Lj , d0Rj ! exp (i2⌧)d0Rj , �2 ! exp (�i⌧)�2 . (2.9)

The symmetry given by Eq. (2.8) leads to Higgs FCNC in the down sector, whereas the

symmetry specified by Eq. (2.9) leads to Higgs FCNC in the up sector. These two alterna-

tive choices of symmetry combined with the three possible ways of fixing the index j give

rise to six di↵erent realizations of 2HDM with the flavour structure, in the quark sector,

controlled by the CKM matrix.

In the leptonic sector, with Dirac type neutrinos, there is perfect analogy with the quark

sector. The requirement that FCNC at tree level have strength completely controlled by

the Pontecorvo – Maki – Nakagawa – Sakata (PMNS) matrix, U is enforced by one of the

following symmetries. Either

L0
Lk ! exp (i⌧) L0

Lk , ⌫0Rk ! exp (i2⌧)⌫0Rk , �2 ! exp (i⌧)�2 , (2.10)

or

L0
Lk ! exp (i⌧) L0

Lk , `0Rk ! exp (i2⌧)`0Rk , �2 ! exp (�i⌧)�2 , (2.11)

where, once again, ⌧ 6= 0,⇡, with all other leptonic fields transforming trivially under the

symmetry. The index k can be fixed as either 1, 2 or 3.

These are the so-called BGL type models that we analyse in this paper. There are

thirty six di↵erent models corresponding to the combinations of the six possible di↵erent

implementations in each sector. It is clear that in order to combine the symmetry given

by Eq. (2.8) with the one given by Eq. (2.11) an overall change of sign is required, in one

set of transformations.

The symmetry given by Eq. (2.8) with the choice j = 3 leads to the following pattern

of zero textures for the Yukawa couplings:
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where ⇥ denotes an arbitrary entry. As a result of this symmetry the matrices Nd, Nu are

of the form [9]:
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the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 ! 0
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the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 ! 0
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the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 ! 0
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the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 ! 0
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given by eqs. (2.16) and (2.17) both matrices N0
d , N

0
u involve the same projection operator.

Different models with MFV were obtained through the generalization of BGL models [15].

Relaxing the above condition allows, for instance, to build models with Higgs mediated

FCNC in both up and down sectors. It has been argued that out of the models verifying

eqs. (2.18) and (2.19) and their generalization to the leptonic sector, only BGL type models

can be enforced by some symmetry [16]. Furthermore, in ref. [35] it was shown that BGL

models are the only models of this type that can be enforced by abelian symmetries.

Similarly, for the leptonic sector, the symmetries of eqs. (2.10) or, in alternative (2.11),

imply

Pβ
kΠ2 = Π2 , Pβ

kΠ1 = 0 , (2.21)

Pβ
kΣ2 = Σ2 , Pβ

kΣ1 = 0 , (2.22)

where β stands for neutrino (ν) or for charged lepton (ℓ) respectively. In this case

Pℓ
k = UℓLPkU

†
ℓL , Pν

k = UνLPkU
†
νL , (2.23)

where UνL and UℓL are the unitary matrices that diagonalize the corresponding square

mass matrices

U †
ℓLMℓM

†
ℓUℓL = diag

(
m2

e,m
2
µ,m

2
τ

)
,

U †
νLMνM

†
νUνL = diag

(
m2

ν1 ,m
2
ν2,m

2
ν3

)
, (2.24)

with Mℓ and Mν of the form

Mℓ =
1√
2
(v1Π1 + v2e

iθΠ2) , Mν =
1√
2
(v1Σ1 + v2e

−iθΣ2) . (2.25)

In the leptonic sector, the PMNS mixing matrix U ≡ U †
ℓLUνL, has large mixings, unlike

the CKM matrix V . Therefore, the Higgs mediated FCNC are not strongly suppressed.

However, models where the Higgs mediated leptonic FCNC are present only in the neutrino

sector can be easily accommodated experimentally due to the smallness of the neutrino

masses.

In the next sections we label each of the thirty six different models we analyse by

the pair (γj , βk): the generation numbers j, k refer to the projectors Pj,k involved in each

sector γ,β. For example, the model (up3, ℓ2) = (t, µ) will have no tree level neutral flavour

changing couplings in the up quark and the charged lepton sectors while the neutral flavour

changing couplings in the down quark and neutrino sectors will be controlled, respectively,

by Vtdi
V ∗
tdj

and UµνaU
∗
µνb .

In BGL models the Higgs potential is constrained by the imposed symmetry to be of

the form:

VΦ = µ1Φ
†
1Φ1 + µ2Φ

†
2Φ2 −

(
m12Φ

†
1Φ2 + h.c.

)
+ 2λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)

+ 2λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+ λ1

(
Φ†
1Φ1

)2
+ λ2

(
Φ†
2Φ2

)2
, (2.26)

– 6 –

J
H
E
P
0
7
(
2
0
1
4
)
0
7
8

given by eqs. (2.16) and (2.17) both matrices N0
d , N

0
u involve the same projection operator.

Different models with MFV were obtained through the generalization of BGL models [15].

Relaxing the above condition allows, for instance, to build models with Higgs mediated

FCNC in both up and down sectors. It has been argued that out of the models verifying

eqs. (2.18) and (2.19) and their generalization to the leptonic sector, only BGL type models

can be enforced by some symmetry [16]. Furthermore, in ref. [35] it was shown that BGL

models are the only models of this type that can be enforced by abelian symmetries.

Similarly, for the leptonic sector, the symmetries of eqs. (2.10) or, in alternative (2.11),

imply

Pβ
kΠ2 = Π2 , Pβ

kΠ1 = 0 , (2.21)

Pβ
kΣ2 = Σ2 , Pβ

kΣ1 = 0 , (2.22)

where β stands for neutrino (ν) or for charged lepton (ℓ) respectively. In this case

Pℓ
k = UℓLPkU

†
ℓL , Pν

k = UνLPkU
†
νL , (2.23)

where UνL and UℓL are the unitary matrices that diagonalize the corresponding square

mass matrices

U †
ℓLMℓM

†
ℓUℓL = diag

(
m2

e,m
2
µ,m

2
τ

)
,

U †
νLMνM

†
νUνL = diag

(
m2

ν1 ,m
2
ν2,m

2
ν3

)
, (2.24)

with Mℓ and Mν of the form

Mℓ =
1√
2
(v1Π1 + v2e

iθΠ2) , Mν =
1√
2
(v1Σ1 + v2e

−iθΣ2) . (2.25)

In the leptonic sector, the PMNS mixing matrix U ≡ U †
ℓLUνL, has large mixings, unlike

the CKM matrix V . Therefore, the Higgs mediated FCNC are not strongly suppressed.

However, models where the Higgs mediated leptonic FCNC are present only in the neutrino

sector can be easily accommodated experimentally due to the smallness of the neutrino

masses.

In the next sections we label each of the thirty six different models we analyse by

the pair (γj , βk): the generation numbers j, k refer to the projectors Pj,k involved in each

sector γ,β. For example, the model (up3, ℓ2) = (t, µ) will have no tree level neutral flavour

changing couplings in the up quark and the charged lepton sectors while the neutral flavour

changing couplings in the down quark and neutrino sectors will be controlled, respectively,

by Vtdi
V ∗
tdj

and UµνaU
∗
µνb .

In BGL models the Higgs potential is constrained by the imposed symmetry to be of

the form:

VΦ = µ1Φ
†
1Φ1 + µ2Φ

†
2Φ2 −

(
m12Φ

†
1Φ2 + h.c.

)
+ 2λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)

+ 2λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+ λ1

(
Φ†
1Φ1

)2
+ λ2

(
Φ†
2Φ2

)2
, (2.26)

– 6 –

Hermiticity would allow the coefficient

J
H
E
P
0
7
(
2
0
1
4
)
0
7
8

the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 → 0

the pseudo scalar neutral field I remains massless. Hermiticity would allow the coefficient

m12 to be complex, unlike the other coefficients of the scalar potential. However, freedom

to rephase the scalar doublets allows to choose without loss of generality all coefficients

real. As a result, VΦ does not violate CP explicitly. It can also be easily shown that it

cannot violate CP spontaneously. In the absence of CP violation the scalar field I does not

mix with the fields R and H0, therefore I is already a physical Higgs and the mixing of R

and H0 is parametrized by a single angle. There are two important rotations that define

the two parameters, tanβ and α, widely used in the literature:

(
H0

R

)
=

1

v

(
v1 v2

−v2 v1

)(
ρ1
ρ2

)
=

(
cosβ sinβ

− sinβ cosβ

)(
ρ1
ρ2

)
(2.27)

This rotation ensures that the field H0 has flavour conserving couplings to the quarks with

strength equal to the standard model Higgs couplings. The other rotation is:

(
H

h

)
=

(
cosα sinα

− sinα cosα

)(
ρ1
ρ2

)
(2.28)

relating ρ1 and ρ2 to two of the neutral physical Higgs fields. The seven independent real

parameters of the Higgs potential VΦ will fix the seven observable quantities, comprising

the masses of the three neutral Higgs, the mass of the charged Higgs, the combination

v ≡
√
v21 + v22, tanβ ≡ v2/v1, and α. In our analysis we use the current limits on Higgs

masses, identifying one of the Higgs with the one that was discovered by ATLAS and

CMS. We make the approximation of no mixing between R and H0 identifying H0 with

the recently discovered Higgs and R and I with the additional physical neutral Higgs fields.

This limit corresponds to β − α = π/2 and with this notation H0 coincides with h, which

is the usual choice in the literature. This approximation is justified by the fact that the

observed Higgs boson seems to behave as a standard-like Higgs particle. The quantity v

is of course already fixed by experiment. Electroweak precision tests and, in particular

the T and S parameters, lead to constraints relating the masses of the new Higgs fields

among themselves. Therefore the bounds on T and S, together with direct mass limits,

significantly restrict the masses of the new Higgs particles, once the mass of H± is fixed. In

our analysis we study BGL type models by combining the six possible implementations of

the quark sector with the six implementations of the leptonic sector. It is illustrative to plot

our results in terms of mH± versus tanβ, since, as explained above in the context of our

approximation of no mixing between R and H0, there is not much freedom left. Therefore

with these two parameters we approximately scan the whole region of parameter space. In

our analysis, we impose present constraints from several relevant flavour observables, as

specified in the next section.

– 7 –

J
H
E
P
0
7
(
2
0
1
4
)
0
7
8

the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 → 0

the pseudo scalar neutral field I remains massless. Hermiticity would allow the coefficient

m12 to be complex, unlike the other coefficients of the scalar potential. However, freedom

to rephase the scalar doublets allows to choose without loss of generality all coefficients

real. As a result, VΦ does not violate CP explicitly. It can also be easily shown that it

cannot violate CP spontaneously. In the absence of CP violation the scalar field I does not

mix with the fields R and H0, therefore I is already a physical Higgs and the mixing of R

and H0 is parametrized by a single angle. There are two important rotations that define

the two parameters, tanβ and α, widely used in the literature:

(
H0

R

)
=

1

v

(
v1 v2

−v2 v1

)(
ρ1
ρ2

)
=

(
cosβ sinβ

− sinβ cosβ

)(
ρ1
ρ2

)
(2.27)

This rotation ensures that the field H0 has flavour conserving couplings to the quarks with

strength equal to the standard model Higgs couplings. The other rotation is:

(
H

h

)
=

(
cosα sinα

− sinα cosα

)(
ρ1
ρ2

)
(2.28)

relating ρ1 and ρ2 to two of the neutral physical Higgs fields. The seven independent real

parameters of the Higgs potential VΦ will fix the seven observable quantities, comprising

the masses of the three neutral Higgs, the mass of the charged Higgs, the combination

v ≡
√

v21 + v22, tanβ ≡ v2/v1, and α. In our analysis we use the current limits on Higgs

masses, identifying one of the Higgs with the one that was discovered by ATLAS and

CMS. We make the approximation of no mixing between R and H0 identifying H0 with

the recently discovered Higgs and R and I with the additional physical neutral Higgs fields.

This limit corresponds to β − α = π/2 and with this notation H0 coincides with h, which

is the usual choice in the literature. This approximation is justified by the fact that the

observed Higgs boson seems to behave as a standard-like Higgs particle. The quantity v

is of course already fixed by experiment. Electroweak precision tests and, in particular

the T and S parameters, lead to constraints relating the masses of the new Higgs fields

among themselves. Therefore the bounds on T and S, together with direct mass limits,

significantly restrict the masses of the new Higgs particles, once the mass of H± is fixed. In

our analysis we study BGL type models by combining the six possible implementations of

the quark sector with the six implementations of the leptonic sector. It is illustrative to plot

our results in terms of mH± versus tanβ, since, as explained above in the context of our

approximation of no mixing between R and H0, there is not much freedom left. Therefore

with these two parameters we approximately scan the whole region of parameter space. In

our analysis, we impose present constraints from several relevant flavour observables, as

specified in the next section.

– 7 –

J
H
E
P
0
7
(
2
0
1
4
)
0
7
8

the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 → 0

the pseudo scalar neutral field I remains massless. Hermiticity would allow the coefficient

m12 to be complex, unlike the other coefficients of the scalar potential. However, freedom

to rephase the scalar doublets allows to choose without loss of generality all coefficients

real. As a result, VΦ does not violate CP explicitly. It can also be easily shown that it

cannot violate CP spontaneously. In the absence of CP violation the scalar field I does not

mix with the fields R and H0, therefore I is already a physical Higgs and the mixing of R

and H0 is parametrized by a single angle. There are two important rotations that define

the two parameters, tanβ and α, widely used in the literature:

(
H0

R

)
=

1

v

(
v1 v2

−v2 v1

)(
ρ1
ρ2

)
=

(
cosβ sinβ

− sinβ cosβ

)(
ρ1
ρ2

)
(2.27)

This rotation ensures that the field H0 has flavour conserving couplings to the quarks with

strength equal to the standard model Higgs couplings. The other rotation is:

(
H

h

)
=

(
cosα sinα

− sinα cosα

)(
ρ1
ρ2

)
(2.28)

relating ρ1 and ρ2 to two of the neutral physical Higgs fields. The seven independent real

parameters of the Higgs potential VΦ will fix the seven observable quantities, comprising

the masses of the three neutral Higgs, the mass of the charged Higgs, the combination

v ≡
√
v21 + v22, tanβ ≡ v2/v1, and α. In our analysis we use the current limits on Higgs

masses, identifying one of the Higgs with the one that was discovered by ATLAS and

CMS. We make the approximation of no mixing between R and H0 identifying H0 with

the recently discovered Higgs and R and I with the additional physical neutral Higgs fields.

This limit corresponds to β − α = π/2 and with this notation H0 coincides with h, which

is the usual choice in the literature. This approximation is justified by the fact that the

observed Higgs boson seems to behave as a standard-like Higgs particle. The quantity v

is of course already fixed by experiment. Electroweak precision tests and, in particular

the T and S parameters, lead to constraints relating the masses of the new Higgs fields

among themselves. Therefore the bounds on T and S, together with direct mass limits,

significantly restrict the masses of the new Higgs particles, once the mass of H± is fixed. In

our analysis we study BGL type models by combining the six possible implementations of

the quark sector with the six implementations of the leptonic sector. It is illustrative to plot

our results in terms of mH± versus tanβ, since, as explained above in the context of our

approximation of no mixing between R and H0, there is not much freedom left. Therefore

with these two parameters we approximately scan the whole region of parameter space. In

our analysis, we impose present constraints from several relevant flavour observables, as

specified in the next section.

– 7 –



Our analysis:
Approximation of no mixing between R and H0

We identify H0 with the recently discovered Higgs field

J
H
E
P
0
7
(
2
0
1
4
)
0
7
8

the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 → 0

the pseudo scalar neutral field I remains massless. Hermiticity would allow the coefficient

m12 to be complex, unlike the other coefficients of the scalar potential. However, freedom

to rephase the scalar doublets allows to choose without loss of generality all coefficients

real. As a result, VΦ does not violate CP explicitly. It can also be easily shown that it

cannot violate CP spontaneously. In the absence of CP violation the scalar field I does not

mix with the fields R and H0, therefore I is already a physical Higgs and the mixing of R

and H0 is parametrized by a single angle. There are two important rotations that define

the two parameters, tanβ and α, widely used in the literature:

(
H0

R

)
=

1

v

(
v1 v2

−v2 v1

)(
ρ1
ρ2

)
=

(
cosβ sinβ

− sinβ cosβ

)(
ρ1
ρ2

)
(2.27)
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Grimus, Lavoura, Ogreid, Osland 2008



Introduction BGL models with FCNC Results Conclusions

BGL - 2HDM SM
Charged H± Neutral R, I Tree LoopTree Loop Tree Loop

M ! `⌫̄,M 0`⌫̄ X X X X X
Universality X X X X X
M0 ! `+1 `�2 X X X X
M0 � M̄0 X X X X

`�1 ! `�2 `+3 `�4 X X X X
B ! Xs� X X X
`j ! `i� X X X

EW Precision X X X

Summary of relevant constraints

Miguel Nebot CFTP-IST Lisbon
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|gµ/ge|2 1.0018(14) |gS
RR,⌧µ| < 0.72

|gS
RR,⌧e| < 0.70 |gS

RR,µe| < 0.035
Br(B+ ! e+⌫) < 9.8 10�7 Br(D+

s ! e+⌫) < 1.2 10�4

Br(B+ ! µ+⌫) < 1.0 10�6 Br(D+
s ! µ+⌫) 5.90(33) 10�3

Br(B+ ! ⌧+⌫) 1.15(23) 10�4 Br(D+
s ! ⌧+⌫) 5.43(31) 10�2

Br(D+ ! e+⌫) < 8.8 10�6

Br(D+ ! µ+⌫) 3.82(33) 10�4

Br(D+ ! ⌧+⌫) < 1.2 10�3

�(⇡+!e+⌫)
�(⇡+!µ+⌫) 1.230(4) 10�4 �(⌧�!⇡�⌫)

�(⇡+!µ+⌫) 9703(54)
�(K+!e+⌫)
�(K+!µ+⌫) 2.488(12) 10�5 �(⌧�!K�⌫)

�(K+!µ+⌫) 469(7)
�(B!D⌧⌫)

NP

�(B!D⌧⌫)
SM

log C (K ! ⇡`⌫) 0.194(11)
�(B!D⇤⌧⌫)

NP

�(B!D⇤⌧⌫)
SM

Tree level H± mediated processes

Miguel Nebot CFTP-IST Lisbon
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Br(⌧� ! e�e�e+) < 2.7 10�8 Br(⌧� ! µ�µ�µ+) < 2.1 10�8

Br(⌧� ! e�e�µ+) < 1.5 10�8 Br(⌧� ! e�µ�e+) < 1.8 10�8

Br(⌧� ! µ�µ�e+) < 1.7 10�8 Br(⌧� ! µ�e�µ+) < 2.7 10�8

Br(µ� ! e�e�e+) < 1 10�12

Br(KL ! µ±e⌥) < 4.7 10�12 Br(⇡0 ! µ±e⌥) < 3.6 10�10

Br(KL ! e�e+) < 9 10�12

Br(KL ! µ�µ+) < 6.84 10�9

Br(D0 ! e�e+) < 7.9 10�8 Br(B0 ! e+e�) < 8.3 10�8

Br(D0 ! µ±e⌥) < 2.6 10�7 Br(B0 ! ⌧±e⌥) < 2.8 10�5

Br(D0 ! µ�µ+) < 1.4 10�7 Br(B0 ! µ�µ+) 3.6(1.6) 10�10

Br(B0
s ! e+e�) < 2.8 10�7 Br(B0 ! ⌧±µ⌥) < 2.2 10�5

Br(B0
s ! µ±e⌥) < 2 10�7 Br(B0 ! ⌧+⌧�) < 4.1 10�3

Br(B0
s ! µ�µ+) 2.9(0.7) 10�9

Tree level R, I mediated processes (I)

Miguel Nebot CFTP-IST Lisbon
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2|MK
12| < 3.5 10�15 GeV 2|MD

12| < 9.47 10�15 GeV
|✏K |NP �mK < 7.8 10�19 GeV

Re(�d) 0.823(143) Re(�s) 0.965(133)
Im(�d) �0.199(62) Im(�s) 0.00(10)

Tree level R, I mediated processes (II)

Br(µ! e�) < 5.6 10�13 Br(B ! Xs�)NNLO
SM 3.15(23) 10�4

Br(⌧ ! e�) < 3.3 10�8 Br(B ! Xs�) 3.55(35) 10�4

Br(⌧ ! µ�) < 4.4 10�8

�T 0.02(11) FZbb̄ < 0.0024 GeV�1

�S 0.00(12)

Loop level R, I, H± mediated processes

Miguel Nebot CFTP-IST Lisbon
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E↵ect of the oblique parameters constraints in model (t, ⌧)

Miguel Nebot CFTP-IST Lisbon
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MH+ vs. log10(tan�), u models

Miguel Nebot CFTP-IST Lisbon
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MH+ vs. log10(tan�), c models
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MH+ vs. log10(tan�), t models

Miguel Nebot CFTP-IST Lisbon
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MH+ vs. log10(tan�), d models

Miguel Nebot CFTP-IST Lisbon
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MH+ vs. log10(tan�), s models

Miguel Nebot CFTP-IST Lisbon
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MH+ vs. log10(tan�), b models

Miguel Nebot CFTP-IST Lisbon
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MH+ vs. log10(tan�), ⌫1 models

Miguel Nebot CFTP-IST Lisbon
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MH+ vs. log10(tan�), e models

Miguel Nebot CFTP-IST Lisbon
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log10(tan�) log10(tan�) log10(tan�) log10(tan�) log10(tan�) log10(tan�)

Miguel Nebot CFTP-IST Lisbon





Conclusions

I thank Miguel Nebot for providing the slides with tables and plots taken from our joint paper

HFCNC at tree level are not ruled out even allowing for scalar  
masses of the order of a few hundred Gev

There are several promising scenarios within the 36 models  
that were presented.

Bhattacharyya, Das, Kundu 2014 

The LHC may bring us interesting surprises!


