Minimal Flavour Violation with two Higgs doublets

M. N. Rebelo CFTP/IST, U. Lisboa

Workshop on Multi-Higgs Models

2 September 2014, Complexo Interdisciplinar da UL

Work done in collaboration with F. J. Botella, G. C. Branco, A. Carmona, M. Nebot and L. Pedro

arXiv:1401.6147, arXiv:1210.8163, arXiv:1102.0520, arXiv:0911.1753

Work Partially supported by:

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

European Union

MULTI HIGGS PICTURES

Edinburgh 85

GLORY

2013

GLORY

2013

Two Higgs Doublet Models

Despite several good motivations, there is the need to suppress potentially dangerous FCNC:

Without HFCNC

- discrete symmetry leading to NFC
Weinberg, Glashow (1977); Paschos (1977)

- aligned two Higgs doublet model Pich, Tuzon (2009)

With HFCNC

- assume existence of suppression factors

Antaramian, Hall, Rasin (1992); Hall, Weinberg (1993); Joshipura, Rindani (1991)

- first models of this type with no ad-hoc assumptions suppression by small elements of VCKM

Branco, Grimus, Lavoura (1996)

Minimal Flavour Violation

Notation

Quark mass matrices

$$Md = \frac{1}{12} \left(\nabla_1 \Gamma_1 + \nabla_2 e^{i\alpha} \Gamma_2 \right); Mu = \frac{1}{12} \left(\nabla_1 \Delta_1 + \nabla_2 e^{-i\alpha} \Delta_2 \right)$$

Diagonalized by

Leptonic Sector

$$(-L_{L}^{\circ} Z_{1} \tilde{p}_{1} V_{R}^{\circ} - L_{L}^{\circ} Z_{2} \tilde{p}_{2} V_{R}^{\circ} + h.c)$$

$$\left(\frac{1}{2}\nu_R^{\circ T}C^{-1}M_R\nu_R^{\circ}+h.c\right)$$

Expansion around the ver's

$$\int_{j}^{z} = \left(\frac{e^{i\alpha_{j}^{2}}}{\sqrt{2}} \left(N_{j}^{2} + (j + i\eta_{j})\right), \quad j = 1, 2$$

we perform the following transformation

U singles out

Ho with couplings to quarks proportional to man matrices

G° neutral pseudo-goldstone boson

G+ charged pseudo-goldstone boson

Physical neutral Higgs fields are combinations of Ho, R and I

Neutral and charged Higgs interactions for the quark sector

Flavour structure of quark sector of 2HDM characterized by

Md, Mu, Nd, Nu elecurse leptonic sector, Dirac neutrinos Me, Mv, Ne, Nv Yukawa couplings in terms of quark mass eigenstates for H⁺, H^o, R, I

Flavour changing neutral currents controlled by:

$$N_{d} = \frac{1}{12} U_{dL}^{\dagger} \left(\sqrt{2} \Gamma_{1} - \sqrt{1} e^{i\alpha} \Gamma_{2}^{2} \right) U_{dR}$$

$$N_{u} = \frac{1}{12} U_{uL}^{\dagger} \left(\sqrt{2} \Delta_{1} - \sqrt{1} e^{-i\alpha} \Delta_{2} \right) U_{uR}$$

For generic two Higgs drubbet mordels Nu. Nd non-dragonal artitrary

For définiteners rewrite Nd:

Nd =
$$\frac{\sqrt{2}}{\sqrt{1}}$$
 Dd - $\frac{\sqrt{2}}{\sqrt{2}}$ ($\frac{\sqrt{2}}{\sqrt{1}} + \frac{\sqrt{1}}{\sqrt{2}}$) $\frac{1}{\sqrt{2}}$ Udr eix [2 Udr commen flavour

The flavour structure of Yukawa couplings is not constrained by gauge invariance

All flavour changing transitions in SM are mediated by changed week currents with flavour mixing controlled by VCKM

MFV essentially requires flavour and CP violation linked to known structures of Yukawa couplings

[all new flavour changing transitions are controlled by the CKM matrixe]

Minimal Flavour Violation

Buras, Gambino, Gorbahn, Jager, Silvestrini (2001) D'Ambrosio, Guidice, Isidori, Strumia (2002)

leptonic sector

Cirighano, Grunstein, Isidori, Wise (2005)

GF = U(3) 5 largest symmetry of the gauge sector. flavour violation completely deformined by Yukawa couplings

Our frameWork

- multi Higgs models
- no Natural Flavour Conservation
- must obey above condition (one of the defining ingredients of MFV framework)

In order to obtain a structure for Γ_i , Δ_i such that FCNC at tree level strength completely controlled VCKM Branco, Gumus, Lavoura imposed symmetry

$$Q_{L_f}^{\circ} \rightarrow exp(iz)Q_{L_f}^{\circ} ; \quad u_{R_f}^{\circ} \rightarrow exp(2iz)u_{R_f}^{\circ} ; \quad \int_{Z} \rightarrow exp(iz) \int_{Z} , \quad z \neq 0, \text{ Tr}$$

$$\Gamma_1 = \begin{pmatrix} \times \times \times \times \\ \times \times \times \times \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Gamma_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times \times \times \times \end{pmatrix} ; \quad \Lambda_1 = \begin{pmatrix} \times \times & 0 \\ \times \times & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_4 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_5 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \quad \Lambda_8 = \begin{pmatrix} 0 & 0 & 0$$

Both Higgs have mon-zero yukawa cruplings in the up and down sector

Special WB chosen by the symmetry

FCNC in down sector

if instead of UR, > exp (2iz) uR, impose dR, > exp(2iz) dR,

then FCNC in up sector

Six different BGL models

$$\left(N_{d}\right)_{NA} = \frac{N^{2}}{V_{1}} \left(D_{d}\right)_{NA} - \left(\frac{V_{2}}{N_{1}} + \frac{V_{1}}{N_{2}}\right) \left(\frac{V_{ckm}}{V_{ckm}}\right)_{A3} \left(\frac{V_{ckm}}{V_{3A}}\right) \left(\frac{D_{d}}{V_{3A}}\right)_{A3}$$

$$\vec{J} = 3$$

$$\vec{J} = 3$$

$$Nu = -\frac{\sqrt{1}}{\sqrt{2}} duag(0,0,mt) + \frac{\sqrt{2}}{\sqrt{1}} duag(mu,mc,0)$$

FCNC only in the down sector.

suppression by the 3rd row of VCKM
dependence on VCKM and tamps only

Strong and Natural suppression of the most constrained processes e.g. 14144* 1~20

di RI Viver Viver

Neutral couplings in BGL models

$$N_u = -\frac{v_1}{v_2} \text{diag}(0, 0, m_t) + \frac{v_2}{v_1} \text{diag}(m_u, m_c, 0)$$

Explicitely

$$\begin{split} N_{d} &= \frac{v_{2}}{v_{1}} \begin{pmatrix} m_{d} & 0 & 0 \\ 0 & m_{s} & 0 \\ 0 & 0 & m_{b} \end{pmatrix} \\ &+ \left(\frac{v_{1}}{v_{2}} + \frac{v_{2}}{v_{1}} \right) \begin{pmatrix} m_{d} |V_{31}|^{2} & m_{s} V_{31}^{*} V_{32} & m_{b} V_{31}^{*} V_{33} \\ m_{d} V_{32}^{*} V_{31} & m_{s} |V_{32}|^{2} & m_{b} V_{32}^{*} V_{33} \\ m_{d} V_{33}^{*} V_{31} & m_{s} V_{33}^{*} V_{32} & m_{b} |V_{33}|^{2} \end{pmatrix} \end{split}$$

It all comes from the symmetry

What is the necessary condition for Ni°, Nu° to be of MFV type? Should be functions of Md, Mu no other flavour dependence Furthermore, Nd°, Nu° should transform appropriately under WB Q° > WLQ2°, dR -> WR dR, uR -> WR uR Md -> WI Md WRd , Mu -> WI Mu WRU Não, Não transform as Md, Mu Não « Md ; (Md Hd+) Md ; (Mu Mu+) Md Yd; (YdYd) Yd; (YuYu) Yd Yukawa see permons reforences

What is particular about BGL models in MFV conteset? Ma Mat = Hd; Ust Ma Var = Dd; Ust Ha Udl = Dd $D_{d}^{2} = d_{1} \log (m_{1}^{2}, m_{1}^{2}, m_{2}^{2}) = m_{1}^{2} (l_{0}) + m_{1}^{2} (0_{0}) + m_{2}^{2} (0_{0})$ Dd = = md. P. Hd = Ud Dd Ud = = mdi Ud Pi Ud = = mdi PiL Ud Pi Ud rather than Yd Yd are the minimal building blocks to be used in the expansion of Nd°, Nu° conforming to the MFV requirement Botella, Nebot, Vives 2004

WB covariant definition for BGL models

Logelher With

$$\int_{j}^{k} \Gamma_{2}^{2} = \Gamma_{2}, \quad \int_{j}^{k} \Gamma_{1}^{2} = 0$$

$$\int_{j}^{k} \Delta_{2} = \Delta_{2}, \quad \int_{j}^{k} \Delta_{1} = 0$$

I stands for u(up) or d (down)

Ti are projection operators Botella, Nebot, Vivos 2004

$$\mathcal{F}_{f}^{u} = u_{uL} P_{j} u_{uL}$$

$$\mathcal{F}_{f}^{d} = u_{dL} P_{f} u_{dL}$$

$$(P_{f}) e_{k} = \delta_{f} e \delta_{f} k$$

$$e.g. P_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

BGL is the only implementation of models where Higgs FCNC are a function of VCKM only (Logether with vi, vz) which are based on an Abelian symmetry obeying the sufficient conditions of having Mu block diagonal together with the existence of a matrix P such that

 $P\Gamma_2 = \Gamma_2'$; $P\Gamma_1' = 0$

arXiv: 1012287 Ferreira, Silva

Flavour structure (quark sector)
Md, Mu, Nd°, Nu°

Freedom of choice of WB

Zero textures are WB dependent

Symmetrus are only apparent in particular WB

WB transformations do not change the physics Symmetrus have physical implications

Above four matrices encode breaking of flavour symmetry present in gauge rictor

large redundancy of parameters

WB invariants are very useful to study flavour

I, = tr (MdNd) = md (Nd*) n+ms (Nd*) 22 + mg (N&) 33 not sensitive to HFCNC Im I, probes phases of (Nd); (electric dipole moment d quarks) I = tr [Md Nd, Md Md] sensitive to off-diag elements Nd I CP & Jm Quack, VCKM = UWL Udz $Uu_L \neq Ud_L$ musalignment of the matrices Hd, Hu analogously Iz CP tr [Hd, HNi] = 6i Ad ANd Im Q3, V3 = UdL UNOL HNO = No Not Izep = tr [Hu, Hnd] = 62 Du And Im Qz, Vz = Uut Undi IG = Tr [HNd, HNu]3 and many more VCKM, V2, V3 signal misalignment in flavour space of Hermitian matrices constructed in the framework of ZHDM

So far, we have only written invariants which are sensitive to left-handed mixings

One can construct analogous invariants which are sensitive to right-handed mixings, like:

IT = Tr [Hd, HNO] = 62 Dd DNd Jm Q7

H'd = Md Md, H'Nd = Nd Nd

Q7 rephasing invariant quartet of UdR UNDR

and again many more

The Minimal Flavour Violation Case

Lowest invariant sensitive to CP violation

Tq = Jm tr [MaNd + MaMd + MuMu + Md Md +]

must untain flavour matrices from the up and down sector lower order in powers of man than 5M case (tr [Hu,Hd]3 x 12)

BGL type models have ruther flavour structure parametrized by four matrices

 $T_{q}^{CP}(Y=u, i=3) = -\left(\frac{\sqrt{2}}{\tau_{1}} + \frac{\tau_{1}}{\sqrt{2}}\right) \left(m_{P}^{2} - m_{\Lambda}^{2}\right) \left(m_{P}^{2} - m_{d}^{2}\right) \left(m_{\Lambda}^{2} - m_{d}^{2}\right) \times \left(m_{C}^{2} - m_{u}^{2}\right) Jm \left(V_{22}^{*}V_{32}V_{33}^{*}V_{23}\right)$ $\times \left(m_{C}^{2} - m_{u}^{2}\right) Jm \left(V_{22}^{*}V_{32}V_{33}^{*}V_{23}\right)$

Iq CP controlled by VCKM (BGL)

Iq CP to even if mt=mc or mt=mu since discrete symmetry
singles out top quark

Iq can be related to baryon asymmetry generated at EW phase transition

How to recognize a BGL (type model)?

The following rulations

$$\Delta_1^{\dagger}\Delta_2 = 0$$
; $\Delta_1\Delta_2^{\dagger} = 0$; $\Gamma_1^{\dagger}\Delta_2 = 0$; $\Gamma_2^{\dagger}\Delta_1 = 0$

are necessary and sufficient conditions for a set of Yukawa matrices Γ_i , Δ_i to be of BGL type, with Higgs mediated FCNC in the down sector

Similarly, for the leptonic sector,

In the leptonic sector, with Dirac type neutrinos, there is perfect analogy with the quark sector. The requirement that FCNC at tree level have strength completely controlled by the Pontecorvo – Maki – Nakagawa – Sakata (PMNS) matrix, U is enforced by one of the following symmetries. Either

or
$$L_{Lk}^0 \to \exp{(i\tau)} \ L_{Lk}^0 \ , \qquad \nu_{Rk}^0 \to \exp{(i2\tau)} \nu_{Rk}^0 \ , \qquad \Phi_2 \to \exp{(i\tau)} \Phi_2 \ ,$$

$$\tau \neq 0, \pi$$

$$L_{Lk}^0 \to \exp{(i\tau)} \ L_{Lk}^0 \ , \qquad \ell_{Rk}^0 \to \exp{(i2\tau)} \ell_{Rk}^0 \ , \qquad \Phi_2 \to \exp{(-i\tau)} \Phi_2 \ ,$$

which imply

$$\mathcal{P}_k^{\beta}\Pi_2 = \Pi_2 , \qquad \mathcal{P}_k^{\beta}\Pi_1 = 0 ,$$

 $\mathcal{P}_k^{\beta}\Sigma_2 = \Sigma_2 , \qquad \mathcal{P}_k^{\beta}\Sigma_1 = 0 ,$

where β stands for neutrino (ν) or for charged lepton (ℓ) respectively. In this case

$$\mathcal{P}_k^{\ell} = U_{\ell L} P_k U_{\ell L}^{\dagger} , \qquad \mathcal{P}_k^{\nu} = U_{\nu L} P_k U_{\nu L}^{\dagger} ,$$

where $U_{\nu L}$ and $U_{\ell L}$ are the unitary matrices that diagonalize the corresponding square mass matrices

$$U_{\ell L}^{\dagger} M_{\ell} M_{\ell}^{\dagger} U_{\ell L} = \operatorname{diag} \left(m_e^2, m_{\mu}^2, m_{\tau}^2 \right) ,$$

$$U_{\nu L}^{\dagger} M_{\nu} M_{\nu}^{\dagger} U_{\nu L} = \operatorname{diag} \left(m_{\nu_1}^2, m_{\nu_2}^2, m_{\nu_3}^2 \right) ,$$

$$M_{\ell} = \frac{1}{\sqrt{2}}(v_1\Pi_1 + v_2e^{i\theta}\Pi_2) , \quad M_{\nu} = \frac{1}{\sqrt{2}}(v_1\Sigma_1 + v_2e^{-i\theta}\Sigma_2) .$$

Scalar Potential
The softly broken Z_2 symmetric 2 HDM potential $\nabla (\vec{p}_{1}, \vec{p}_{2}) = m_{11}^{2} \phi_{1}^{\dagger} \phi_{1} + m_{22}^{2} \phi_{2}^{\dagger} \phi_{2} - (m_{12}^{2} \phi_{1}^{\dagger} \phi_{2} + h.c.) + \frac{1}{2} \lambda_{1} (\phi_{1}^{\dagger} \phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\phi_{2}^{\dagger} \phi_{2})^{2}$ + $\lambda_3 \left(\frac{1}{2} \frac{1}{2} \right) \left(\frac{1}{2} \frac{1}{2} \right) + \lambda_4 \left(\frac{1}{2} \frac{1}{2} \right) \left(\frac{1}{2} \frac{1}{2} \right) + \frac{1}{2} \left[\lambda_5 \left(\frac{1}{2} \frac{1}{2} \right)^2 + h.c. \right]$ 9, -> 9, 1 92 -> - P2 In our case $\phi_1 \rightarrow \phi_1$, $\phi_2 \rightarrow e^{iZ}$ ϕ_2 , $7 \neq 0$, T no $\lambda 5$ form V does not violate CP meether explicitly nor spontaneously 7 free parameters: mp, mH, mA, mH, v=\rightaring, tangs, of (H°, R) soft symmetry braking privants ungauged accidental continuous symmetry

In BGL models the Higgs potential is constrained by the imposed symmetry to be of the form:

$$V_{\Phi} = \mu_1 \Phi_1^{\dagger} \Phi_1 + \mu_2 \Phi_2^{\dagger} \Phi_2 - \left(m_{12} \Phi_1^{\dagger} \Phi_2 + \text{ h.c.} \right) + 2\lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right)$$
$$+ 2\lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2,$$

Hermiticity would allow the coefficient

 m_{12} to be complex, unlike the other coefficients of the scalar potential. However, freedom to rephase the scalar doublets allows to choose without loss of generality all coefficients real. As a result, V_{Φ} does not violate CP explicitly. It can also be easily shown that it cannot violate CP spontaneously. In the absence of CP violation the scalar field I does not mix with the fields R and H^0 , therefore I is already a physical Higgs and the mixing of R and H^0 is parametrized by a single angle. There are two important rotations that define the two parameters, $\tan \beta$ and α , widely used in the literature:

$$\begin{pmatrix} H^0 \\ R \end{pmatrix} = \frac{1}{v} \begin{pmatrix} v_1 & v_2 \\ -v_2 & v_1 \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$$
$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$$

Our analysis:

Approximation of no mixing between R and H⁰

We identify H⁰ with the recently discovered Higgs field

This limit corresponds to $\beta - \alpha = \pi/2$

$$v \equiv \sqrt{v_1^2 + v_2^2}$$
, $\tan \beta \equiv v_2/v_1$, the quantity v is of course fixed by experiment

Electroweak precision tests and in particular the T and S parameters lead to constraints relating the masses of the new Higgs fields among themselves

Grimus, Lavoura, Ogreid, Osland 2008

The bounds on T and S together with direct mass limits significantly restrict the masses of the new Higgs particles once the mass of charged Higgs is fixed

It is instructive to plot our results in terms of $m_{H^{\pm}}$ versus $\tan \beta$, since in this context there is not much freedom left

	BGL - 2HDM			SM		
	Charged H^{\pm}		Neutral R, I		Tree	Loop
	Tree	Loop	Tree	Loop	1166	Loop
$M \to \ell \bar{\nu}, M' \ell \bar{\nu}$	√	√		√	√	√
Universality	√	√		√	√	√
$M^0 \to \ell_1^+ \ell_2^-$		√	√	√		√
$M^0 ightleftharpoons ar{M}^{ar{0}}$		√	√	√		✓
$\ell_1^- \to \ell_2^- \ell_3^+ \ell_4^-$		√	√	√		√
$B \to X_s \gamma$		√		√		√
$\ell_j \to \ell_i \gamma$		✓		√		√
EW Precision		√		√		√

Summary of relevant constraints

$ g_{\mu}/g_e ^2$	1.0018(14)	$ g_{RR, au\mu}^S $	< 0.72
$ g^S_{RR, au e} $	< 0.70	$ g_{RR,\mu e}^{S} $	< 0.035
$Br(B^+ \to e^+ \nu)$	$< 9.8 \cdot 10^{-7}$	$Br(D_s^+ \to e^+ \nu)$	$< 1.2 \cdot 10^{-4}$
$Br(B^+ \to \mu^+ \nu)$	$< 1.0 \cdot 10^{-6}$	$Br(D_s^+ \to \mu^+ \nu)$	$5.90(33) \cdot 10^{-3}$
$Br(B^+ \to \tau^+ \nu)$	$1.15(23) \cdot 10^{-4}$	$\operatorname{Br}(D_s^+ \to \tau^+ \nu)$	$5.43(31) \cdot 10^{-2}$
$\boxed{\operatorname{Br}(D^+ \to e^+ \nu)}$	$< 8.8 \cdot 10^{-6}$		
$Br(D^+ \to \mu^+ \nu)$	$3.82(33) \cdot 10^{-4}$		
$\operatorname{Br}(D^+ \to \tau^+ \nu)$	$< 1.2 \cdot 10^{-3}$		
$\frac{\Gamma(\pi^+ \to e^+ \nu)}{\Gamma(\pi^+ \to \mu^+ \nu)}$	$1.230(4) \cdot 10^{-4}$	$\frac{\Gamma(\tau^- \to \pi^- \nu)}{\Gamma(\pi^+ \to \mu^+ \nu)}$	9703(54)
$\frac{\Gamma(K^+ \to e^+ \nu)}{\Gamma(K^+ \to \mu^+ \nu)}$	$2.488(12) \cdot 10^{-5}$	$\frac{\Gamma(\tau^- \to K^- \nu)}{\Gamma(K^+ \to \mu^+ \nu)}$	469(7)
$\frac{\Gamma(B \to D\tau\nu)_{\rm NP}}{\Gamma(B \to D\tau\nu)_{\rm SM}}$		$\log C \ (K \to \pi \ell \nu)$	0.194(11)
$\frac{\Gamma(B \to D^* \tau \nu)_{\text{NP}}}{\Gamma(B \to D^* \tau \nu)_{\text{SM}}}$			

Tree level H^{\pm} mediated processes

$\Gamma \operatorname{Br}(\tau^- \to e^- e^- e^+)$	$< 2.7 \cdot 10^{-8}$	$Br(\tau^- \to \mu^- \mu^- \mu^+)$	$< 2.1 \cdot 10^{-8}$
$\operatorname{Br}(\tau^- \to e^- e^- \mu^+)$	$< 1.5 \cdot 10^{-8}$	$\operatorname{Br}(\tau^- \to e^- \mu^- e^+)$	$< 1.8 \cdot 10^{-8}$
$\mid \operatorname{Br}(\tau^- \to \mu^- \mu^- e^+)$	$< 1.7 \cdot 10^{-8}$	$\operatorname{Br}(\tau^- \to \mu^- e^- \mu^+)$	$< 2.7 \cdot 10^{-8}$
$\operatorname{Br}(\mu^- \to e^- e^- e^+)$	$<1\cdot10^{-12}$		
$\operatorname{Br}(K_L \to \mu^{\pm} e^{\mp})$	$< 4.7 \cdot 10^{-12}$	$\operatorname{Br}(\pi^0 \to \mu^{\pm} e^{\mp})$	$< 3.6 \cdot 10^{-10}$
$\operatorname{Br}(K_L \to e^- e^+)$	$<9\cdot10^{-12}$		
$Br(K_L \to \mu^- \mu^+)$	$< 6.84 \cdot 10^{-9}$		
$Br(D^0 \to e^- e^+)$	$<7.9 \cdot 10^{-8}$	$Br(B^0 \to e^+e^-)$	$< 8.3 \cdot 10^{-8}$
	$< 2.6 \cdot 10^{-7}$	$Br(B^0 \to \tau^{\pm} e^{\mp})$	$< 2.8 \cdot 10^{-5}$
$\operatorname{Br}(D^0 \to \mu^- \mu^+)$	$< 1.4 \cdot 10^{-7}$	$Br(B^0 \to \mu^- \mu^+)$	$3.6(1.6) \cdot 10^{-10}$
$Br(B_s^0 \to e^+e^-)$	$< 2.8 \cdot 10^{-7}$	$Br(B^0 \to \tau^{\pm} \mu^{\mp})$	$< 2.2 \cdot 10^{-5}$
$Br(B_s^0 \to \mu^{\pm} e^{\mp})$	$<2\cdot10^{-7}$	$Br(B^0 \to \tau^+ \tau^-)$	$< 4.1 \cdot 10^{-3}$
$Br(B_s^0 \to \mu^- \mu^+)$	$2.9(0.7) \cdot 10^{-9}$		

Tree level R, I mediated processes (I)

$2 M_{12}^K $	$< 3.5 \cdot 10^{-15} \text{ GeV}$	$ 2 M_{12}^D $	$< 9.47 \cdot 10^{-15} \text{ GeV}$
$ \epsilon_K _{NP}\Delta m_K$	$< 7.8 \cdot 10^{-19} \text{ GeV}$		
$\operatorname{Re}(\Delta_d)$	0.823(143)	$\operatorname{Re}(\Delta_s)$	0.965(133)
$\operatorname{Im}(\Delta_d)$	-0.199(62)	$\operatorname{Im}(\Delta_s)$	0.00(10)

Tree level R, I mediated processes (II)

$ \begin{array}{c} \operatorname{Br}(\mu \to e\gamma) \\ \operatorname{Br}(\tau \to e\gamma) \end{array} $	$< 3.3 \cdot 10^{-8}$	$Br(B \to X_s \gamma)_{SM}^{NNLO}$ $Br(B \to X_s \gamma)$	$3.15(23) \cdot 10^{-4}$ $3.55(35) \cdot 10^{-4}$
$\mid \operatorname{Br}(\tau \to \mu \gamma)$	$< 4.4 \cdot 10^{-8}$		
ΔT	0.02(11)	$F_{Zbar{b}}$	$< 0.0024 \text{ GeV}^{-1}$
ΔS	0.00(12)		

Loop level R, I, H^{\pm} mediated processes

Each of the thirty sex midels labelled by the pair (x, Bk) j, k refer to projectors G, k in each sector y, B Example: $(\mu_3, \ell_2) = (t, \mu)$

will have no tree level NFC couplings (neutral flavour changing) in the up quark and charged lepton sectors, neutral HFC couplings in the down quark and neutrino sector controlled by

Vtd: Vtd; and Upra Upra

Effect of the oblique parameters constraints in model (t, τ)

 M_{H^+} vs. $\log_{10}(\tan \beta)$, u models

 M_{H^+} vs. $\log_{10}(\tan \beta)$, c models

 M_{H^+} vs. $\log_{10}(\tan \beta)$, t models

 M_{H^+} vs. $\log_{10}(\tan \beta)$, d models

 M_{H^+} vs. $\log_{10}(\tan \beta)$, s models

 M_{H^+} vs. $\log_{10}(\tan \beta)$, b models

 M_{H^+} vs. $\log_{10}(\tan \beta)$, ν_1 models

 M_{H^+} vs. $\log_{10}(\tan \beta)$, e models

M+ > 380 GeV from b-sy in type II 2400
In BGL several of the models allow
M+ < \lambda 380 GeV

In BGL H± dominates NP tan B dependence \-1, tan B, /tan B

At
$$\frac{\pm}{\pm}$$
 m different positions

 $\frac{\pm}{\pm}$ $\frac{\pm}{\pm}$

neutral scalars

- most cases, negligible contribution from R. I
- otherwise these two contributions tend to cancel out

Conclusions

HFCNC at tree level are not ruled out even allowing for scalar masses of the order of a few hundred Gev

There are several promising scenarios within the 36 models that were presented.

Bhattacharyya, Das, Kundu 2014

The LHC may bring us interesting surprises!

I thank Miguel Nebot for providing the slides with tables and plots taken from our joint paper