Higgs pair production in the Two-Higgs-Doublet model of type II

Lisboa, 5 September 2014

Otto Eberhardt*

in collaboration with J. Baglio, U. Nierste & M. Wiebusch, using *my*Fitter and CKMfitter

*Istituto Nazionale di Fisica Nucleare, Sezione di Roma

Karlsruhe Institute of Technolog

European Research Council Established by the European Commission Supporting top researchers from anywhere in the world

Outline

Introduction

Setup

Theory constraints Experimental constraints Fitting

Results

Triple Higgs couplings Branching ratios Benchmark points

Conclusions

1 / 19

Otto Eberhardt

Lisbon

Otto Eberhardt

Model

Model

Scalar potential of the 2HDM of type II:

$$V_{H}^{\text{2HDM}} = m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} + m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) \\
+ \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \\
+ \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right] \\
\underline{2HDM II:} \quad 8 \text{ real parameters assuming} \\
CP \text{ conserving scalar sector} \\
\text{ and softly broken } Z_{2} \text{ symmetry} \\
\Phi_{1} \rightarrow -\Phi_{1} \text{ and } u \rightarrow -u \\
\end{bmatrix}$$

Otto Eberhardt

Definitions

Physical parameters of the 2HDM II: $v \approx 243 \text{ GeV}, \quad m_h = 126 \text{ GeV},$ $m_H, \quad m_A, \quad m_{H^+}, \quad m_{12}^2, \quad \tan \beta, \quad \beta - \alpha$

Otto Eberhardt

hh production in the 2HDM of type II

Definitions

Physical parameters of the 2HDM II: $v \approx 243$ GeV, $m_h = 126$ GeV, m_H , m_A , m_{H^+} , m_{12}^2 , $\tan \beta$, $\beta - \alpha$

Alignment limit:
$$\beta - \alpha \rightarrow \frac{\pi}{2}$$

Decoupling limit: $\beta - \alpha \gg \frac{\pi}{2}$ and $m_H \approx m_A \approx m_{H^+} \gg m_h$

[see talk by H. Haber]

Otto Eberhardt

hh production in the 2HDM of type II

Motivation

How large can
$$c_{hhh} \equiv \frac{\lambda_{hhh}^{2HDM}}{\lambda_{hhh}^{SM}}$$
 be?

How large can the other triple Higgs couplings be?

How large can $gg \rightarrow hh$ be?

Otto Eberhardt

hh production in the 2HDM of type II

Theory constraints

• Positivity of the scalar potential [Deshpande, Ma '78]

Theory constraints

- Positivity of the scalar potential [Deshpande, Ma '78]
- Stable vacuum at 243 GeV [Barroso, Ferreira, Ivanov, Santos '13]

Theory constraints

- Positivity of the scalar potential [Deshpande, Ma '78]
- Stable vacuum at 243 GeV [Barroso, Ferreira, Ivanov, Santos '13]
- Perturbativity of the quartic couplings $(||S_{\phi_i\phi_j\to\phi_i\phi_j}|| < \frac{1}{8})$ [Nierste, Riesselmann '96; Ginzburg, Ivanov '05; Baglio, OE, Nierste, Wiebusch '14]

Theory constraints

- Positivity of the scalar potential [Deshpande, Ma '78]
- Stable vacuum at 243 GeV [Barroso, Ferreira, Ivanov, Santos '13]
- Perturbativity of the quartic couplings $(||S_{\phi_i\phi_j\to\phi_i\phi_j}|| < \frac{1}{8})$ [Nierste, Riesselmann '96; Ginzburg, Ivanov '05; Baglio, OE, Nierste, Wiebusch '14]

all eigenvalues of $S_{\phi_i\phi_j\to\phi_i\phi_j}$ smaller than $\frac{1}{8}$

at least one eigenvalue of $S_{\phi_i\phi_j o \phi_i\phi_j} \in [rac{1}{8};rac{1}{4}]$

[Chowdhury, OE '14]

Otto Eberhardt

hh production in the 2HDM of type II

Electroweak precision observables

The oblique parameters S, T, U [Peskin, Takeuchi '90, '92] are only applicable if

- $m_{\rm NP} \gg m_Z$
- no NP vertex contributions

Electroweak precision observables

The oblique parameters S, T, U [Peskin, Takeuchi '90, '92] are only applicable if

- $m_{\rm NP} \gg m_Z$
- no NP vertex contributions

Both arguments do not hold for the 2HDM II:

[OE, Nierste, Wiebusch '13]

Otto Eberhardt

hh production in the 2HDM of type II

6 / 19

I N F N

Electroweak precision observables

So we take the whole set of 14 EWPO M_W , Γ_W , Γ_Z , $\sin^2 \theta_I^{\text{eff}}$, σ_{had}^0 , $A_{\text{FB}}^{0,l}$, $A_{\text{FB}}^{0,c}$, $A_{\text{FB}}^{0,b}$, A_l , A_c , A_b , R_l^0 , R_c^0 , R_b^0 [LEP & SLD '06]

using

[González, Rohrwild, Wiebusch '12] [Zfitter '90,'01,'06; Hahn et al. '99,'01,'06]

Otto Eberhardt

hh production in the 2HDM of type II

Flavour observables

 $b
ightarrow s \gamma$ [Hermann, Misiak, Steinhauser '12]

and

 Δm_{B_s} [Deschamps et al. '09]

Otto Eberhardt

hh production in the 2HDM of type II

Light Higgs signal strengths

Heavy Higgs exclusion limits

Otto Eberhardt

Fitting

We use two different frameworks to cross-check results: myFitter and the CKMfitter package both are based on the

- frequentist approach and use
- likelihood-ratio tests with a
- simplified *p*-value definition (" $\Delta \chi^2$ ").

[myFitter '12; CKMfitter '01]

Otto Eberhardt

The 2HDM II is close to the alignment limit

[Baglio, OE, Nierste, Wiebusch '14] [compare also talk by S. K. Kang]

INFN

Otto Eberhardt

hh production in the 2HDM of type II

How large can
$$c_{hhh} \equiv rac{\lambda_{hhh}^{2HDM}}{\lambda_{hhh}^{5M}}$$
 be?

[Baglio, OE, Nierste, Wiebusch '14]

Otto Eberhardt

hh production in the 2HDM of type II

How large can
$$c_{hhH} \equiv \frac{\lambda_{hhH}^{2HDM}}{\lambda_{hhh}^{5hH}}$$
 be?

[Baglio, OE, Nierste, Wiebusch '14]

Otto Eberhardt

14 / 19

How much could "standard" branching ratios be suppressed?

Branching ratios to vector bosons and fermions:

Otto Eberhardt

hh production in the 2HDM of type II

Benchmark points

We provide 24 benchmark scenarios featuring the largest still possible deviations from the SM:

	aneta	$(\beta - \alpha)/\pi$	m _H [GeV]	$m_A[GeV]$	$m_{H^{\pm}}$ [GeV]	m_{12}^2 [GeV ²]
a-1	1.50	0.529	700	700	670	180000
H-1	1.75	0.522	300	441	442	38300
H-2	2.00	0.525	340	470	471	44400
H-3	4.26	0.519	450	546	548	43200
H-4	4.28	0.513	600	658	591	76900
A-1	4.61	0.505	346	300	345	23600
A-2	2.74	0.503	131	340	339	6200
A-3	7.02	0.508	290	450	446	11700
A-4	7.44	0.504	490	600	598	31620

[Baglio, OE, Nierste, Wiebusch '14]

Otto Eberhardt

 $gg \rightarrow hh$

Even if the 2HDM II was "aligned", a large enhancement of $gg \rightarrow hh$ would be possible. [Baglio, OE, Nierste, Wiebusch '14]

Otto Eberhardt

hh production in the 2HDM of type II

17 / 19

INFN

 $pp \rightarrow hh$

Otto Eberhardt

hh production in the 2HDM of type II

Conclusions

2HDM II is strongly constrained.

Large effects in triple Higgs coupling measurements are possibile.

We provide benchmark points in arXiv:1403.1246.

Otto Eberhardt

hh production in the 2HDM of type ${\sf II}$

Back-up slides

Otto Eberhardt

hh production in the 2HDM of type II

Literature

[Baglio, OE, Nierste, Wiebusch '14] - J. Baglio, O. Eberhardt, U. Nierste and M. Wiebusch, Phys.Rev. D90 (2014) 015008 [Barroso, Ferreira, Ivanov, Santos '13] - A. Barroso, P. Ferreira, I. Ivanov and R. Santos, JHEP 1306 (2013) 045 [Chowdhury, OE '14] - D. Chowdhury, O. Eberhardt, work in preparation [CKMfitter '01] - A. Höcker, H. Lacker, S. Laplace and F. Le Diberder, Eur.Phys.J. C21 225-259 [CMS '13] - Eur.Phys.J. C73 (2013) 2469 [Deschamps et al. '09] - O. Deschamps, S. Descotes-Genon, S. Monteil, V. Niess, S. T'Jampens and V. Tisserand, Phys.Rev. D82 (2010) 073012 [Deshpande, Ma '78] - N. G. Deshpande and E. Ma, Phys.Rev. D18 (1978) 2574 [OE, Nierste, Wiebusch '13] - O. Eberhardt, U. Nierste and M. Wiebusch, JHEP 1307 (2013) 118 INFN

Literature (continued)

[Ginzburg, Ivanov '05] – I. Ginzburg and I. Ivanov, Phys.Rev. D72 (2005) 115010 [González, Rohrwild, Wiebusch '12] – P. González, J. Rohrwild and

M. Wiebusch, Eur.Phys.J. C72 (2012) 2007

[Hahn et al. '99,'01,'06] - T. Hahn and M. Perez-Victoria,

Comput.Phys.Commun. 118 (1999) 153-165; T. Hahn,

Comput.Phys.Commun. 140 (2001) 418-431; T. Hahn and M. Rauch,

Nucl.Phys.Proc.Suppl. 157 (2006) 236-240

[Hermann, Misiak, Steinhauser '12] - T. Hermann, M. Misiak, and

M. Steinhauser, JHEP 1211 (2012) 036

[Hespel, López-Val, Vryonidou '14] - B. Hespel, D. López-Val and

E. Vryonidou, arXiv:1407.0281

[LEP & SLD '06] - ALEPH, DELPHI, L3, OPAL, SLD,

LEP Electroweak Working Group, SLD Electroweak Group,

SLD Heavy Flavour Group, S. Schael et al.,

Phys.Rept. 427 (2006) 257-454

Otto Eberhardt

Literature (continued)

[myFitter '12] – M. Wiebusch, Comput.Phys.Commun. 184 (2011) 2438-2445 [Nierste, Riesselmann '96] - U. Nierste and K. Riesselmann, Phys.Rev. D53 (1996) 6638-6652 [Peskin, Takeuchi '90,'92] - M. E. Peskin and T. Takeuchi, Phys.Rev.Lett. 65 (1990) 964-967; Phys.Rev. D46 (1992) 381-409 [Zfitter '90,'01,'06] - D. Y. Bardin, M. S. Bilenky, T. Riemann, M. Sachwitz and H. Vogt, Comput.Phys.Commun. 59 (1990) 303-312; D. Y. Bardin, P. Christova, M. Jack, L. Kalinovskaya, A. Olchevski, S. Riemann, T. Riemann, Comput.Phys.Commun. 133 (2001) 229-395; A. Arbuzov, M. Awramik, M. Czakon, A. Freitas, M.W. Grunewald, K. Mönig, S. Riemann, T. Riemann, Comput.Phys.Commun. 174 (2006) 728-758

