# Search for the Inert Doublet Model Signal with Dilepton and Missing Energy

#### Agnieszka Ilnicka<sup>1)</sup>

In collaboration with:

P. Swaczyna, M. Krawczyk<sup>1)</sup>, J.Bogdanowicz<sup>1)</sup>,

T. Robens<sup>2)</sup>, M. Bach<sup>2)</sup>

1) University of Warsaw

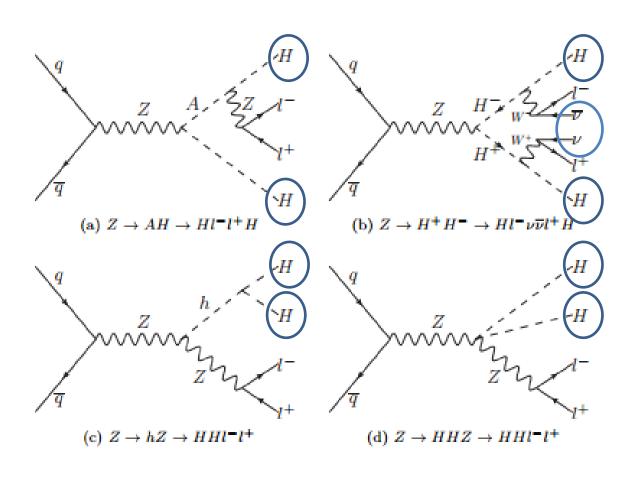
<sup>2)</sup> Technical University Dresden

#### **Motivation:**

- Inert Doublet Model (IDM): Two Higgs Doublet Model with Dark Matter candidate
- Dark Matter may be tested in the LHC
- Various searches with MET and leptons or jets:
  - ATLAS: e.g.[1407.7494], [1404.0051], [1309.4017], [1403.5204]
  - CMS: e.g.[1408.2745], [1402.4770], [1303.2985]
- Dilepton + MET channel relatively clean
- IDM is one of the simplest DM scenarios
  - SM-like Higgs
  - DM in agreement with data

see talk by Bogumiła Świeżewska

#### Inert Doublet Model


$$\mathcal{L}_{H}^{\text{IDM}} = D^{\mu} \Phi_{S}^{\dagger} D_{\mu} \Phi_{S} + D^{\mu} \Phi_{D}^{\dagger} D_{\mu} \Phi_{D} + \frac{1}{2} \left[ m_{11}^{2} \Phi_{S}^{\dagger} \Phi_{S} + m_{22}^{2} \Phi_{D}^{\dagger} \Phi_{D} \right] +$$

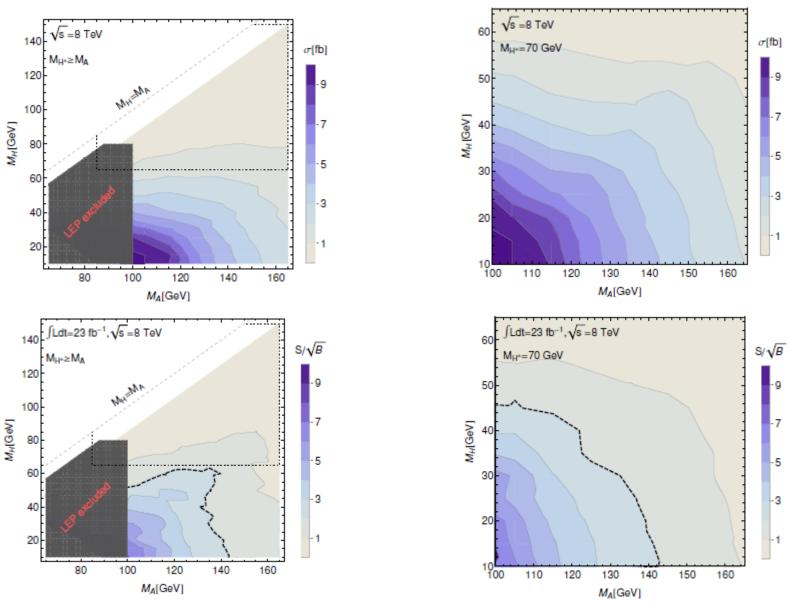
$$- \frac{1}{2} \left[ \lambda_{1} \left( \Phi_{S}^{\dagger} \Phi_{S} \right)^{2} + \lambda_{2} \left( \Phi_{D}^{\dagger} \Phi_{D} \right)^{2} \right] - \lambda_{3} \left( \Phi_{S}^{\dagger} \Phi_{S} \right) \left( \Phi_{D}^{\dagger} \Phi_{D} \right) +$$

$$- \lambda_{4} \left( \Phi_{S}^{\dagger} \Phi_{D} \right) \left( \Phi_{D}^{\dagger} \Phi_{S} \right) - \frac{1}{2} \lambda_{5} \left[ \left( \Phi_{S}^{\dagger} \Phi_{D} \right)^{2} + \left( \Phi_{D}^{\dagger} \Phi_{S} \right)^{2} \right] + \mathcal{L}_{Y}^{\text{IDM}}$$

- Only 5 free parameters  $(M_H, M_A, M_{H+}, \lambda_2, \lambda_{345}) + M_h$
- No mixing between states
- 4 dark particles, 1 DM candidate (H) due to exact Z<sub>2</sub> symmetry
- Dark sector communicates with SM only through vector bosons and Higgs portal

## Our signal: 2I+MET




## What was done previosly

- The phenomenological studies of l<sup>+</sup>l<sup>-</sup>+MET signal from IDM proposed by Dolle, Miao, Su, Thomas [0909.3094]
- P. Swaczyna's MSc Thesis [2013]: automated scan of parameter space
  - Event generation in Pythia
  - For 8 TeV
  - Tested for DM in mass range 10-150 GeV
  - A in mass range 65-170 GeV
  - Two scenarios:  $M_{H_{+}} \ge M_{A}$  and  $M_{H_{+}} = 70 \text{ GeV}$
  - Automated cut optimization

#### Parameter cuts:

- Level I [as in 0909.3094]:
  - Two leptons with oposite charge
  - $p_{Tl} \ge 15$ GeV and  $η_l \le 2.5$
  - $p_{Tjet} \le 20$ GeV and  $|\eta_{jet}| > 3.0$
  - Separation:  $\Delta R_{liet} > 0.4$
  - $E_{Tmiss} > 30 GeV$
- Level II (optimised to maximize  $S/\sqrt{B}$ ):
  - $M_{||}^{min} \le M_{||} \le M_{||}^{max} [M_{||}^{max} = M_{A} M_{H}, M_{||}^{min} = 10n;$ for  $M_{A} - M_{H} \ge M_{Z} : M_{||}^{min} = 80 \text{GeV}, M_{||}^{max} = 100 \text{GeV}]$
  - Separation:  $\Delta R_{\parallel} \leq \Delta R_{\parallel}^{\text{max}}$  [= 0.1n, n ∈ [1,40]]
  - Azimuthal angle:  $cos(\theta_{\parallel}) \ge cos(\theta_{\parallel}^{min})$  [=-1+0.1n, n ∈ [1,20]]
  - $p_{Tl1} + p_{Tl2} + p_{Tmiss} \ge H_T^{min}$  [25n, n ∈ [1,20]]
  - $E_{\text{Tmiss}} \ge E_{\text{tmiss}}^{\text{min}} [20+10n, n \in [1,8]]$
  - $p_{T|1}$ ,  $p_{T|2} \le p_{T|1}^{max}$  [20n, n ∈ [1,40]]

## What was done previosly



## **Improvements**

- Test with extended set of constraints:
  - Positivity
  - Vacuum stability (+ Inert vacuum condition)
  - Perturbativity, perturbative unitarity
  - STU and Δρ parameters
  - LEP and LHC exclusion limits
- Adding all possible channels to signal and SM background
- This requires use of different MC generation tools
- Specify SM bkg by final state

## SM background

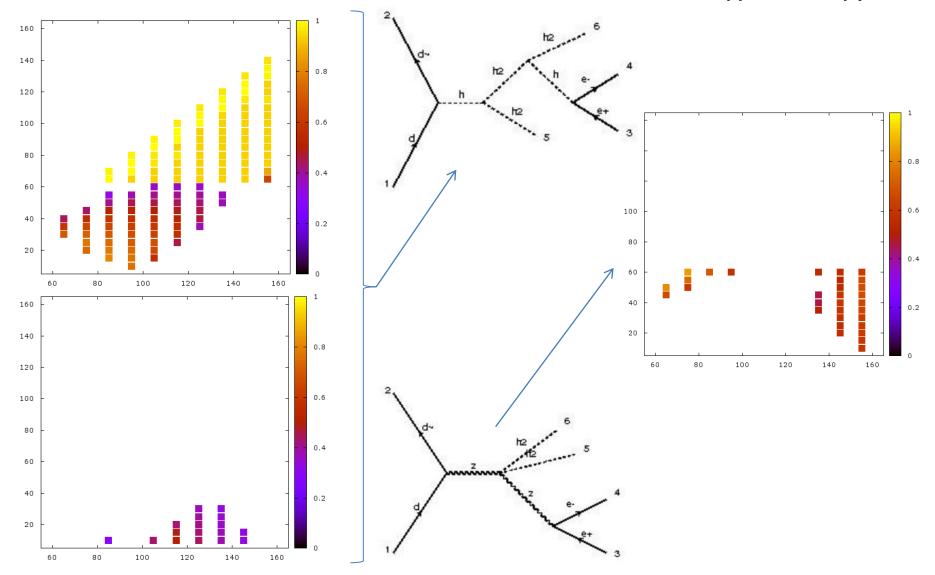
- To treat quantum interference correctly we use assignment with final state particles only
- Channels of interest:
  - IIνν [WW, ZZ/γ\*]
  - IIjj [WZ/γ\*]
  - IIvvb [Wt]
  - Ilvvbb [tt]

#### New simulation chain

Generation of parameter cards and check on available constraints with use of 2HDMC and HiggsBounds

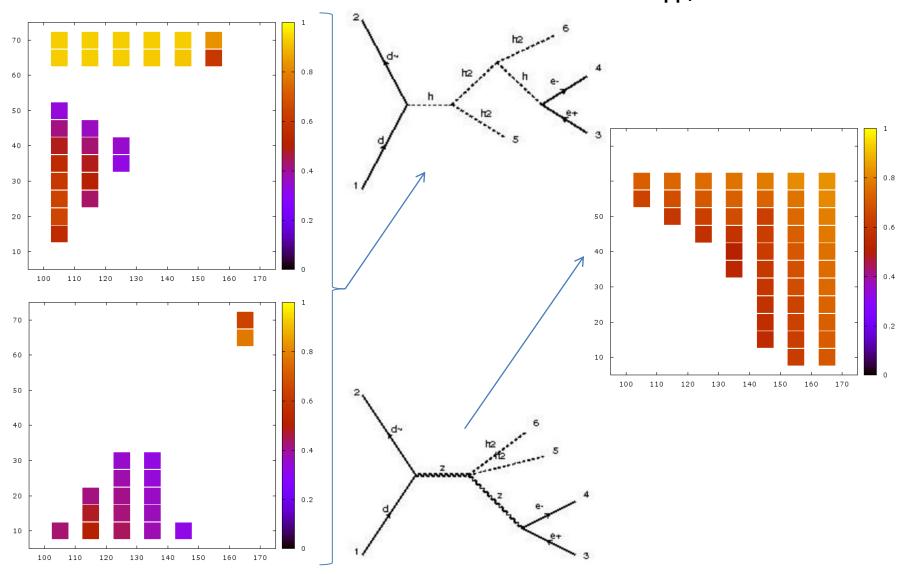
Parton level generation in MadGraph with InertDoublet\_UFO\*

(from FeynRules)


Hadronisation in Pythia through Les Houches file

Cut optimization and visualization

<sup>\*</sup> A. Goudelis, B. Herrmann, O. Stål [1303.3010]


#### Preliminary results

- the process contributions [for  $M_{H+} \ge M_A$ ]



#### Preliminary results

- the process contributions [for  $M_{H+} = 70 \text{ GeV}$ ]



#### Outlook

- Generation of signal with IIvvHH
- SM bkg requires matching with shower
- Constraints from DM searches
- Redo plots with improved event generation
- Predictions for 14 TeV LHC run

## Summary

- l<sup>+</sup>l<sup>-</sup> + MET is a clean signal which may be used for discovery of DM from IDM in LHC
- Some parameter points have significance over 3σ

- Work in progress
- Dear experimentalists, please check some most promising points

## Buckup

### Lambda 2

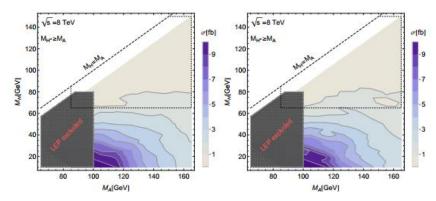



Figure 5: Plots B1 with  $\lambda_2$  equal to 0.1 and 0.2.

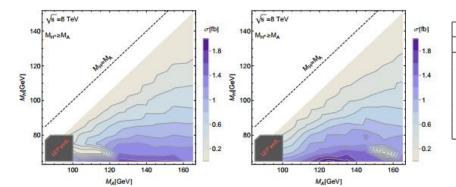



Figure 6: Plots B3 with  $\lambda_2$  equal to 0.1 and 0.2.

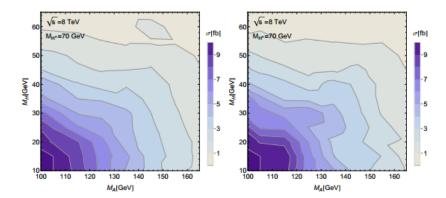



Figure 7: Plots E1 with  $\lambda_2$  equal to 0.1 and 0.2.

|        | $\lambda_2 = 0.1 \ (5000 \text{ events})$ |                                               |                               | $\lambda_2 = 0.2(5000 \text{ events})$ |                                              |                               |
|--------|-------------------------------------------|-----------------------------------------------|-------------------------------|----------------------------------------|----------------------------------------------|-------------------------------|
|        | $\sigma \ [10^{-10} mbn]$                 | $\Delta_{int}\sigma \left[10^{-12}mbn\right]$ | $\frac{\sigma L}{N_{events}}$ | $\sigma \ [10^{-10} mbn]$              | $\Delta_{int}\sigma$ [10 <sup>-12</sup> mbn] | $\frac{\sigma L}{N_{events}}$ |
| B-1-13 | 5.25060                                   | 4.48507                                       | 2.415                         | 5.22134                                | 4.38147                                      | 2.402                         |
| B-2-17 | 0.72095                                   | 0.55358                                       | 0.332                         | 0.72306                                | 0.54749                                      | 0.333                         |
| B-3-12 | 7.60515                                   | 6.39751                                       | 3.498                         | 7.56351                                | 6.29219                                      | 3.479                         |
| E-4-20 | 0.26376                                   | 0.20343                                       | 0.121                         | 0.26259                                | 0.19973                                      | 0.121                         |
| E-5-15 | 1.00208                                   | 0.84778                                       | 0.461                         | 0.99780                                | 0.84163                                      | 0.459                         |
| E-6-11 | 6.46886                                   | 5.35896                                       | 2.976                         | 6.59350                                | 5.40612                                      | 2.999                         |

Table 1: The cross sections (w/o cuts) given by Pythia for 6 points

## InertDoublet\_UFO crosscheck

| Benchmark | $m_h \; ({\rm GeV})$ | $m_S \; ({ m GeV})$ | $\delta_1 \; ({\rm GeV})$ | $\delta_2 \; ({\rm GeV})$ | $\lambda_L$ |
|-----------|----------------------|---------------------|---------------------------|---------------------------|-------------|
| LH1       | 150                  | 40                  | 100                       | 100                       | -0.275      |
| LH2       | 120                  | 40                  | 70                        | 70                        | -0.15       |
| LH3       | 120                  | 82                  | 50                        | 50                        | -0.20       |
| LH4       | 120                  | 73                  | 10                        | 50                        | 0.0         |
| LH5       | 120                  | 79                  | 50                        | 10                        | -0.18       |

| Benchmark | $\sigma_{SA}$ | $\sigma_{H^+H^-}$ | $\sigma_{SH^{\pm}}$ | $\sigma_{AH^\pm}$ |
|-----------|---------------|-------------------|---------------------|-------------------|
|           | (fb)          | (fb)              | (fb)                | (fb)              |
| LH1       | 289.2         | 69.8              | 503.3               | 125.2             |
| LH2       | 628.8         | 163.6             | 1055.1              | 299.0             |
| LH3       | 179.9         | 86.0              | 319.0               | 154.9             |
| LH4       | 248.9         | 440.2             | 1050.3              | 370.1             |
| LH5       | 465.5         | 93.3              | 352.9               | 302.3             |

| _   | $\sigma_{HA}$ [fb] | $\sigma_{H^+H^-}$ [fb] | $\sigma_{HH^{\pm}}$ [fb] | $\sigma_{AH^{\pm}}$ [fb] |
|-----|--------------------|------------------------|--------------------------|--------------------------|
| LH1 | 271.0              | 63.4                   | 435.0                    | 107.8                    |
| LH2 | 588.6              | 150.0                  | 907.6                    | 257.1                    |
| LH3 | 168.o              | 78.6                   | 275.9                    | 133.4                    |
| LH4 | 232.7              | 409.7                  | 902.7                    | 317.9                    |
| LH5 | 435.2              | 85.3                   | 305.3                    | 261.3                    |

Table 3: Cross sections of IDM final states calculated with MadGraph5 with energy 14 TeV. Crosscheck with Table II of 0909.3094.