Relic abundance of right-handed neutrino and sneutrino dark matter in SUSY SU(2)_H gauge theory with confinement

Naoki Machida (University of Toyama) Collaborators: Shinya Kanemura (University of Toyama) Tetsuo Shindou (Kogakuin Univerisity)

arXiv:1405.5843

Multi-Higgs Models , Lisbon, 2-5 Sep.

Contents

- Introduction
- DM analysis
 - ✓ Relic abundance✓ Direct detection
- Summary

Introduction

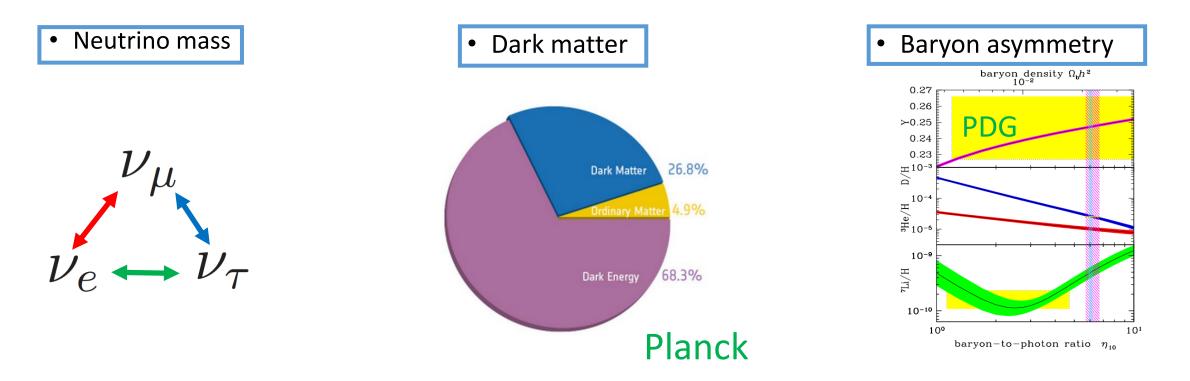
The SM-like Higgs boson has been discovered at the LHC.

- The mass is 126 GeV.
- Spin/parity is 0⁺.
- Coupling constants are consistent with the SM.
- No other new particles are found.

The SM is very successful!

Introduction

However, many problems still remain.



These problems can not be explained in the SM. New physics beyond the SM must exist.

Introduction

• Neutrino mass

- Ridiative seesaw scenario
- Neutirino mass is generated by loop induced diagram.

• Dark matter

- WIMP
- A new symmetry gurantees DM stability (e.g. Z2-symmetry).

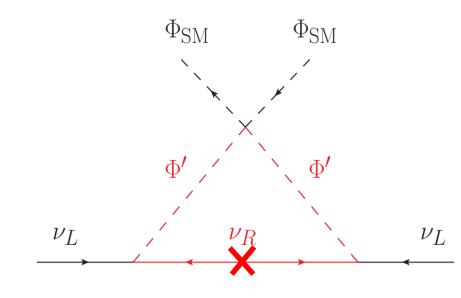
Baryon asymmetry

• Electroweak baryogenesis

Radiative seesaw scenario

- Inert scalars and Z₂-odd right-handed neutrinos are introduced.
- Tiny neutrino masses are generated by loop-level diagram.
- The lightest Z₂-odd particle can be DM candidate.

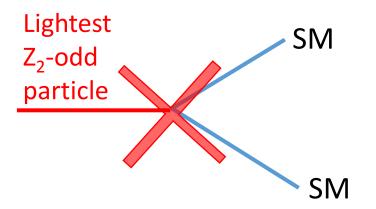
• Neutrino mass diagram



 Φ' : Inert scalar doublet ν_R : Z₂-odd right-handed neutrinos

• Dark matter

Because of unbroken Z_2 symmetry, lightest Z_2 -odd particle is a dark matter candidate.

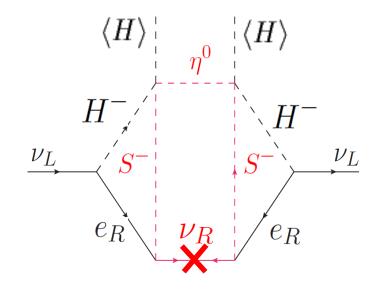


Radiative seesaw scenario

- Inert scalars and Z₂-odd right-handed neutrinos are introduced.
- Tiny neutrino masses are generated by loop-level diagram.
- The lightest Z₂-odd particle can be DM candidate.

AKS model Aoki, Kanemura, Seto(2009) $\Phi_{SM} + \Phi_2 + S^{\pm} + \eta^0 + \nu_R$

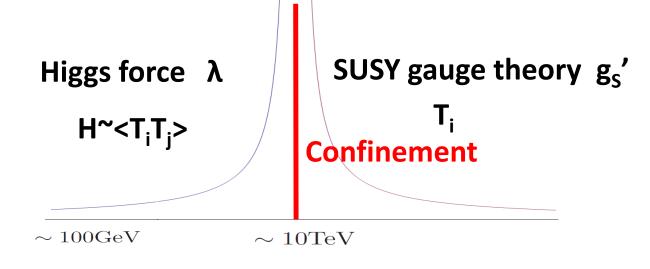
Neutrino mass diagram •



- Dark matter Because of unbroken Z₂ symmetry, lightest Z₂-odd particle is a dark matter candidate.
- Electroweak baryogenesis
 - igoplusExtra boson loops enhance ϕ_C/T_C , so that $\phi_C/T_C \gtrsim 1$ can be satisfied.

What is a fundamental theory?

- Electroweak baryogensis requires strong coupling constant in the Higgs sector. This leads Landau pole at O(10)TeV.
- Origin of the Higgs force is SUSY gauge theory with confinement above Landau pole.
- Higgs sector at low energy scale is composite states which is formed by fundamental fields. $H_{ij} \sim T_i T_j$



UV pictureFundamental fieldsIR pictureComposite fieldsField $SU(2)_L$ $U(1)_Y$ Z_2 Field $SU(2)_L$ $U(1)_Y$ Z_2
$\begin{pmatrix} T_1 \end{pmatrix}$ 2 0 + $MSSM$ H_u 2 +1/2 + doublets
$\begin{pmatrix} -1 \\ T_2 \end{pmatrix} \begin{vmatrix} 2 \\ T_2 \end{pmatrix} \begin{vmatrix} 2 \\ -1/2 \end{vmatrix} + doublets H_d 2 -1/2 + doublets$
T_3 1 +1/2 + Φ_u 2 +1/2 -
T_4 1 $-1/2$ + Exotic Φ_d 2 $-1/2$ -
T_5 1 $+1/2$ – fields Ω^+ 1 $+1$ –
T_6 1 $-1/2$ - $H_{ij} \sim T_i T_j$ Ω^- 1 -1 -1
V V_{Φ} V_{Φ} V_{Φ} V_{Φ}
$T_{i}: SU(2)_{H} \text{ doublet} \qquad \qquad$

We introduce Z₂-symmetry and Z₂-odd RH-neutrino to realize radiative seesaw scenario.

In the Fat Higgs model, Hu, Hd and N are light. Other fields are decoupled by introducing additional fields.

Multi-Component DM System

- The Z₂-symmetry and R-parity guarantee DM stability.
 (Z₂, Rp)
 Higgs sector
 - ≻(+,-) Neutralino
 - (-,+) Z₂-odd Higgs or RH-neutrino
 - (-,-) Z₂-odd Higgsino or RH-sneutrino
- In benchmark scenario, the lightest particles in Z₂-odd sector are RHneutrino and RH-sneutrino.
- For simplicity, we assume that the lightest neutralino mass is heavier than RH-neutrino and RH-sneutrino.

Field	$SU(2)_L$	$U(1)_Y$	Z_2
H_u	2	+1/2	+
H_d	2	-1/2	+
Φ_u	2	+1/2	_
Φ_d	2	-1/2	_
Ω^+	1	+1	—
Ω^{-}	1	-1	—
N, N_{Φ}, N_{Ω}	1	0	+
$\zeta,~\eta$	1	0	—

RH-neutrino \mathcal{V}_R

Multi-Component DM System

- The lightest neutralino mass is $\ m_{\chi^0} > m_{\tilde{
u}_R} + m_{
u_R}$.

$$W_{\text{eff}}^{N} = \frac{\kappa}{2} N \nu_{R}^{c} \nu_{R}^{c} + y_{N}^{i} \nu_{R}^{c} L_{i} \Phi_{u} + h_{N}^{i} \nu_{R} E_{i}^{c} \Omega^{-} + \frac{M}{2} \nu_{R}^{c} \nu_{R}^{c}$$
$$N: \mathsf{Z}_{2}\text{-even neutral singlet}$$



The lightest neutralino decays into RH-neutrino and RH-sneutrino.

RH-neutrino and RH-sneutrino are DM candidates.

- In order to reproduce DM relic abundance $\ \Omega_{\rm DM} h^2 = \sum \Omega_{\rm DM_i} h^2 \simeq 0.12$,

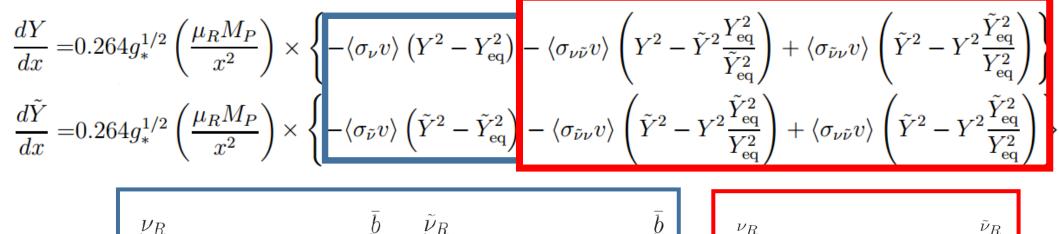
RH-neutrino and sneutrino masses are about $m_h/2^{-63}$ GeV (Higgs portal DM).

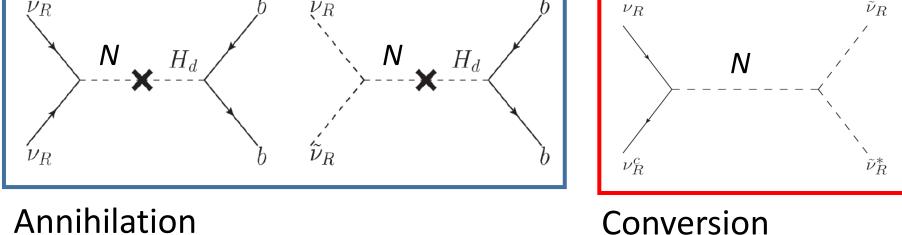
• In this mass region, VV-channel doesn't open. The dominant process is

 $\nu_R \nu_R, \ \tilde{\nu}_R \tilde{\nu}_R \to SM \ SM$

• We also take into account the conversion process.

 $\nu_R \nu_R \leftrightarrow \tilde{\nu}_R \tilde{\nu}_R$





RH-neutrino and sneutrino mainly couple to Z2-even scalar singlet *N*. In order to enhance annihilation cross section, the mixing between S and Hd is very large.

$$\frac{dY}{dx} = 0.264g_{*}^{1/2} \left(\frac{\mu_{R}M_{P}}{x^{2}}\right) \times \left\{-\langle \sigma_{\nu}v \rangle \left(Y^{2} - Y_{eq}^{2}\right) - \langle \sigma_{\nu\bar{\nu}}v \rangle \left(Y^{2} - \bar{Y}^{2}\frac{Y_{eq}^{2}}{Y_{eq}^{2}}\right) + \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right)\right\}$$

$$\frac{d\tilde{Y}}{dx} = 0.264g_{*}^{1/2} \left(\frac{\mu_{R}M_{P}}{x^{2}}\right) \times \left\{-\langle \sigma_{\bar{\nu}}v \rangle \left(\bar{Y}^{2} - \bar{Y}_{eq}^{2}\right) - \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right) + \langle \sigma_{\nu\bar{\nu}}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right)\right\}$$

$$\frac{d\tilde{Y}}{dx} = 0.264g_{*}^{1/2} \left(\frac{\mu_{R}M_{P}}{x^{2}}\right) \times \left\{-\langle \sigma_{\bar{\nu}}v \rangle \left(\bar{Y}^{2} - \bar{Y}_{eq}^{2}\right) - \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right) + \langle \sigma_{\nu\bar{\nu}}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right)\right\}$$

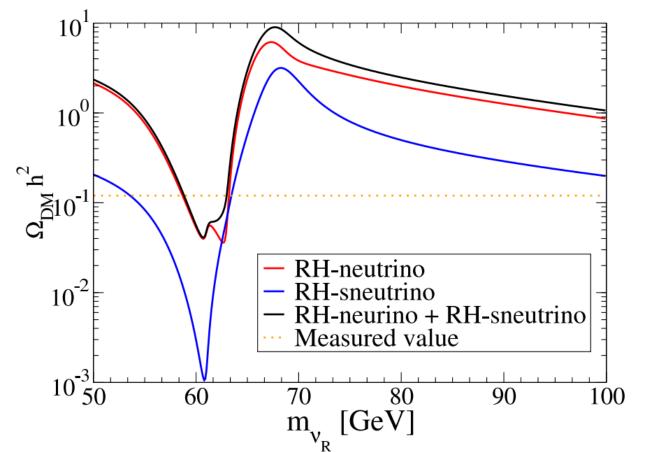
$$\frac{d\tilde{Y}}{dx} = 0.264g_{*}^{1/2} \left(\frac{\mu_{R}M_{P}}{x^{2}}\right) \times \left\{-\langle \sigma_{\bar{\nu}}v \rangle \left(\bar{Y}^{2} - \bar{Y}_{eq}^{2}\right) - \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right) + \langle \sigma_{\nu\bar{\nu}}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right)\right\}$$

$$\frac{d\tilde{Y}}{dx} = 0.264g_{*}^{1/2} \left(\frac{\mu_{R}M_{P}}{x^{2}}\right) \times \left\{-\langle \sigma_{\bar{\nu}}v \rangle \left(\bar{Y}^{2} - \bar{Y}_{eq}^{2}\right) - \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right) + \langle \sigma_{\nu\bar{\nu}}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right)\right\}$$

$$\frac{d\tilde{Y}}{dx} = 0.264g_{*}^{1/2} \left(\frac{\mu_{R}M_{P}}{x^{2}}\right) \times \left\{-\langle \sigma_{\bar{\nu}}v \rangle \left(\bar{Y}^{2} - \bar{Y}_{eq}^{2}\right) - \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right) + \langle \sigma_{\nu\bar{\nu}}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right)\right\}$$

$$\frac{d\tilde{Y}}{dx} = 0.264g_{*}^{1/2} \left(\frac{\mu_{R}M_{P}}{x^{2}}\right) \times \left\{-\langle \sigma_{\bar{\nu}}v \rangle \left(\bar{Y}^{2} - \bar{Y}_{eq}^{2}\right) - \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right) + \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right) + \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right) - \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right) + \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right) - \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right) - \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}^{2}}{Y_{eq}^{2}}\right) - \langle \sigma_{\bar{\nu}\nu}v \rangle \left(\bar{Y}^{2} - Y^{2}\frac{\bar{Y}_{eq}$$

$$\frac{dY}{dx} = 0.264g_*^{1/2} \left(\frac{\mu_R M_P}{x^2}\right) \times \left\{-\langle \sigma_\nu v \rangle \left(Y^2 - Y_{\rm eq}^2\right) - \langle \sigma_{\nu\tilde{\nu}}v \rangle \left(Y^2 - \tilde{Y}_{\rm eq}^2 \frac{Y_{\rm eq}^2}{\tilde{Y}_{\rm eq}^2}\right) + \langle \sigma_{\tilde{\nu}\nu}v \rangle \left(\tilde{Y}^2 - Y^2 \frac{\tilde{Y}_{\rm eq}^2}{Y_{\rm eq}^2}\right)\right\}$$
$$\frac{d\tilde{Y}}{dx} = 0.264g_*^{1/2} \left(\frac{\mu_R M_P}{x^2}\right) \times \left\{-\langle \sigma_{\tilde{\nu}}v \rangle \left(\tilde{Y}^2 - \tilde{Y}_{\rm eq}^2\right) - \langle \sigma_{\tilde{\nu}\nu}v \rangle \left(\tilde{Y}^2 - Y^2 \frac{\tilde{Y}_{\rm eq}^2}{Y_{\rm eq}^2}\right) + \langle \sigma_{\nu\tilde{\nu}}v \rangle \left(\tilde{Y}^2 - Y^2 \frac{\tilde{Y}_{\rm eq}^2}{Y_{\rm eq}^2}\right)\right\}$$



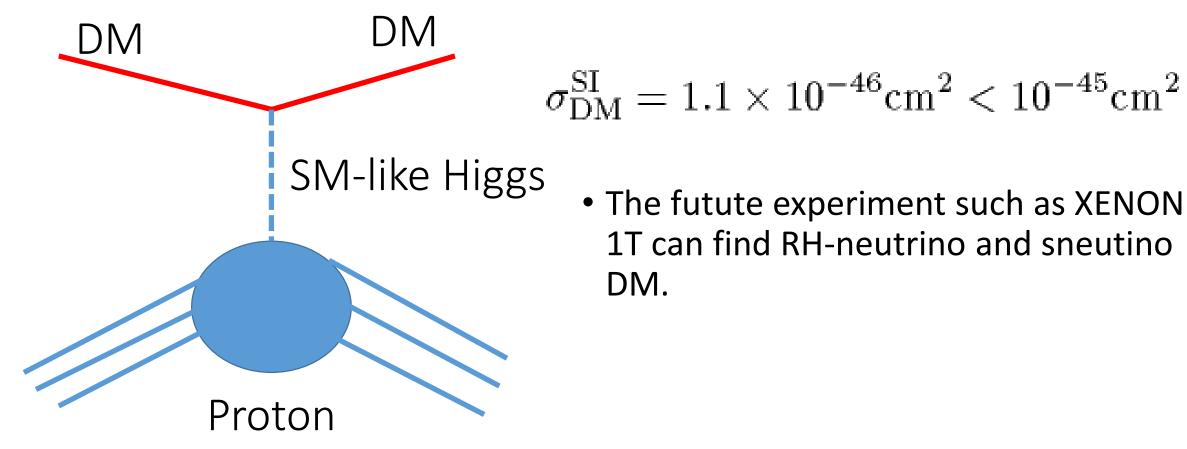
$$x = \frac{\mu_R}{T}$$

$$\mu_R^{-1} = m_{\nu_R}^{-1} + m_{\tilde{\nu}_R}^{-1}$$

$$m_{\tilde{\nu}_R} = m_{\nu_R} + 2 \text{GeV}$$

Direct Detection

- RH-neutrino and sneutrino are gauge singlet.
- These do not have gauge interaction .
- Constrains from direct detection can be avoid.



Summary

• We propose a UV complete model which can explain neutrino mass, dark matter and baryogensis with confinement.

$$\begin{array}{c|c} \text{UV} & \textbf{SU(2)}_{\text{H}} \times \textbf{Z}_2 \text{ with } \textbf{N}_{\text{f}} = 3 \ + \textbf{Z}_2 \text{-odd } \nu_{\text{R}} \\ \hline T_1, \ T_2, \ T_3, \ T_4, \ T_5, \ T_6 \\ \hline H_{ij} \sim T_i T_j \quad \textbf{Confinement } \textbf{O(10) TeV} \\ \hline \textbf{IR} & H_u, \ H_d, \ \Phi_u, \ \Phi_d, \ \cdots \end{array} \begin{array}{c} \textbf{Extended Higgs sector} \end{array}$$

- RH-neutrino and sneutrino DM is a typical case of multi-component DM.
- Relic abudance and dirext detection constrains are satisfied.
- Future direct detection experiment can detect RH-neutrino and sneutrino.

Back up slides

Yukawa coupling

• Introduce four SU(2)L doublets (SU(2)H singlets),

$$W_{f} = M_{f}(\varphi_{u}\bar{\varphi}_{u} + \bar{\varphi}_{d}\varphi_{d}) + \bar{\varphi}_{d}(TT^{4}) + \bar{\varphi}_{u}(TT^{3}) + h_{u}^{ij}Q_{i}u_{j}\varphi_{u} + h_{d}^{ij}Q_{i}d_{j}\varphi_{d} + h_{e}^{ij}L_{i}e_{j}\varphi_{d} + h_{e}^{ij}L_{i}e_{j}\varphi_{d} + h_{e}^{ij}Q_{i}u_{j}\varphi_{d} +$$

$$W_f = \frac{4\pi}{M_f} \Big[h_u^{ij} Q_i u_j (TT^3) + h_d^{ij} Q_i d_j (TT^4) + h_e^{ij} L_i e_j (TT^4) \Big]$$

Below Landau pole, $(TT^3) \rightarrow \Lambda_H H_u/4\pi, (TT^4) \rightarrow \Lambda_H H_d/4\pi$

$$W_f = h_u^{ij} Q_i u_j H_u + h_d^{ij} Q_i d_j H_d + h_e^{ij} L_i e_j H_d$$

Z₂-even Higgs scalar mass matirices at tree level

$$M_{\text{even}}^{2} = \begin{pmatrix} m_{Z}^{2}s_{\beta}^{2} + \left(\frac{A_{N}}{\sqrt{2}}v_{N} + \lambda^{2}v_{0}^{2}\right)\cot\beta & * & * \\ \frac{1}{2}(\lambda^{2}v^{2} - m_{Z}^{2}s_{2\beta}) - (\lambda^{2}v_{0}^{2} + \frac{A_{N}}{\sqrt{2}}v_{N}) & m_{Z}^{2}c_{\beta}^{2} + \left(\frac{A_{N}}{\sqrt{2}}v_{N} + \lambda^{2}v_{0}^{2}\right)\tan\beta & * \\ \lambda^{2}vv_{N}s_{\beta} - \frac{A_{N}}{\sqrt{2}}vc_{\beta} & \lambda^{2}vv_{N}c_{\beta} - \frac{A_{N}}{\sqrt{2}}vs_{\beta} & \frac{A_{N}}{2\sqrt{2}}\frac{v^{2}}{v_{S}}s_{\beta}^{2} - \sqrt{2}C\lambda\frac{v_{0}^{2}}{v_{N}} \end{pmatrix}$$

$$M_{\text{odd}}^2 = \begin{pmatrix} \left(\frac{A_N}{\sqrt{2}}v_N + \lambda^2 v_0^2\right) \cot \beta & * & * \\ \frac{A_N}{\sqrt{2}}v_N + \lambda^2 v_0^2 & \left(\frac{A_N}{\sqrt{2}}v_N + \lambda^2 v_0^2\right) \tan \beta & * \\ \frac{A_N}{\sqrt{2}}vc_\beta & \frac{A_N}{\sqrt{2}}vs_\beta & \frac{A_N}{\sqrt{2}}vs_\beta^2 - \sqrt{2}\frac{v_0^2}{v_N}\lambda C \end{pmatrix}$$

$$M_{\pm}^{2} = \frac{1}{\sin\beta\cos\beta} \left\{ \frac{1}{2} (m_{W}^{2} - \frac{1}{2}\lambda^{2}v^{2}) \sin 2\beta + \left(\frac{A_{N}}{\sqrt{2}}v_{N} + \lambda^{2}v_{0}^{2}\right) \right\}$$

