Higgs Physics at CMS

Marco Pieri

University of California San Diego On behalf of the CMS Collaboration

Workshop on Multi-Higgs Models 2-5 September 2014 Lisbon, Portugal

- Introduction
- SM Higgs Studies (H125)
 - Analysis in the high mass resolution channels (γγ and ZZ)
 - Analysis in the low mass resolution channels (WW, ττ and bb)
 - Measurement of the H125 Higgs boson properties
- BSM Higgs Searches
 - Only some selected, more recent results
- Summary and Outlook

For all CMS public results on Higgs searches see: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

CMS Detector

Data: pp collision at 7 and 8 TeV

- Excellent performance of LHC and CMS in 2011 and 2012
- 25 fb⁻¹ IntL good pp collisions data collected until now at 7 and 8 TeV CM energy:
 - 5 fb⁻¹ IntL at 7 TeV 20 fb⁻¹ IntL at 8 TeV

CMS

SM Higgs production and decay

Exploit all four production modes

JCSD

A Higgs boson discovered

ATLAS: **Phys.Lett. B716 (2012) 1-29** CMS **Phys.Lett. B716 (2012) 30-61**

- On July 4th 2012 the discovery was announced by ATLAS and CMS
- In 2013 it was confirmed that the new boson was a Higgs boson and the precise measurements started

September 2-5, 2014

- 2 channels with excellent mass resolution (1-2%)
 - Η→γγ
 - H**→**ZZ
 - Search for mass peak over the BG (large yield and BG for γγ and small yield and BG for ZZ)

CM

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

$M_{\gamma\gamma}$ =125.9 GeV σ_M/M =0.9%

- Search for a small mass peak over large and smooth background
 - Irreducible: 2γ QCD production
 - Reducible: γ+jet with 1 additional fake photon, QCD with 2 fake photons, DY with electrons faking photons

H→γγ results

- Largest signal observed around 125 GeV (standalone discovery)
 - Local significance 5.7 σ
 - Expected significance 5.2 σ
 - Fitted $\mu = \sigma/\sigma_{SM}$ at 125 GeV 1.14^{+0.26}_{-0.23}

Final Run 1 results submitted for publication

arXiv:1407.0558 Submitted to EPJC

Measurement of different production processes

- Many exclusive channels addressing all production modes
- Untagged mode split into categories with decreasing s/b with MVA

 Results of the fit for individual production modes:

CMS

VBF

VH

tīH

 $1.58\substack{+0.77\\-0.68}$

 $-0.16^{+1.16}_{-0.79}$

 $2.69^{+2.51}_{-1.81}$

0.73

0.97

2.2

0.69

0.97

2.1

0.20

0.08

0.4

0.15

$H \rightarrow ZZ \rightarrow 4I$ (4 μ , 4e, 2e2 μ)

- Clean channel: 2 high mass pairs of opposite sign isolated electrons or muons coming from PV
- Narrow mass peak
 - Very good mass resolution 1-2 %

- Very small BR ~10⁻⁴ at 125 GeV
- Background
 - irreducible: ZZ
 - reducible: Z+jets, Zbb, tt, WZ

$H \rightarrow ZZ \rightarrow 4I$: candidates

Use other kinematical variables: K_D

$H \rightarrow ZZ \rightarrow 4I$: results

- Largest signal observed around 125 GeV (standalone discovery)
 - Local significance 6.8 σ
 - Expected significance 6.7 σ
 - Fitted $\mu = \sigma/\sigma_{SM}$ at 125 GeV 0.93^{+0.26}_{-0.23} (stat.) ^{+0.13}_{-0.09} (syst.)

• From $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$ we can precisely measure the mass

- 3 channels with lower mass resolution (10-20%)
 - H**→**WW
 - Η→ττ
 - <mark>– H</mark>→bb

Search for wide excess over the predicted BG

H→WW→lvlv

- Most sensitive channel around 2xM_w
 - Also at 125 GeV it gives the smallest error on μ
- No narrow mass peak (mass resolution ~20%)
- Two high p_T isolated leptons + MET
- Main backgrounds
 - WW (irreducible)
 - Z+jets, WZ, ZZ, tt, W + jets
- BG estimation is crucial
 - Main BG estimated from data

Scalar Higgs boson + V-A structure of W decay favors small opening angle between the 2 charged leptons (tend to have small Δφ)

Marco Pieri UC San Diego

- Broad evidence of signal around 125 GeV
 - expected significance: 5.8 σ
 - observed significance: 4.3 σ
 - Fitted $\sigma/\sigma_{SM} = 0.72 + 0.20$ -0.18

Several channels are used: 0jet, 1 jet, VBF, VH

JHEP 01 (2014) 096

H→TT analysis

• Complicated analysis, many different sub-channels

Decay $H \rightarrow \tau \tau \rightarrow \ell \ell + 4\nu \ (12\%)$ $H \rightarrow \tau \tau \rightarrow \ell \tau_h + 3\nu \ (46\%)$ $H \rightarrow \tau \tau \rightarrow \tau_h \tau_h + 2\nu \ (42\%)$

Also split e and μ in the analysis

- Z→ττ main BG (also W+jets, tt and QCD)
- 0-jet category not very senstive but mainly useful to fit BG normalization and other nuisances

Production/signature

0-jet 1-jet boosted 2-jet VBF VH (use leptonic decays of V)

• Also important for MSSM

H→TT: results

- Broad evidence of signal near 125 GeV
 - observed significance: 3.2 σ
 - expected significance: 3.7 σ
 - Fitted $\sigma/\sigma_{SM} = 0.78 \pm 0.27$
- Evidence of Higgs coupling to τ leptons

JHEP 1405 (2014) 104

H→bb channel

- QCD BG too large for gg fusion, needs additional tag
- Most sensitive is VH (but also use VBF and ttH)
- Common features:
 - B-tagging
 - bb mass reconstruction, use BDT regression ($\sigma_M/M = 8-9\%$)
 - MVA based analyses to enhance the sensitivity

 $W \rightarrow e, \mu, Z \rightarrow ee, \mu\mu, \nu\nu$

s/b weighted mass distribution

BG subtracted (except VV)

VH with H→bb: results

- Excess of events near 125 GeV
 - expected significance: 2.1 σ
 - observed significance: 2.1 σ
 - Fitted σ/σ_{SM} = 1.0 ± 0.5

Combined with H→ττ gives 3.8 σ significance: evidence of Higgs coupling to down type fermions

Nature Phys. 10 (2014)

- Search for ttH production in $H \rightarrow bb$, $\gamma\gamma$, multileptons
- Some excess of events near 125 GeV (~2σ above SM expectation)
 - expected significance: 1.1σ
 - observed significance: 3.4 σ
 - Fitted σ/σ_{SM} = 2.8 ± 1.0

- New preliminary analysis using the Matrix Element Method (MEM)
- Assigns a differential probability density to each event based on the LO matrix element for signal and ttbb BG

- 95% upper limit on μ: 2.9 (3.3 expected) Large improvement compared to published analysis
- Best fit $\mu = 0.67 + 1.35 1.33$

September 2-5, 2014

- All channels are combined
- Profile likelihood fits are carried out with all nuisances profiled
- Again, cross sections, BR and recommendations taken from the LHC cross section WG:
 - https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

• The fitted μ of the 125 GeV Higgs signal is:

 $-\sigma/\sigma_{SM} = 1.00 \pm 0.13$

- Signal strengths in different channels are consistent with the SM
- Common cross section theoretical errors contribute to all measurements
 - dominated by 15% error on gg-fusion where applicable

- Vector and fermion couplings are scaled by two scale factors , $\kappa_{\rm V}$ and $\kappa_{\rm F}$
- Agree with SM within ~1 σ

- Vector and fermion couplings are scaled by two scale factors , $\kappa_{\rm V}$ and $\kappa_{\rm F}$
- Agree with SM within ~1 σ

For each fit the most relevant model Parameters are profiled and others are fixed to the SM six-parameter model including effective loop couplings

• $BR_{BSM} < 0.58$ at 95% C.L. (with $\kappa_V \le 1$)

Spin-parity hypothesis testing

- Spin and parity can be probed using angular distributions
- Mainly use $H \rightarrow ZZ$ and $H \rightarrow WW$
 - Using discriminators similar to K_D we can distinguish between scalar and pseudo-scalar and different spin hypotheses
 - Tested models for 0⁻, spin 1 and spin 2 excluded at C.L > 99%

Constraints on anomalous HVV interactions

- Using H→ZZ, γ*Z, γ*γ* and H→WW set limits on the fraction of anomalous contributions
- We have already published a limit on f_{a3} (fraction of pseudoscalar component) $f_{a3=}=0.00^{+0.15}_{-0.00}$
- We now probe more anomalous couplings including Higgs interactions with γ*Ζ, γ*γ*

All results are found consistent with the SM

September 2-5, 2014

Marco Pieri UC San Diego

Narrow width approximation not adequate for Higgs to VV

N. Kauer and G. Passarino, JHEP 08 (2012) 116

- Use MELA gg→ZZ discriminator vs mass for H→4l (on-shell and off-shell)
- Transverse mass for $H \rightarrow 2l2nu$ (off-shell only)

Phys. Lett. B 736 (2014) 64

Results:

95% Exclusion observed (expected): $\Gamma_{\rm H}/\Gamma_{\rm HSM}$ < 8.1 (10.6) $\Gamma_{\rm H}$ <33 (44) MeV (SM width 4.15 MeV) **Best fit value:** 1.8^{+12.4} MeV Direct 95% C.L. upper limit from ZZ and yy much worse, O(1 GeV)

- H→invisible
- $-H \rightarrow \mu \tau$ (Lepton Flavour Violation)

- The Higgs boson could decay to invisible particles, such as dark matter candidates
- Exploit VBF qqH and ZH with $Z \rightarrow II(bb)$ production modes

No signal observed and limits are derived

Eur. Phys. J. C 74 (2014) 2980

Combined limit: BR($H \rightarrow inv$) < 0.58 at 95% CL (exp. 0.44)

These limits can be interpreted in a Higgs portal model in which the DM couples to the Higgs

LFV H→τµ

- Use 19.7 fb⁻¹ of 8 TeV data
- Search for $\mu \tau_e$ and $\mu \tau_{had}$
- Split the search in jet-mutiplicity bins (0, 1, 2)

- BR(H→μτ) < 1.57% at 96% C.L. improved x10 compared to indirect limits
- Slight excess observed in the data (2.5 σ)
- Best fit BR = 0.89 $^{+0.40}_{-0.37}$ %

- Resonant di-Higgs production
- -MSSM $\phi \rightarrow \tau \tau$ searches

X→HH→4b, bbγγ

Search for the resonant production of 2 Higgs bosons: i.e. radion or graviton

HH→bbbb HIG-14-013

НН→bbүү HIG-13-032

No signal observed, derive limits on σxBR (assume BR X→HH = 25% for this plot)

 Complementary: bbγγ more sensitive at lower masses, 4b at higher masses

MSSM Higgs bosons: Φ (h,H,A), Φ→ττ,bb,μμ

• In MSSM Φ can be produced by gg fusion or bb annihilation

Often at least one b jet produced in the central detector

- Φ→ττ is the most sensitive
- No significant excess observed

Model independent limits for one single Higgs boson $\boldsymbol{\varphi}$

arXiv:1408.3316 Submitted to JHEP

MSSM limits

$$M(\mu) = [\mu \cdot s(\text{MSSM}) + (1 - \mu) \cdot s(\text{SM})] + b$$
$$q_{\text{MSSM/SM}} = -2\ln \frac{L\left(N_{\text{obs}}|M(1), \hat{\theta}_{1}\right)}{L\left(N_{\text{obs}}|M(0), \hat{\theta}_{0}\right)}$$

arXiv:1408.3316

Submitted to JHEP

New benchmark scenarios, more consistent with the observed H125 from: M.S. Carena et al. Eur. Phys. J. **C73** (2013) 2552

Summary

- LHC performed extremely well from 2010 until 2012 and the full data set has been analyzed
- After the discovery of the H125 Higgs boson we started to measure its properties

All are found to be in agreement with the SM

- No evidence of BSM Higgs bosons, improved limits are obtained in different scenarios
- After two years of LHC shutdown to prepare the higher energy data taking will resume in 2015 at 13/14 TeV:
 - Improve Higgs coupling measurements
 - Search for new Higgs bosons or unexpected decays

Backup

- From the mass peaks in H→γγ and H→ZZ→4l it is also possible to directly measure the Higgs width
- We derive upper limits, observed (expected) at 95% CL:
 - $-\Gamma_{\rm H}$ < 2.4 (3.1) GeV from H $\rightarrow\gamma\gamma$
 - $-\Gamma_{H}$ < 3.4 (2.8) GeV from H \rightarrow ZZ \rightarrow 4l
- Three order of magnitude more that the SM prediction of 4.15 MeV

- HZZ
- HWW

Parametrization of the decay amplitude

$$\begin{split} A(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\left[a_1 - e^{i\phi_{\Lambda_1}} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ a_2 f_{\mu\nu}^{*(Z_1)} f^{*(Z_2),\mu\nu} + a_3 f_{\mu\nu}^{*(Z_1)} \tilde{f}^{*(Z_2),\mu\nu} \\ &+ a_2^{Z\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_3^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ &+ a_2^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} f^{*(\gamma_2),\mu\nu} + a_3^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} \tilde{f}^{*(\gamma_2),\mu\nu} \right) \end{split}$$

• In the SM a_1 non zero and all others vanishing or very small $f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4} \phi_{a3} = \arg\left(\frac{a_3}{a_1}\right)$

• Use fractions:

$$f_{a2} = \frac{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4} \qquad \phi_{a2} = \arg\left(\frac{a_2}{a_1}\right)$$

$$f_{\Lambda 1} = \frac{\tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4} \qquad \phi_{\Lambda 1},$$

Allowed 95% CL intervals (real couplings)							
Kinematic discriminants method							
Parameter $(\phi_{ai} = 0 \text{ or } \pi)$	Obs	served	Expected				
$f_{\Lambda 1}\cos(\phi_{\Lambda 1})$	[-0.2]	25, 0.37]	$[-1.00, 0.27] \cup [0.92, 1.00]$				
$f_{a2}\cos(\phi_{a2})$	[-0.66, -0.57]	$[] \cup [-0.15, 1.00]$	[-0.18, 1.00]				
$f_{a3}\cos(\phi_{a3})$	[-0.4]	[10, 0.43]	[-0.70, 0.70]				
$f^{Z\gamma}_{a2}\cos(\phi^{Z\gamma}_{a2})$	[-0.4]	19, 0.46]	[-0.78, 0.79]				
$f^{Z\gamma}_{a3}\cos(\phi^{Z\gamma}_{a3})$	[-0.4]	[40, 0.51]	$\left[-0.75, 0.75\right]$				
$f_{a2}^{\gamma\gamma}\cos(\phi_{a2}^{\gamma\gamma})$	[-0.5]	[51, 0.04]	[-0.34, 0.32]				
$f^{\gamma\gamma}_{a3}\cos(\phi^{\gamma\gamma}_{a3})$	[-0.3]	[32, 0.35]	[-0.40, 0.37]				
	Obs	served	Expected				
Parameter	$\phi_{ai}=0$	$\phi_{ai}=\pi$	$\phi_{ai}=0$	$\phi_{ai}=\pi$			
$f_{\Lambda 1}$	$\left[0.00, 0.37\right]$	$\left[0.00, 0.82\right]$	$[0.00, 0.27] \cup [0.92, 1.00]$	_			
$f^{\gamma\gamma}_{a2}$	$\left[0.00, 0.10\right]$	[0.00, 0.51]	[0.00, 0.32]	[0.00, 0.34]			
Multidimensional distributions method							
Parameter $(\phi_{ai} = 0 \text{ or } \pi)$	Obs	served	Expected				
$f_{a2}\cos(\phi_{a2})$	[-0.1	[4, 1.00]	[-0.18, 0.97]				
$f_{a3}\cos(\phi_{a3})$	[-0.4]	[4, 0.40]	[-0.67, 0.67]				

 The Higgs boson couples to mass as expected in the SM

CMS

September 2-5, 2014

m_{llv} (GeV)

Events / 2 GeV

- Cross section similar to γγ
- Use $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ (reduce cross section)
- Large BG from Drell Yan with ISR

Models exist with BR(Zγ) >100 x SM while BR(γγ) is SM-like

ť20

Marco Pieri UC San Diego

m_H (GeV)

H→µµ, ee

- In the SM the H→µµ BR is much smaller than H→ττ and ee is totally negligible
- BR limits

High mass searches and EW singlet model

- High mass: WW and ZZ decays
 - add WW \rightarrow lvqq, ZZ \rightarrow 2l2v, ZZ \rightarrow 2l2q, ...

ZZ combination of latest results excludes at 95% CL SM like Higgs up to 1 TeV

19.7 fb⁻¹, $\sqrt{s} = 8$ TeV

CMS preliminary

							$\mu \iota$, 0 Jets				
							0.72 +1.18 %				
Variable	I	$H \rightarrow \mu \tau_e$ $H \rightarrow \mu \tau_{had}$		$H \rightarrow \mu \tau_{had}$		$H ightarrow \mu au_{had}$		$\mu \tau_{had}$, 1 Jet	·	-	
	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet	0.03 +1.07 %				
$p_T^{\mu} > [\text{GeV}]$	50	45	25	40	35	30	$\mu \tau_{had}$, 2 Jets		·	•	
$p_T^{\overline{e}} > [\text{GeV}]$	10	10	10	-	-	-	1.24 +1.09 %				
$p_T^{\tau} > [\text{GeV}]$	-	-	-	35	40	40	μτ _e , 0 Jets		·•		
$\Delta \phi_{ec{\mu} - au_{had}} >$	-	-	-	2.7	-	-	0.87 +0.66 %		-		
$\Delta \phi_{\vec{e}-\vec{E}_{ au}^{ ext{miss}}} <$	0.5	0.5	0.3	-	-	-	μτ _e , 1 Jet				
$\Delta \phi_{\vec{e}-\vec{\mu}} >$	2.7	1.0	-	-	-	-	0.81 +0.85 %		•		
$M_T(e) < [\text{GeV}]$	65	65	25	-	-	-	$\mu \tau_{e}^{}$, 2 Jets				
$M_T(\mu) > [\text{GeV}]$	50	40	15	-	-	-	0.05 +1.58 %	-	-	·	
$M_T(\tau) < [\text{GeV}]$	-	-	-	50	35	35] h→μτ				
					-		0.89 +0.40 %			-	

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Best Fit to Br($h \rightarrow \mu \tau$), %

Proposed in: M.S. Carena et al. Eur. Phys. J. C73 (2013) 2552

	Para	rameter n		$m_{\rm h}^{\rm max}$ $m_{\rm h}^{\rm m}$		mod+ m		mod— h
-	mA		90–1000 GeV		90–1000 GeV		90–1	000 GeV
	$\tan \beta$		0.5	5–60	0.5-60		0.	5–60
	M _{SUSY} 100		0 GeV	1000 GeV		100	00 GeV	
	u 200)GeV	200 GeV		200	0 GeV	
	M_1 (5/3)		(5/3) M	$I_2 \tan^2 \theta_W$	(5/3) $M_2 \tan^2 \theta_W$		(5/3) N	$\Lambda_2 \tan^2 \theta_W$
	M_2 200		200	GeV	200 GeV		200	0 GeV
	X_t	2 /		$I_{\rm SUSY}$ 1.5		$M_{\rm SUSY}$ -1.9		$M_{\rm SUSY}$
	A_b ,	$A_t, A_\tau \mid A_h = A_h$		$A_t = A_\tau$	$A_b = A_t = A_\tau$		$A_b =$	$A_t = A_{\tau}$
	$m_{\widetilde{\sigma}}$ 15		150	0 GeV	1500 GeV		150	0 GeV
$m_{\tilde{l}_2}$		100	1000 GeV		1000 GeV		00 GeV	
-								
Parame	ter	light	-stop	light-s	tau	au-pho	bic	$low-m_H$
m _A		90–60	0 GeV	90–1000	GeV	90–1000	GeV	110 GeV
$\tan\beta$		0.7-	-60	0.5-6	50	0.9–5	50	1.5–9.5
M _{SUSY}		500	GeV	1000 C	GeV	1500 G	δeV	1500 GeV
μ		400 GeV		500 GeV		2000 GeV		300-3100 GeV
M_1		340 GeV		(5/3) $M_2 \tan^2 \theta_W$		(5/3) $M_2 \tan^2 \theta_W$		$(5/3) M_2 \tan^2 \theta_W$
M_2		400 GeV		200 GeV		200 GeV		200 GeV
X_t		$2 M_{\rm SUSY}$		$1.6 M_{\rm SUSY}$		$2.45 M_{\rm SUSY}$		$2.45 M_{\rm SUSY}$
A_b, A_t, A_t	A_{τ}	$A_b = A_t = A_\tau$		$A_b = A_t, A_\tau = 0$		$A_b = A_t = A_{ au}$		$A_b = A_t = A_{ au}$
$m_{\widetilde{g}}$		1500	GeV	1500 C	GeV	1500 G	ω	1500 GeV
$m_{\tilde{l_3}}$		1000 GeV		245 GeV		1000 GeV		1000 GeV

- Search for Charged Higgs in tt decays in the mass range 90-160 GeV in 8 TeV data CMS PAS HIG-13-035
- W from other top is required to decay into $\mu\nu$

Use kin fit for mass reconstruction constraining the top masses

Event selection

No excess observed, BR(t \rightarrow bH[±]) limits are derived assuming BR(bH[±] \rightarrow cs = 100%

Scenario 1 – Systematic and theory errors as they are now Scenario 2 – Theory errors reduced by a factor 1/V2, systematic errors reduced by 1/V(IntL)

