

Electroweak phase transition and Higgs couplings in the singlet-extended SM: revisited

Eibun Senaha (Nagoya U)

MultiHiggs 2014@Lisbon. September 5, 2014

in collaboration with Kaori Fuyuto (Nagoya U)

Ref. Phys.Rev.D90, 015015 (2014), [arXiv:1406.0433]

Electroweak phase transition and Higgs couplings in the singlet-extended SM: revisited

Outline

- Introduction
 - Higgs and cosmology
- Real singlet-extended SM (rSM)
 - Electroweak phase transition (EWPT) & sphaleron decoupling condition
 - Impact on the hhh coupling
- Summary

Higgs and cosmology

What is the implications of Higgs physics for cosmology?

- cosmic baryon asymmetry ⇔ EW baryogenesis
- dark matter ⇔ inert Higgs, Higgs portal etc.

EWBG and hhh coupling

Electroweak baryogenesis

based on EW phase transition

↓ 1st order PT remnant in Higgs potential at T=0.

⇒ large deviation of hhh coupling

e.g., 2HDM, [PLB606 (2005) 361, S. Kanemura, Y. Okada, E.S.]

 Δ hhh > some value (depends on "sphaleron decoupling condition")

What are successful models?

SUSY: EWBG in MSSM has been excluded.

Next-to-MSSM (NMSSM), nearly-MSSM (nMSSM), U(1)'-MSSM (UMSSM), triplet-MSSM (TMSSM) etc.

strong 1st-order EWPT is OK, CPV is OK

SM+extended Higgs sector

	strong 1st order PT	CPV(Higgs sector)
real singlet	OK	X
complex singlet	OK	OK
MHDM (M≥2)	OK	OK
real triplet	OK	X
complex triplet	OK	X

What are successful models?

SUSY: EWBG in MSSM has been excluded.

Next-to-MSSM (NMSSM), nearly-MSSM (nMSSM), U(1)'-MSSM (UMSSM), triplet-MSSM (TMSSM) etc.

strong 1st-order EWPT is OK, CPV is OK

SM+extended Higgs sector

	strong 1st order PT	CPV(Higgs sector)
real singlet	OK	X
complex singlet	OK	OK
MHDM (M≥2)	OK	OK
real triplet	OK	X
complex triplet	OK	X

We consider the SM with a real singlet (rSM)

Toward Higgs precision (Higgcision)

- Higgs sector will be clarified with better accuracy at the coming LHC and ILC.

Pressing issue

Theoretical uncertainties in the EWBG calculation also have to be minimized.

In the literature, $\left | rac{v_C}{T_C} > 1
ight |$ is usually used.

$$\left(\frac{v_C}{T_C} > 1\right)$$

In this talk, we evaluate this condition more precisely, and study its impact on $\Delta \lambda_{H_1H_1H_1}$ in the rSM.

Real singlet-extended SM (rSM)

Particle content: SM + S: (1,1,0)

Higgs potential:

$$\begin{aligned} V_0 &= -\mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2 \\ &+ \mu_{HS} H^{\dagger} H S + \frac{\lambda_{HS}}{2} H^{\dagger} H S^2 \\ &+ \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu_S'}{3} S^3 + \frac{\lambda_S}{4} S^4, \end{aligned}$$

Scalar fields:

$$H(x) = \left(\frac{G^{+}(x)}{\sqrt{2}}(v + h(x) + iG^{0}(x))\right), \quad S(x) = v_{S} + s(x).$$

Real singlet-extended SM (rSM)

Particle content: SM + S: (1,1,0)

Higgs potential:

$$V_{0} = -\mu_{H}^{2} H^{\dagger} H + \lambda_{H} (H^{\dagger} H)^{2}$$

$$+ \mu_{HS} H^{\dagger} H S + \frac{\lambda_{HS}}{2} H^{\dagger} H S^{2}$$

$$+ \mu_{S}^{3} S + \frac{m_{S}^{2}}{2} S^{2} + \frac{\mu_{S}^{\prime}}{3} S^{3} + \frac{\lambda_{S}}{4} S^{4},$$

Scalar fields:

$$H(x) = \left(\frac{G^{+}(x)}{\sqrt{2}}(v + h(x) + iG^{0}(x))\right), \quad S(x) = v_{S} + s(x).$$

H-S mixings are important to have strong 1st-order PT.

Tadpole conditions:

$$\left\langle \frac{\partial V}{\partial h} \right\rangle = v \left[-\mu_H^2 + \lambda_H v^2 + \mu_{HS} v_S + \frac{\lambda_{HS}}{2} v_S^2 \right] = 0,$$

$$\left\langle \frac{\partial V}{\partial s} \right\rangle = v_S \left[\frac{\mu_S^3}{v_S} + m_S^2 + \mu_S' v_S + \lambda_S v_S^2 + \frac{\mu_{HS}}{2} \frac{v^2}{v_S} + \frac{\lambda_{HS}}{2} v^2 \right] = 0,$$

Mass matrix:
$$\frac{1}{2} (h \ s) \mathcal{M}_H^2 \begin{pmatrix} h \ s \end{pmatrix}$$

$$\mathcal{M}_{H}^{2} = \begin{pmatrix} 2\lambda_{H}v^{2} & \mu_{HS}v + \lambda_{HS}vv_{S} \\ \mu_{HS}v + \lambda_{HS}vv_{S} & -\frac{\mu_{S}^{3}}{v_{S}} + \mu_{S}'v_{S} + 2\lambda_{S}v_{S}^{2} - \frac{\mu_{HS}}{2}\frac{v^{2}}{v_{S}} \end{pmatrix},$$

which can be diagonalized by

$$\begin{pmatrix} h \\ s \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} \qquad \alpha \in [-\pi/4, \pi/4]$$

Tadpole conditions:

$$\left\langle \frac{\partial V}{\partial h} \right\rangle = v \left[-\mu_H^2 + \lambda_H v^2 + \mu_{HS} v_S + \frac{\lambda_{HS}}{2} v_S^2 \right] = 0,$$

$$\left\langle \frac{\partial V}{\partial s} \right\rangle = v_S \left[\frac{\mu_S^3}{v_S} + m_S^2 + \mu_S' v_S + \lambda_S v_S^2 + \frac{\mu_{HS}}{2} \frac{v^2}{v_S} + \frac{\lambda_{HS}}{2} v^2 \right] = 0,$$

Mass matrix:
$$\frac{1}{2}(h \ s) \mathcal{M}_H^2(h \ s)$$

$$\mathcal{M}_{H}^{2} = \begin{pmatrix} 2\lambda_{H}v^{2} & \mu_{HS}v + \lambda_{HS}vv_{S} \\ \mu_{HS}v + \lambda_{HS}vv_{S} & -\frac{\mu_{S}^{3}}{v_{S}} + \mu_{S}'v_{S} + 2\lambda_{S}v_{S}^{2} - \frac{\mu_{HS}}{2}\frac{v^{2}}{v_{S}} \end{pmatrix},$$

which can be diagonalized by 125 GeV Higgs

$$\begin{pmatrix} h \\ s \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} \qquad \alpha \in [-\pi/4, \pi/4]$$

Higgs couplings

Higgs-gauge bosons

$$\mathcal{L}_{HVV} = \frac{1}{v} \left(\cos \alpha \ H_1 - \sin \alpha \ H_2 \right) \left(2m_W^2 W_{\mu}^+ W^{-\mu} + m_Z^2 Z_{\mu} Z^{\mu} \right),$$

Higgs-fermions

$$\mathcal{L}_{\text{Yukawa}} = -\sum_{f} \frac{m_f}{v} \left(\cos \alpha \ H_1 - \sin \alpha \ H_2\right) \bar{f} f.$$

Normalized couplings:

$$\kappa_V = \frac{g_{H_1VV}}{g_{hVV}^{\text{SM}}} = \cos \alpha, \qquad \kappa_F = \frac{g_{H_1ff}}{g_{hff}^{\text{SM}}} = \cos \alpha.$$

We collectively denote $\,\kappa \equiv \kappa_V = \kappa_F$

Current status

Current status

Effective potential

To discuss EWPT, we use the effective potential.

$$V_{\text{eff}}(\varphi_H, \varphi_S, T) = V_0(\varphi_H, \varphi_S) + V_1(\varphi_H, \varphi_S) + V_1(\varphi_H, \varphi_S, T) + V_{\text{daisy}}(\varphi_H, \varphi_S, T).$$

where

$$V_1(\varphi_H, \varphi_S) = \sum_i n_i \; \frac{\bar{m}_i^4(\varphi_H, \varphi_S)}{64\pi^2} \left(\ln \frac{\bar{m}_i^2(\varphi_H, \varphi_S)}{\mu^2} - c_i \right),$$

$$V_1(\varphi_H, \varphi_S, T) = \sum_i n_i \frac{T^4}{2\pi^2} I_{B,F} \left(\frac{\bar{m}_i^2(\varphi_H, \varphi_S)}{T^2} \right),$$

$$V_{\text{daisy}}(\varphi_H, \varphi_S, T) = -\sum_{j} n_j \frac{T}{12\pi} \left[\left\{ \bar{M}_j^2(\varphi_H, \varphi_S, T) \right\}^{3/2} - \left\{ \bar{m}_j^2(\varphi_H, \varphi_S) \right\}^{3/2} \right],$$

$$I_{B,F}(a^2) = \int_0^\infty dx \ x^2 \ln\left(1 \mp e^{-\sqrt{x^2 + a^2}}\right),$$

$$n_{H_1} = n_{H_2} = n_{G^0} = 1, \quad n_{G^{\pm}} = 2, \quad n_W = 2 \cdot 3, \quad n_Z = 3, \quad n_t = n_b = -4N_c,$$

After the EWPT, the sphaleron process has to be decoupled.

$$\Gamma_B^{(b)}(T) \simeq (\text{prefactor})e^{-E_{\text{sph}}/T} < H(T) \simeq 1.66\sqrt{g_*}T^2/m_{\text{P}}$$

 g_* massless dof, 106.75 (SM) m_P Planck mass $\approx 1.22 \times 10^{19}$ GeV

 $E_{\mathrm{sph}} = 4\pi v \mathcal{E}/g_2$ (g2: SU(2) gauge coupling),

$$\left[\frac{v(T)}{T} > \frac{g_2}{4\pi \mathcal{E}(T)} \left[42.97 + \ln \mathcal{N} - 2\ln \left(\frac{T}{100 \text{ GeV}}\right) + \cdots\right] \equiv \zeta_{\text{sph}}(T),\right]$$

- Sphaleron energy gives the dominant effect.
 - We evaluate vc/Tc, E(Tc), ζ (Tc).

After the EWPT, the sphaleron process has to be decoupled.

$$\Gamma_B^{(b)}(T) \simeq (\text{prefactor})e^{-E_{\text{sph}}/T} < H(T) \simeq 1.66\sqrt{g_*}T^2/m_{\text{P}}$$

 g_* massless dof, 106.75 (SM) m_P Planck mass $\approx 1.22 \times 10^{19}$ GeV

 $E_{\mathrm{sph}} = 4\pi v \mathcal{E}/g_2$ (g2: SU(2) gauge coupling),

$$\left(\frac{v(T)}{T} > \frac{g_2}{4\pi \mathcal{E}(T)} \left[42.97 + \ln \mathcal{N} - 2\ln \left(\frac{T}{100 \text{ GeV}}\right) + \cdots \right] \equiv \zeta_{\text{sph}}(T),$$

- Sphaleron energy gives the dominant effect.
 - We evaluate vc/Tc, E(Tc), ζ (Tc).

 $m_{H_2} = 170 \text{ GeV}, v_S = 90 \text{ GeV}, \mu_S' = -30 \text{ GeV}, \mu_{HS} = -80 \text{ GeV}.$

- $-\zeta(T_c)=(1.2-1.3)$
- $v_c/T_c > \zeta(T_c)$ is satisfied for $|\alpha| > 15$ deg.

 $m_{H_2} = 170 \text{ GeV}, v_S = 90 \text{ GeV}, \mu_S' = -30 \text{ GeV}, \mu_{HS} = -80 \text{ GeV}.$

$$-\zeta(T_c)=(1.2-1.3)$$

- $v_c/T_c > \zeta(T_c)$ is satisfied for $|\alpha| > 15$ deg.

hhh coupling

hhh coupling in the SM.

$$\lambda_{H_1 H_1 H_1}^{\text{SM}} = \frac{3m_{H_1}^2}{v} \left[1 + \frac{9m_{H_1}^2}{32\pi^2 v^2} + \sum_{i=W,Z,t,b} n_i \frac{m_i^4}{12\pi^2 m_{H_1}^2 v^2} \right] \simeq 175.83 \text{ [GeV]}.$$

The dominant one-loop correction comes from top loop

☐ hhh coupling in the rSM.

$$\lambda_{H_1H_1H_1}^{\text{rSM}} = \lambda_{H_1H_1H_1}^{\text{rSM,tree}} + \lambda_{H_1H_1H_1}^{\text{rSM,loop}},$$

$$\lambda_{H_1H_1H_1}^{\text{rSM,tree}} = 6 \left[\lambda_H v c_{\alpha}^3 + \frac{\mu_{HS}}{2} s_{\alpha} c_{\alpha}^2 + \frac{\lambda_{HS}}{2} s_{\alpha} c_{\alpha} (v s_{\alpha} + v_S c_{\alpha}) + \left(\frac{\mu_S'}{3} + \lambda_S v_S \right) s_{\alpha}^3 \right],$$

$$\lambda_{H_1H_1H_1}^{\text{rSM,loop}} = c_{\alpha}^3 \left\langle \frac{\partial^3 V_1}{\partial \varphi_{1}^3} \right\rangle + c_{\alpha}^2 s_{\alpha} \left\langle \frac{\partial^3 V_1}{\partial \varphi_{2}^2 \partial \varphi_{S}} \right\rangle + c_{\alpha} s_{\alpha}^2 \left\langle \frac{\partial^3 V_1}{\partial \varphi_{1} \partial \varphi_{S}^2} \right\rangle + s_{\alpha}^3 \left\langle \frac{\partial^3 V_1}{\partial \varphi_{S}^3} \right\rangle,$$

Larger α gives the larger deviation from the SM value.

(To have strong 1st order PT, (λ_{HS},μ_{HS}) have to be large.)

κ vs. $\Delta \lambda_{H_1 H_1 H_1}$

- Smaller κ gives larger $\Delta \lambda_{\text{H1H1H1}}$.

κ vs. $\Delta \lambda_{H_1 H_1 H_1}$

- Smaller κ gives larger $\Delta \lambda$ HIHIHI.

κ vs. $\Delta \lambda_{H_1 H_1 H_1}$

- Smaller κ gives larger $\Delta \lambda$ HIHIHI.

- $\Delta \lambda_{H_1 H_1 H_1} \simeq 16\%$ for $\kappa \simeq 0.97$ and $160 \text{ GeV} \lesssim m_{H_2} \lesssim 169 \text{ GeV}$,
- $\Delta \lambda_{H_1 H_1 H_1} \simeq 27\%$ for $\kappa \simeq 0.95$, and 163 GeV $\lesssim m_{H_2} \lesssim 176$ GeV.

If
$$rac{v_C}{T_C} > 1$$

- $\Delta \lambda_{H_1 H_1 H_1} \simeq 16\%$ for $\kappa \simeq 0.97$ and $160 \text{ GeV} \lesssim m_{H_2} \lesssim 169 \text{ GeV}$,
- $\Delta \lambda_{H_1H_1H_1} \simeq 27\%$ for $\kappa \simeq 0.95$, and 163 GeV $\lesssim m_{H_2} \lesssim 176$ GeV.

If
$$rac{v_C}{T_C} > 1$$

- $\Delta \lambda_{H_1 H_1 H_1} \simeq 16\%$ for $\kappa \simeq 0.97$ and $160 \text{ GeV} \lesssim m_{H_2} \lesssim 169 \text{ GeV}$,
- $\Delta \lambda_{H_1 H_1 H_1} \simeq 27\%$ for $\kappa \simeq 0.95$, and 163 GeV $\lesssim m_{H_2} \lesssim 176$ GeV.

If
$$rac{v_C}{T_C} > 1$$

- 18 ↑ 18
- $\Delta \lambda_{H_1 H_1 H_1} \simeq 16\%$ for $\kappa \simeq 0.97$ and $160 \text{ GeV} \lesssim m_{H_2} \lesssim 169 \text{ GeV}$,
- $\Delta \lambda_{H_1 H_1 H_1} \simeq 27\%$ for $\kappa \simeq 0.95$, and 163 GeV $\lesssim m_{H_2} \lesssim 176$ GeV.

Summary

- ☐ We have discussed the EW phase transition and sphaleron decoupling condition in the rSM.
- \square $v_c/T_c > (1.1-1.2)$ in the typical cases.
- ☐ We also studied the deviation of the hhh coupling from the SM value based on the improved sphaleron decoupling condition.
- \Box The deviation is greater than that based on the conventional criterion $v_c/T_c>1$.

Our prediction

Higgs potential has this form!

Our prediction

Higgs potential has this form!

Our prediction

Higgs potential has this form!

Backup

EW baryogenesis mechanism

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]

BAU can arise by the growing bubbles.

H: hubble constant

$$\Gamma_B^{(s)} > H$$

$$B+L: N_g \text{ gen., } 0 \leftrightarrow \sum_{i=1}^{N_g} (3q_L^i + l_L^i)$$

CP-violating interaction between particles and Higgs bubble.

To avoid the washout by $\Gamma_B^{(b)} < H$ the sphaleron,

most important condition for collider tests.

Sphaleron energy

For simplicity, we evaluate sphaleron energy at T=0.

[Klinkhammer and Manton, PRD30, ('84) 2212]

We take SM as an example. (U(1) $_{Y}$ is neglected)

$$\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + (D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi - V_0(\Phi)$$

$$V_0(\Phi) = \lambda \left(\Phi^{\dagger} \Phi - \frac{v^2}{2} \right)^2$$

sphaleron energy:

$$E_{\rm sph} = \frac{4\pi v}{g_2} \mathcal{E}$$

Higgs mass ($m_h^2 = 2\lambda v^2$

For
$$m_h = 126 \text{ GeV } (\lambda = 0.13), \mathcal{E} \simeq 1.92 \longrightarrow$$

$$\left(\frac{v}{T} \gtrsim 1.16\right)$$

Patterns of EWPT

Diverse patterns of the phase transitions.

[K.Funakubo, S. Tao, F. Toyoda., PTP114,369 (2005)]

 $A: SYM \rightarrow I \Rightarrow EW \quad B: SYM \rightarrow I' \Rightarrow EW$

 $C: SYM \Rightarrow II \rightarrow EW \quad D: SYM \Rightarrow EW$

Type B

- ☐ Before EW symmetry breaking, singlet develops a VEV.
- \square In this case, T_c can be significantly lowered. (v_c/T_c gets enhanced.)
- \square v_s changes a lot during the PT.

Z2-symmetric					
	S1	S2	S3	S4	
H-S mixing parameters	λ_{HS}	λ_{HS}, μ_{HS}	λ_{HS}, μ_{HS}	μ_{HS}	
PT type	D	В	В	В	
$m_{H_2} [{ m GeV}]$	500	170	148	500	
$\alpha \text{ [degrees]}$	38	-20	0	20	
$v_S [\mathrm{GeV}]$	200	90	100	200	
$\mu_{HS} \; [{\rm GeV}]$	0.00	-80.00	-80.00	-310.72	
μ_S' [GeV]	0	-30	-30	0	
κ	0.79	0.94	1.0	0.94	
$\Delta \lambda_{H_1 H_1 H_1} \ [\%]$	-23.7	31.8	0.58	41.1	
$\log_{10}(\Lambda/{\rm GeV})$	3.90	9.68	13.78	3.90	

	Z2-symmet	ric		
	S1	S2	S3	S4
H-S mixing parameters	λ_{HS}	λ_{HS}, μ_{HS}	λ_{HS}, μ_{HS}	μ_{HS}
PT type	D	В	В	В
$m_{H_2} [{ m GeV}]$	500	170	148	500
α [degrees]	38	-20	0	20
$v_S \; [\mathrm{GeV}]$	200	90	100	200
$\mu_{HS} \; [\mathrm{GeV}]$	0.00	-80.00	-80.00	-310.72
μ_S' [GeV]	0	-30	-30	0
κ	0.79	0.94	1.0	0.94
$\Delta \lambda_{H_1 H_1 H_1} [\%]$	-23.7	31.8	0.58	41.1
$\log_{10}(\Lambda/{\rm GeV})$	3.90	9.68	13.78	3.90

	Z2-symmet	ric		
	S1	S2	S3	S4
H-S mixing parameters	λ_{HS}	λ_{HS}, μ_{HS}	λ_{HS}, μ_{HS}	μ_{HS}
PT type	D	В	В	В
$m_{H_2} [{ m GeV}]$	500	170	148	500
$\alpha \text{ [degrees]}$	38	-20	0	20
$v_S [{ m GeV}]$	200	90	100	200
$\mu_{HS} \; [{\rm GeV}]$	0.00	-80.00	-80.00	-310.72
μ_S' [GeV]	0	-30	-30	0
κ	0.79	0.94	1.0	0.94
$\Delta \lambda_{H_1 H_1 H_1} \ [\%]$	-23.7	31.8	0.58	41.1
$\log_{10}(\Lambda/{\rm GeV})$	3.90	9.68	13.78	3.90

excluded

	Z2-symmetric					
	S ₁	S2	S3	S4		
H-S mixing parameters	$\lambda_{H^{k}}$	$_{S}$ λ_{HS},μ_{HS}	λ_{HS}, μ_{HS}	μ_{HS}		
PT type	D	В	В	В		
$m_{H_2} [{ m GeV}]$	500	0 170	148	500		
$\alpha \text{ [degrees]}$	38	-20	0	20		
$v_S [{ m GeV}]$	200	0 90	100	200		
$\mu_{HS} \; [{\rm GeV}]$	0.00	0 - 80.00	-80.00	-310.72		
μ_S' [GeV]	0	-30	-30	0		
κ	0.7	9 0.94	1.0	0.94		
$\Delta \lambda_{H_1 H_1 H_1} [\%]$	-23	31.8	0.58	41.1		
$\log_{10}(\Lambda/{\rm GeV})$	3.9	9.68	13.78	3.90		

excluded

Z2-symmetric					
	S	1 S2	S3	S4	
H-S mixing parameters	λ_{L}	λ_{HS}, μ_{HS}	λ_{HS}, μ_{HS}	μ_{HS}	
PT type	I	В	В	В	
$m_{H_2} [{ m GeV}]$	50	00 170	148	500	
α [degrees]	3	8 -20	0	20	
$v_S \; [{ m GeV}]$	20	90	100	200	
$\mu_{HS} \; [\mathrm{GeV}]$	0.0	-80.00	-80.00	-310.72	
μ_S' [GeV]	0	-30	-30	0	
κ	0.7	79 0.94	1.0	0.94	
$\Delta \lambda_{H_1 H_1 H_1} \ [\%]$	-2	3.7 31.8	0.58	41.1	
$\log_{10}(\Lambda/{\rm GeV})$	3.9	90 9.68	13.78	3.90	

excluded

no significant deviation

Z2-symmetric ————					
	S 1	S2	S3	S4	
H-S mixing parameters	λ_{HS}	λ_{HS}, μ_{HS}	λ_{HS}, μ_{HS}	μ_{HS}	
PT type	D	В	В	В	
$m_{H_2} [{ m GeV}]$	500	170	148	500	
α [degrees]	38	-20	0	20	
v_S [GeV]	200	90	100	200	
$\mu_{HS} \; [{\rm GeV}]$	0.00	-80.00	-80.00	-310.72	
μ_S' [GeV]	0	-30	-30	0	
κ	0.79	0.94	1.0	0.94	
$\Delta \lambda_{H_1 H_1 H_1} [\%]$	-23.	7 31.8	0.58	41.1	
$\log_{10}(\Lambda/{\rm GeV})$	3.90	9.68	13.78	3.90	

excluded

no significant deviation

Z2-symmetric				
	S ₁	S2	S3	S4
H-S mixing parameters	λ_H	$S \qquad \lambda_{HS}, \mu_{HS}$	λ_{HS}, μ_{HS}	μ_{HS}
PT type	D	В	В	В
$m_{H_2} [{ m GeV}]$	500	0 170	148	500
$\alpha \text{ [degrees]}$	38	-20	0	20
$v_S \; [\mathrm{GeV}]$	200	0 90	100	200
$\mu_{HS} \; [{ m GeV}]$	0.00	0 - 80.00	-80.00	-310.72
μ_S' [GeV]	0	-30	-30	0
κ	0.7	9 0.94	1.0	0.94
$\Delta \lambda_{H_1 H_1 H_1} \ [\%]$	-23	31.8	0.58	41.1
$\log_{10}(\Lambda/{\rm GeV})$	3.9	9.68	13.78	3.90

below GUT scale

excluded

no significant deviation