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Higgs and cosmology

- dark matter  ⟺  inert Higgs, Higgs portal etc.

- cosmic baryon asymmetry  ⟺  EW baryogenesis 
What is the implications of Higgs physics for cosmology?

EWBG and hhh coupling
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Electroweak baryogenesis
based on EW phase transition

⇒ large deviation of hhh coupling
remnant in Higgs potential at T=0.

⇓ 1st order PT

1st-order PT

e.g., 2HDM, [PLB606 (2005) 361, S. Kanemura, Y. Okada, E.S.]

Δhhh > some value (depends on “sphaleron decoupling condition”)



What are successful models?
SUSY:

SM+extended Higgs sector

Next-to-MSSM (NMSSM), nearly-MSSM (nMSSM),


U(1)’-MSSM (UMSSM), triplet-MSSM (TMSSM) etc.

strong 1st order PT CPV(Higgs sector)
real singlet OK X

complex singlet OK OK
MHDM (M≥2) OK OK
real triplet OK X

complex triplet OK X

EWBG in MSSM has been excluded.

strong 1st-order EWPT is OK, CPV is OK
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We consider the SM with a real singlet (rSM)



In the literature,

In this talk, we evaluate this condition more precisely,
and study its impact on ��H1H1H1

vC
TC

> 1

 in the rSM.

Toward Higgs precision (Higgcision)

Pressing issue

is usually used.

Figure 4: Estimates of the accuracy that can be achieved in Higgs coupling measurements
using a model-independent fit to LHC and ILC measurements, from [43]. The estimates are
shown as a fraction of the predicted Standard Model value for the Higgs coupling constants.
The indicated horizontal lines represent 5% deviations. For the invisible Higgs decay, the
quantity plotted is the square root of the branching fraction. The programs shown include
(left to right for each entry) LHC at 14 TeV and 300 fb�1, ILC at 250 GeV and 250 fb�1,
ILC at 500 GeV and 500 fb�1, ILC at 1000 GeV and 1000 fb�1.
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[arXiv:1208.5152, M. Peskin]- Higgs sector will be clarified


with better accuracy at the 
coming LHC and ILC.

Theoretical uncertainties 


in the EWBG calculation 


also have to be minimized.



Real singlet-extended SM (rSM)
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Scalar fields:

Higgs potential:
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H-S mixings are important to have strong 1st-order PT.
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Higgs couplings
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Current status



Current status

rSM



V1('H ,'S) =
X

i

ni
m̄4

i ('H ,'S)

64⇡2

✓
ln

m̄2
i ('H ,'S)

µ2
� ci

◆
,

nH1 = nH2 = nG0 = 1, nG± = 2, nW = 2 · 3, nZ = 3, nt = nb = �4Nc,

V1('H ,'S , T ) =
X

i

ni
T 4

2⇡2
IB,F

✓
m̄2

i ('H ,'S)

T 2

◆
,

I

B,F

(a2) =

Z 1

0
dx x

2 ln
⇣
1⌥ e

�
p
x

2+a

2
⌘
,

Vdaisy('H ,'S , T ) = �
X

j

nj
T

12⇡

h�
M̄2

j ('H ,'S , T )
 3/2 �

�
m̄2

j ('H ,'S)
 3/2

i
,

Effective potential

Ve↵('H ,'S , T ) = V0('H ,'S) + V1('H ,'S) + V1('H ,'S , T ) + Vdaisy('H ,'S , T ).

To discuss EWPT, we use the effective potential.

where



Esph = 4�vE/g2 (g2: SU(2) gauge coupling),

After the EWPT, the sphaleron process has to be decoupled.
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Sphaleron decoupling condition
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hhh coupling
❒ hhh coupling in the SM.

The dominant one-loop correction comes from top loop

❒ hhh coupling in the rSM.

Larger α gives the larger deviation from the SM value.


(To have strong 1st order PT,                 have to be large.)(�HS , µHS)
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Summary

❒ We have discussed the EW phase transition and 
sphaleron decoupling condition in the rSM.

❒ vC/TC > (1.1-1.2) in the typical cases.

❒ We also studied the deviation of the hhh coupling from 
the SM value based on the improved sphaleron decoupling 
condition.

❒ The deviation is greater than that based on the 
conventional criterion vC/TC>1. 
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Backup



EW baryogenesis mechanism

�(b)
B < H

B+L :

broken phase

symmetric phase

Ng gen., 0 �
Ng�

i=1

(3qi
L + liL)

f, f̄ $ f, f̄

CP : CP-violating interaction 
between particles and 
Higgs bubble.CP

To avoid the washout by


the sphaleron, 

most important condition for collider tests.

❒ BAU can arise by the growing bubbles.

H: hubble constant

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 (‘85)]
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PRD30, (’84) 2212]
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Patterns of EWPT
❒ Diverse patterns of the phase 
transitions.
 [K.Funakubo, S. Tao, F. Toyoda., PTP114,369 (2005)]

EW

IISYM

I

B

A

D
C

A: SYM � I � EW B: SYM � I� � EW
C: SYM � II � EW D: SYM � EW

❒ Before EW symmetry breaking, singlet develops a VEV.

Type B

❒ vS changes a lot during the PT.

❒ In this case, TC can be significantly lowered. (vC/TC gets enhanced.)



S1 S2 S3 S4

H-S mixing parameters λHS λHS , µHS λHS , µHS µHS

PT type D B B B

mH2 [GeV] 500 170 148 500

α [degrees] 38 −20 0 20

vS [GeV] 200 90 100 200

µHS [GeV] 0.00 −80.00 −80.00 -310.72

µ′
S [GeV] 0 −30 −30 0

λH 0.82 0.13 0.12 0.34

λS 1.83 0.23 0.06 1.96

λHS −2.35 1.08 0.80 0.00

κ 0.79 0.94 1.0 0.94

∆λH1H1H1 [%] −23.7 31.8 0.58 41.1

log10(Λ/GeV) 3.90 9.68 13.78 3.90

vC/TC
172.83
148.87 = 1.16 206.75

111.76 = 1.85 234.78
79.31 = 2.96 193.40

120.53 =1.60

vSC [GeV] 145.72 98.31 100.06 182.26

vsym
SC [GeV] 0.00 222.33 436.99 135.40

E(TC) 1.92 1.89 1.91 1.84

ζsph(TC) 1.14 1.18 1.18 1.20

TABLE II. The benchmark points for the strong first-order EWPT. (λH ,λS ,λHS) are outputs in

S1-S3, and (λH ,λS , µHS) are outputs in S4. µS = 0 is taken throughout our analysis. For a detail,

see a text. S1 is already disfavored by the LHC data and EW precision tests.

Finally, we comment on some remaining issues. In order to reduce the theoretical un-

certainties in the sphaleron decoupling condition, we should include the sub-leading con-

tributions omitted here. For example, the translational and rotational zero-mode factors

around the sphaleron can have some effects, leading to the enhanced ζsph. In addition, TC

has to be replaced with TN in the sphaleron decoupling condition. Since some regions in the

parameter space show the significantly large vC/TC , the corresponding supercooling can be

sizable, which delays the onset of the EWPT. If the EWPT mostly proceeds via the bubble
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Benchmark points
Z2-symmetric
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