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Couplings of the discovered Higgs boson at MH = 125± 2 GeV are within O(10%) of the
SM predictions.

Opportunity in the search of (or constraining) BSM physics through Higgs portal.
Precision Higgs Study (Higgcision).
Search for additional Higgses.



Two Higgs Doublet Model

Several theoretical motivations to go beyond the SM Higgs sector.

In a modest bottom-up approach, consider the simplest Higgs-sector extension of the SM,

i.e. two SU(2)L doublets Φi =

(
φ+

i
φ0

i

)
(with i = 1, 2).

Most general 2HDM potential in doublet field space Φ1,2:

V =− µ2
1(Φ†1Φ1)− µ2

2(Φ†2Φ2)−
[
m2

12(Φ†1Φ2) + H.c.
]

+ λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

[
1
2
λ5(Φ†1Φ2)2 + λ6(Φ†1Φ1)(Φ†1Φ2) + λ7(Φ†1Φ2)(Φ†2Φ2) + H.c.

]
.

Four real mass parameters µ2
1,2, Re(m2

12), Im(m2
12), and 10 real quartic couplings λ1,2,3,4,

Re(λ5,6,7), Im(λ5,6,7).

Motivated by the LHC Higgs data, scrutinize the SM alignment limit of the 2HDM potential.

Explore possible symmetries of the 2HDM potential to naturally justify the alignment limit.
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An Alternative Formulation of the 2HDM Potential
Gauge-invariant bilinear scalar-field formalism. [Nishi ’06; Ivanov ’06; Maniatis et al ’06]

Extend the SL(2,C) group to the maximal reparametrization group of the 2HDM potential,
namely, the complex linear group GL(8,C), by introducing an 8-dimensional complex
multiplet: [Battye, Brawn, Pilaftsis ’11; Nishi ’11; Pilaftsis ’12]

Φ =


Φ1
Φ2

iσ2Φ∗1
iσ2Φ∗2

 .

Φ satisfies the Majorana property: Φ = CΦ∗, where C = σ2 ⊗ σ0 ⊗ σ2.

Define a null 6-dimensional Lorentz vector: RA = Φ†ΣAΦ (with A = 0, 1, 2, 3, 4, 5), where

Σ0 =
1
2
σ0 ⊗ σ0 ⊗ σ0 ≡

1
2

18, Σ1 =
1
2
σ0 ⊗ σ1 ⊗ σ0, Σ2 =

1
2
σ3 ⊗ σ2 ⊗ σ0,

Σ3 =
1
2
σ0 ⊗ σ3 ⊗ σ0, Σ4 = −

1
2
σ2 ⊗ σ2 ⊗ σ0, Σ5 = −

1
2
σ1 ⊗ σ2 ⊗ σ0.

The general 2HDM potential takes a simple form:

V = −
1
2

MARA +
1
4

LABRARB ,

The bilinear field space spanned by the 6-vector RA realizes an orthochronous SO(1, 5)

symmetry.
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Symmetry Classifications of the 2HDM Potential

Three classes of accidental symmetries of the 2HDM potential:

Higgs Family (HF) Symmetries involving transformations of Φ1,2 only (but not Φ∗1,2),
e.g. Z2 [Glashow, Weinberg ’58], U(1)PQ [Peccei, Quinn ’77], SO(3)HF [Deshpande, Ma ’78; Ivanov ’07;

Ma, Maniatis ’09; Ferreira, Haber, Maniatis, Nachtmann, Silva ’10].

CP Symmetries relating Φ1,2 to Φ∗1,2, e.g. Φ1(2) → Φ∗1(2)
(CP1) [Lee ’73; Branco ’80],

Φ1(2) → (−)Φ∗2(1)
(CP2) [Davidson, Haber ’05], CP1 combined with SO(2)HF/Z2 (CP3)

[Ivanov ’07; Ferreira, Haber, Silva ’09; Ma, Maniatis ’09; Ferreira, Haber, Maniatis, Nachtmann, Silva ’10].

Additional mixed HF and CP symmetries larger than O(3) that leave the
gauge-kinetic terms of Φ1,2 invariant [Battye, Brawn, Pilaftsis ’11].

The Majorana condition, together with SU(2)L × U(1)Y gauge invariance, reduces GL(8,C)
to two subgroups isomorphic to GL(4,R): one related to HF and another to generalized CP.

Maximum of 13 distinct accidental symmetries of the general 2HDM potential.
[Battye, Brawn, Pilaftsis ’11; Pilaftsis ’12]

Each of them imposes specific relations among the scalar parameters.



Symmetry Classifications of the 2HDM Potential

Three classes of accidental symmetries of the 2HDM potential:

Higgs Family (HF) Symmetries involving transformations of Φ1,2 only (but not Φ∗1,2),
e.g. Z2 [Glashow, Weinberg ’58], U(1)PQ [Peccei, Quinn ’77], SO(3)HF [Deshpande, Ma ’78; Ivanov ’07;

Ma, Maniatis ’09; Ferreira, Haber, Maniatis, Nachtmann, Silva ’10].

CP Symmetries relating Φ1,2 to Φ∗1,2, e.g. Φ1(2) → Φ∗1(2)
(CP1) [Lee ’73; Branco ’80],

Φ1(2) → (−)Φ∗2(1)
(CP2) [Davidson, Haber ’05], CP1 combined with SO(2)HF/Z2 (CP3)

[Ivanov ’07; Ferreira, Haber, Silva ’09; Ma, Maniatis ’09; Ferreira, Haber, Maniatis, Nachtmann, Silva ’10].

Additional mixed HF and CP symmetries larger than O(3) that leave the
gauge-kinetic terms of Φ1,2 invariant [Battye, Brawn, Pilaftsis ’11].

The Majorana condition, together with SU(2)L × U(1)Y gauge invariance, reduces GL(8,C)
to two subgroups isomorphic to GL(4,R): one related to HF and another to generalized CP.

Maximum of 13 distinct accidental symmetries of the general 2HDM potential.
[Battye, Brawn, Pilaftsis ’11; Pilaftsis ’12]

Each of them imposes specific relations among the scalar parameters.



Symmetry Classifications of the 2HDM Potential
[Pilaftsis ’12]
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Table 1
Parameter relations for the 13 accidental symmetries [1] related to the U(1)Y -invariant 2HDM potential in the diagonally reduced basis, where Im λ5 = 0 and λ6 = λ7. A dash
signifies the absence of a constraint.

No. Symmetry µ2
1 µ2

2 m2
12 λ1 λ2 λ3 λ4 Reλ5 λ6 = λ7

1 Z2 × O(2) – – Real – – – – – Real
2 (Z2)2 × SO(2) – – 0 – – – – – 0
3 (Z2)3 × O(2) – µ2

1 0 – λ1 – – – 0
4 O(2) × O(2) – – 0 – – – – 0 0
5 Z2 × [O(2)]2 – µ2

1 0 – λ1 – – 2λ1 − λ34 0
6 O(3) × O(2) – µ2

1 0 – λ1 – 2λ1 − λ3 0 0
7 SO(3) – – Real – – – – λ4 Real
8 Z2 × O(3) – µ2

1 Real – λ1 – – λ4 Real
9 (Z2)2 × SO(3) – µ2

1 0 – λ1 – – ±λ4 0
10 O(2) × O(3) – µ2

1 0 – λ1 2λ1 – 0 0
11 SO(4) – – 0 – – – 0 0 0
12 Z2 × O(4) – µ2

1 0 – λ1 – 0 0 0
13 SO(5) – µ2

1 0 – λ1 2λ1 0 0 0

T 2 =

⎛

⎜⎜⎜⎝

0 0 i 0 0
0 0 0 0 0
−i 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
, T 3 =

⎛

⎜⎜⎜⎝

0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
,

T 4 =

⎛

⎜⎜⎜⎝

0 0 0 0 0
0 0 0 −i 0
0 0 0 0 0
0 i 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
, T 5 =

⎛

⎜⎜⎜⎝

0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−i 0 0 0 0

⎞

⎟⎟⎟⎠
,

T 6 =

⎛

⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 −i 0 0 0

⎞

⎟⎟⎟⎠
, T 7 =

⎛

⎜⎜⎜⎝

0 0 0 i 0
0 0 0 0 0
0 0 0 0 0
−i 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
,

T 8 =

⎛

⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0
0 0 i 0 0

⎞

⎟⎟⎟⎠
, T 9 =

⎛

⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 −i 0
0 0 i 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
.

(14)

These are exactly the 10 generators of the orthogonal SO(5) group.
Consequently, the relation (13) represents one of the central results
of this Letter, as it gives an one-to-one correspondence between
the generators of SUM(4) and those of SO(5). Hence, we get the
isomorphism: SO(5) ∼= SUM(4)/Z2, between the Φ- and the R I -
space. This result offers firm proof of the equivalence relation,
between SUM(4) and SO(5), presented in [1].

It is now obvious that the maximal reparameterization group
acting on the Φ-space in the 2HDM potential, which leaves the
SU(2)L gauge kinetic term of Φ canonical, is

GΦ
2HDM =

(
SUM(4)/Z2

)
⊗ SU(2)L . (15)

The group GΦ
2HDM includes the U(1)Y hypercharge group through

the generator K 0 of SUM(4), as well as 9 other generators related
to HF/CP transformations. On the other hand, the SU(2)L group
generators may be represented as σ 0 ⊗ σ 0 ⊗ (σ 1,2,3/2), which
manifestly commute with all generators of SUM(4). Finally, the
quotient factor Z2 appearing in (15) is needed to avoid double cov-
ering the group GΦ

2HDM in the Φ-space.
In order to classify all possible HF/CP accidental symmetries

of the 2HDM potential, it is more convenient to go over to the
5-dimensional bilinear space R I , where the maximal reparameter-
ization group is G R

2HDM = SO(5), which leaves R0 invariant. Given

that SO(5) is the maximal symmetry group in the R I -space, Ref. [1]
classifies all possible symmetries derived from SO(5), including all
its proper, improper and semi-simple subgroups. Such an analy-
sis led to a maximum of 13 accidental symmetries for the 2HDM
potential, which are presented in Table 1. The same table shows
the parameter restrictions for each of the 13 symmetries in a
specific bilinear basis [15], where LI J is made diagonal by an
SO(3) ⊂ SO(5) rotation [24]. In this diagonally reduced basis, one
has the restrictions:

Im λ5 = 0, λ6 = λ7, (16)

thus reducing to 7 the number of independent quartic couplings
for the 2HDM potential. From Table 1, we observe that all 13
symmetries include SO(2) ∼= U(1)Y as a subgroup. Note that the
parameter relations pertinent to the 13 symmetries are chosen, so
as to manifestly lead to CP-invariant scalar potentials.

It is worth commenting that only two discrete factors, (Z2)
2

and (Z2)
4, are allowed, as being the only admissible subgroups

of SO(5), where Z2 is the reflection group of one of the compo-
nents R I . More explicitly, the standard CP (or CP1) discrete sym-
metry may be represented as $CP1 = C = σ 2 ⊗ σ 0 ⊗ σ 2 in the Φ-
space, and the usual discrete ‘Z2’ (CP2) symmetry as $Z2 = σ 0 ⊗
σ 3 ⊗ σ 0 ($CP2 = σ 2 ⊗ σ 2 ⊗ σ 0). In the R I -space, the transforma-
tion matrices (or the generating group elements) associated with
the CP1, ‘Z2’ and CP2 discrete symmetries are respectively given by

DCP1 = diag(1,−1,1,1,−1),

D Z2 = diag(−1,−1,1,−1,−1),

DCP2 = diag(−1,−1,−1,1,−1). (17)

As a consequence, both the traditional ‘Z2’ symmetry and CP2 are
actually isomorphic to the (Z2)

4 symmetry.
It is straightforward to identify the generators pertinent to the

continuous HF/CP symmetries of the 2HDM potential in the diago-
nally reduced basis (16). Specifically, the 2HDM potential possesses
a continuous symmetry, iff
[
T a,L

]
= 0, T aM = 0, (18)

where L and M denote the 5 × 5 matrix LI J and the 5-dimensional
vector MI in the reduced basis, respectively. Given the one-to-one
correspondence between T a and K a generators, it is not difficult
to determine the transformation relations associated with a given
continuous HF/CP symmetry in the Φ-space through:

Φ → Φ ′ = eiθa K a
Φ, (19)

In the diagonally reduced basis [Gunion, Haber ’05; Maniatis, Nachtmann ’11], Im(λ5) = 0 and
λ6 = λ7.
7 independent quartic couplings for the U(1)Y -invariant 2HDM potential.

Maximal symmetry group in the bilinear field space: GR
2HDM = SO(5).

Maximal symmetry group in the original Φ-field space: GΦ
2HDM = (Sp(4)/Z2)⊗ SU(2)L.

Conjecture: In a general nHDM, GΦ
nHDM = (Sp(2n)/Z2)⊗ SU(2)L.

For the SM (with n = 1), reproduce the well-known result GΦ
SM = (SU(2)C/Z2)⊗ SU(2)L,

using group isomorphy: Sp(2) ∼ SU(2)C (custodial). [Sikivie, Susskind, Voloshin, Zakharov ’80]
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Maximal symmetry group in the original Φ-field space: GΦ
2HDM = (Sp(4)/Z2)⊗ SU(2)L.

Conjecture: In a general nHDM, GΦ
nHDM = (Sp(2n)/Z2)⊗ SU(2)L.

For the SM (with n = 1), reproduce the well-known result GΦ
SM = (SU(2)C/Z2)⊗ SU(2)L,

using group isomorphy: Sp(2) ∼ SU(2)C (custodial). [Sikivie, Susskind, Voloshin, Zakharov ’80]



Maximally Symmetric 2HDM

Following relations between the scalar potential parameters in the SO(5) limit:

µ2
1 = µ2

2 , m2
12 = 0 , λ2 = λ1 , λ3 = 2λ1 , λ4 = Re(λ5) = λ6 = λ7 = 0 .

2HDM potential parametrized by single mass parameter µ2 and single quartic coupling λ:

V = −µ2
(
|Φ1|2 + |Φ2|2

)
+ λ

(
|Φ1|2 + |Φ2|2

)2
= −

µ2

2
Φ†Φ +

λ

4

(
Φ†Φ

)2
.

More minimal than the MSSM scalar potential, even in the custodial limit g′ → 0, which
possesses a smaller symmetry: O(2)⊗ O(3) ⊂ SO(5).

After EWSB in the MS-2HDM, one massive Higgs boson H with mass M2
H = 2λ2v2, whilst

remaining four scalar fields (h, a and h±) are massless (pseudo)-Goldstone bosons.

Natural SM alignment limit with α = β. [Recall HSM = H cos(β − α) + h sin(β − α)]

(Pseudo)-Goldstones can naturally pick up mass due to g′ and Yukawa coupling effects.



Custodial Symmetries in the MS-2HDM

Quark-sector Yukawa Lagrangian

−Lq
Y = Q̄L(hu

1Φ1 + hu
2Φ2)uR + Q̄L(hd

1 Φ̃1 + hd
2 Φ̃2)dR

=
(
ūL , d̄L

) (
Φ1 , Φ2 , Φ̃1 , Φ̃2

) 
hu

1 0
hu

2 0
0 hd

1
0 hd

2


︸ ︷︷ ︸

H

(
uR
dR

)
.

To find all the custodial symmetries of this Lagrangian, consider the 10 Lie generators of
Sp(4) group: K a = κa ⊗ σ0, where with the normalization: Tr(κa κb) = δab ,

κ0,1,3 =
1
2
σ3 ⊗ σ0,1,3 , κ2 =

1
2
σ0 ⊗ σ2 , κ4 =

1
2
σ1 ⊗ σ0 , κ5 =

1
2
σ1 ⊗ σ3 ,

κ6 =
1
2
σ2 ⊗ σ0 , κ7 =

1
2
σ2 ⊗ σ3 , κ8 =

1
2
σ1 ⊗ σ1 , κ9 =

1
2
σ2 ⊗ σ1 .

Candidate Sp(4) generators of the custodial symmetry SU(2)C are those which do not
commute with the hypercharge generator K 0, i.e. K a with a = 4, 5, 6, 7, 8, 9.
3 inequivalent realizations: (i) K 0,4,6, (ii) K 0,5,7, (iii) K 0,8,9 [equivalent in SO(5)).
Satisfy the symmetry commutation relation κaH − H tb = 04×2 (where tb = σb/2).

(i) hu
1,2 = eiθhd

1,2 , (ii) hu
1 = eiθhd

1 , hu
2 = −eiθhd

2 , (iii) hu
1 = eiθhd

2 , hu
2 = e−iθhd

1 .
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g′ and Yukawa Coupling Effects

Custodial symmetry broken by non-zero g′ and Yukawa couplings.

SO(5)⊗ SU(2)L
g′ 6=0−−−−→ O(3)⊗ O(2)⊗ SU(2)L ∼ O(3)⊗ U(1)Y ⊗ SU(2)L

Yukawa−−−−→ O(2)⊗ U(1)Y ⊗ SU(2)L ∼ U(1)PQ ⊗ U(1)Y ⊗ SU(2)L

〈Φ1,2〉6=0
−−−−−−→ U(1)em .

To study their effects on the Higgs spectrum in a technically natural manner, assume
SO(5)-symmetry scale µX � v , and use RG running down to the weak scale.
Does NOT yield a viable Higgs spectrum.
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g′ and Yukawa Coupling Effects

Custodial symmetry broken by non-zero g′ and Yukawa couplings.

SO(5)⊗ SU(2)L
g′ 6=0−−−−→ O(3)⊗ O(2)⊗ SU(2)L ∼ O(3)⊗ U(1)Y ⊗ SU(2)L

Yukawa−−−−→ O(2)⊗ U(1)Y ⊗ SU(2)L ∼ U(1)PQ ⊗ U(1)Y ⊗ SU(2)L

〈Φ1,2〉6=0
−−−−−−→ U(1)em .

Include soft SO(5)-breaking effects by Re(m2
12) 6= 0.

Does yield a viable Higgs spectrum.
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Soft Breaking Effects

In the SO(5) limit for quartic couplings, but with Re(m2
12) 6= 0,

M2
S = M2

a

(
s2
β −sβcβ

−sβcβ c2
β

)
+ 2λ2v2

(
c2
β sβcβ

sβcβ s2
β

)

=

(
cβ −sβ
sβ cβ

)(
2λ2v2 0

0 M2
a

)(
cβ sβ
−sβ cβ

)
≡ OM̂2

SOT .

M2
H = 2λ2v2 , and M2

h = M2
a = M2

h± =
Re(m2

12)

sβcβ
.

Natural alignment, irrespective of other 2HDM parameters.

In the general 2HDM, M̂2
S =

(
Â Ĉ
Ĉ B̂

)
with

Â = 2v2
[
c4
βλ1 + s2

βc2
βλ345 + s4

βλ2 + 2sβcβ
(

c2
βλ6 + s2

βλ7

)]
,

B̂ = M2
a + λ5v2 + 2v2

[
s2
βc2
β

(
λ1 + λ2 − λ345

)
− sβcβ

(
c2
β − s2

β

)(
λ6 − λ7

)]
,

Ĉ = v2
[
s3
βcβ

(
2λ2 − λ345

)
− c3

βsβ
(

2λ1 − λ345

)
+ c2

β

(
1− 4s2

β

)
λ6 + s2

β

(
4c2
β − 1

)
λ7

]
Alignment iff Ĉ = 0.
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βλ2 + 2sβcβ
(

c2
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βλ7
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B̂ = M2
a + λ5v2 + 2v2

[
s2
βc2
β

(
λ1 + λ2 − λ345

)
− sβcβ

(
c2
β − s2

β
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λ6 − λ7
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Ĉ = v2
[
s3
βcβ

(
2λ2 − λ345

)
− c3

βsβ
(

2λ1 − λ345

)
+ c2

β

(
1− 4s2

β

)
λ6 + s2

β

(
4c2
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)
λ7

]
Alignment iff Ĉ = 0.



Natural Alignment Condition

t4
βλ7 − t3

β(2λ2 − λ345) + 3t2
β(λ6 − λ7) + tβ(2λ1 − λ345)− λ6 = 0 .

Requires λ6 = λ7 = 0, and tan2 β =
2λ1−λ345
2λ2−λ345

> 0 .
Alignment without decoupling, i.e. independent of Ma.
(similar to [Gunion, Haber ’03; Carena, Low, Shah, Wagner ’13])
CP-even Higgs masses are given by

M2
H = 2v2(λ1c4

β + λ345s2
βc2
β + λ2s4

β) ≡ λSMv2 ,

M2
h = M2

a + λ5v2 + 2v2s2
βc2
β(λ1 + λ2 − λ345) .

In the decoupling limit Ma � v , can use a seesaw-like approximation to obtain

M2
H ' λSMv2 −

v4s2
βc2
β

M2
a + λ5v2

[
s2
β

(
2λ2 − λ345

)
− c2

β

(
2λ1 − λ345

)]2
,

M2
h ' M2

a + λ5v2 � v2 .

Includes the possibility of decoupling via a large λ5. [Ginzburg, Krawczyk ’04]

Apart from SO(5), only two other symmetries can lead to natural alignment:

(i) O(3)⊗ O(2) : µ2
1 = µ2

2 , λ1 = λ2 = λ34/2 ,

(ii) Z2 ⊗ [O(2)]2 : µ2
1 = µ2

2 , λ1 = λ2 = λ345/2 .



Theoretical and Experimental Constraints

Stability of the potential: [Branco et al ’12]

λ1,2 > 0, λ3 +
√
λ1λ2 > 0, λ3 + λ4 +

√
λ1λ2 − Re(λ5) > 0.

Perturbativity of the Higgs self-couplings: ‖Sφφ→φφ‖ < 1
8 .

Electroweak precision observables.
LHC signal strengths of the light CP-even Higgs boson.
Limits on heavy CP-even scalar from H → WW ,ZZ , ττ searches.
Flavor observables such as Bs mixing and B → Xsγ.
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[Baglio, Eberhardt, Nierste, Wiebusch ’13]



Misalignment Predictions
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Lower Limit on Charged Higgs Mass
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Lower and Upper Limits on Charged Higgs Mass
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Implications for LHC
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Conclusions

We analyzed the scalar potential of the Maximally Symmetric 2HDM.
SM Alignment limit can be realized naturally, independently of the heavy Higgs spectrum
and the value of tanβ.
Deviations from the alignment limit are induced by RGE effects due to the hypercharge
gauge coupling g′ and third generation Yukawa couplings, which also break the custodial
symmetry of the theory.
In addition, non-zero soft SO(5)-breaking mass parameter is required to yield a viable
Higgs spectrum consistent with the existing experimental constraints.
Using the current Higgs signal strength data from the LHC, which disfavour large
deviations from the alignment limit, we derive important constraints on the MS-2HDM
parameter space.
Predict lower limits on the heavy Higgs spectrum, which prevail the present limits in a wide
range of parameter space.
Depending on the scale where the maximal symmetry could be realized in nature, we also
obtain an upper limit on the heavy Higgs masses in certain cases, which could be
completely probed during the run-II phase of the LHC.
We propose a new collider signal with four top quarks in the final state, which can become
a valuable observational tool to directly probe the heavy Higgs sector of the 2HDM in the
SM alignment limit.

THANK YOU.
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2HDM Potential in Bilinear Space

V = −
1
2

MARA +
1
4

LABRARB ,

where

MA =
(
µ2

1 + µ2
2, 2Re(m2

12), −2Im(m2
12), µ2

1 − µ
2
2, 0, 0

)
,

RA =



Φ†1Φ1 + Φ†2Φ2

Φ†1Φ2 + Φ†2Φ1

−i(Φ†1Φ2 − Φ†2Φ1)

Φ†1Φ1 − Φ†2Φ2

ΦT
1 iσ2Φ2 − Φ†2 iσ2Φ∗1

−i(ΦT
1 iσ2Φ2 + Φ†2 iσ2Φ∗1 )


,

LA
B =



λ1 + λ2 + λ3 Re(λ6 + λ7) −Im(λ6 + λ7) λ1 − λ2 0 0
Re(λ6 + λ7) λ4 + Re(λ5) −Im(λ5) Re(λ6 − λ7) 0 0
−Im(λ6 + λ7) −Im(λ5) λ4 − Re(λ5) −Im(λ6 − λ7) 0 0
λ1 − λ2 Re(λ6 − λ7) −Im(λ6 − λ7) λ1 + λ2 − λ3 0 0

0 0 0 0 0 0
0 0 0 0 0 0





Symmetry Generators
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Table 2
Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the U(1)Y -invariant 2HDM potential. For each symmetry, the
maximally broken SO(5) generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the
Goldstone theorem.

No. Symmetry Generators
T a ↔ K a

Discrete group
elements

Maximally broken
SO(5) generators

Number of
pseudo-Goldstone bosons

1 Z2 × O(2) T 0 DCP1 – 0
2 (Z2)2 × SO(2) T 0 D Z2 – 0
3 (Z2)3 × O(2) T 0 DCP2 – 0
4 O(2) × O(2) T 3, T 0 – T 3 1 (a)
5 Z2 × [O(2)]2 T 2, T 0 DCP1 T 2 1 (h)
6 O(3) × O(2) T 1,2,3, T 0 – T 1,2 2 (h,a)
7 SO(3) T 0,4,6 – T 4,6 2 (h±)
8 Z2 × O(3) T 0,4,6 D Z2 · DCP2 T 4,6 2 (h±)
9 (Z2)2 × SO(3) T 0,5,7 DCP1 · DCP2 T 5,7 2 (h±)

10 O(2) × O(3) T 3, T 0,8,9 – T 3 1 (a)
11 SO(4) T 0,3,4,5,6,7 – T 3,5,7 3 (a,h±)
12 Z2 × O(4) T 0,3,4,5,6,7 D Z2 · DCP2 T 3,5,7 3 (a,h±)
13 SO(5) T 0,1,2,...,9 – T 1,2,8,9 4 (h,a,h±)

where θa ∈ [0,2π) are the group parameters of the SUM(4)/Z2
group.

It is interesting to determine the SO(5) generators related to a
particular accidental symmetry that remain (un)broken after elec-
troweak symmetry breaking. In this way, we can find the num-
ber of pseudo-Goldstone bosons predicted, according to the Gold-
stone theorem. In the 5-dimensional bilinear R I -space, a neutral
vacuum solution in its standard basis implies that φT

1 iσ 2φ2 = 0,
i.e. R4 = R5 = 0, or equivalently RµRµ = 0. Alternatively, a stan-
dard basis for writing down a neutral vacuum solution R I

0 may be

defined through the relation: T 0
I J R J

0 = 0. Consequently, an SO(5)

generator T a remains unbroken after electroweak symmetry break-
ing, if it satisfies the condition:

T a
I J R J

0 = 0. (20)

By definition, the hypercharge generator T 0 will always be unbro-
ken when acting on a neutral vacuum solution R I

0. This should not
be too surprising, as T 0 is equivalent to the electromagnetic gener-
ator, given by Q em = σ 0 ⊗ σ 0 ⊗ (σ 3/2) + K 0 in the Φ-space, once
we notice that the weak isospin generator σ 0 ⊗ σ 0 ⊗ (σ 3/2) has
no effect on the SU(2)L gauge-invariant 5-vector R I .

In Table 2, we exhibit the SO(5) (SUM(4)) symmetry generators
T a (K a) [cf. (14), (10)] and the discrete group elements [cf. (17)]
generating the 13 accidental symmetries of the U(1)Y -invariant
2HDM potential. We also display the maximally broken SO(5) gen-
erators compatible with a neutral vacuum for each symmetry,
along with the maximal number of pseudo-Goldstone bosons that
result from the Goldstone theorem. The pseudo-Goldstone bosons
associated with the maximal breaking of each symmetry have also
been identified in the last column of Table 2, using the explicit
analytic results presented in [25] for the minimization conditions
and the scalar mass matrices. Thus, we find that as well as CP1 ≡
Z2 × O(2), the symmetries SO(3) and Z2 × O(3) can maximally
break spontaneously via a CP non-invariant vacuum. Unlike in the
CP1 case, spontaneous breakdown of these two new symmetries
may lead to two pseudo-Goldstone bosons, i.e. the two charged
Higgs bosons h± . For the symmetry (Z2)

2 × SO(3), the maximal
breaking pattern leading to the two charged pseudo-Goldstone
bosons h± is obtained, when the restriction λ4 = −Reλ5 > 0 is
taken from Table 1.

On the other hand, it is worth reiterating that the symme-
try SO(5) relates to the larger O(8) group [6] in the real field
space, once the latter gets further restricted such that the SU(2)L

gauge canonical form of the Φ kinetic term is maintained. In the
5-dimensional bilinear R I -space, SO(5) can break down to SO(4),
giving rise to four pseudo-Goldstone bosons: one of the two CP-
even Higgs bosons denoted as h, the CP-odd scalar a and the two
charged Higgs bosons h± . This is consistent with breaking pat-
tern of O(8) → O(7) in the Φ-space, leading to seven Goldstone
bosons, which include the three would-be Goldstone bosons asso-
ciated with the longitudinal polarizations of the W ± and Z bosons.
However, one gets a different result within the U (1)Y -restricted
SO(3) bilinear formalism of [16–18,21,24]. The higher HF/CP sym-
metry SO(5) appears as SO(3)HF in the U(1)Y -restricted bilinear
formalism, and according to Table 2 (symmetry No. 6), it may
break down to SO(2), giving rise to only two pseudo-Goldstone
bosons.

Another illustrative example is the symmetry SO(4), which is
equivalent to O(4) ⊗ O(4) [6] in the scalar-field space, where one
of the O(4) factors describes gauge-group transformations. As can
be seen from Table 2, the symmetry SO(4) may break to SO(3),
giving rise to three pseudo-Goldstone bosons: the CP-odd scalar a
and the two charged Higgs bosons h± . Again, this breaking sce-
nario cannot be clearly distinguished from a scenario based on
CP3 ≡ Z2 × [O(2)]2, which leads to an erroneous breaking pattern
predicting only one pseudo-Goldstone boson, within the U(1)Y -
constrained SO(3) bilinear formalism.

It is interesting to remark that the Majorana-constrained uni-
tary group SUM(4) in (15) contains the custodial symmetry
group SU(2)C [26] (for recent studies, see [27,23]). In the Φ-
basis, there are three independent realizations of SU(2)C induced
by the generators: (i) K 0,4,6; (ii) K 0,5,7; (iii) K 0,8,9. As stated in
Table 2, the HF/CP accidental symmetries 7–13 contain at least
one of the three generator sets (i), (ii) and (iii), and are therefore
custodial symmetric. As a consequence of the custodial symme-
try, the W ± and Z bosons are degenerate in mass and Veltman’s
ρ-parameter [28] retains its tree-level value ρ = 1, to all orders in
perturbation theory. As happens in the SM, however, the U(1)Y hy-
percharge and Yukawa interactions violate explicitly the custodial
symmetry in the 2HDM.

In summary, we have presented the symmetry generators K a

in (10) that describe the 13 accidental symmetries [1] of the
U(1)Y -invariant 2HDM potential (1) in the original scalar field
space Φ , by means of (19). We have derived an exact symmetry
relation in (13), which gives the one-to-one correspondence be-
tween the SUM(4) generators K a in the Φ-space and the SO(5)
generators T a in the R I -space. In Table 2, we have explicitly pre-
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Higgs Masses and Couplings in a General 2HDM

In the CP-even sector,(
H
h

)
=

(
cosα sinα
− sinα cosα

)(
ρ1
ρ2

)
.

(
M2

S

)
ij
≡

(
A C
C B

)
= M2

A

(
s2
β −sβcβ

−sβcβ c2
β

)

+ v2
(

2λ1c2
β + Re(λ5)s2

β + 2Re(λ6)sβcβ λ34sβcβ + Re(λ6)c2
β + Re(λ7)s2

β

λ34sβcβ + Re(λ6)c2
β + Re(λ7)s2

β 2λ2s2
β + Re(λ5)c2

β + 2Re(λ7)sβcβ

)

with λ34 = λ3 + λ4 and tan 2α = 2C
A−B . [Pilaftsis, Wagner ’99]

The SM Higgs boson is given by

HSM = ρ1 cosβ + ρ2 sinβ = H cos(β − α) + h sin(β − α) .

With respect to the SM Higgs couplings HSMVV (V = W±,Z ),

ghVV = sin(β − α) , gHVV = cos(β − α) .

Unitarity constraints uniquely fix other V -Higgs-Higgs couplings [Gunion, Haber, Kane, Dawson ’90]

ghaZ =
g

2 cos θw
cos(β − α) , gHaZ =

g
2 cos θw

sin(β − α) ,

gh+hW− =
g
2

cos(β − α) , gh+HW− =
g
2

sin(β − α) .



Higgs Masses and Couplings in a General 2HDM

Consider normal vacua with real vevs v1,2, where
√

v2
1 + v2

2 = vSM and tanβ = v2/v1.

Eight real scalar fields: φj =

(
φ+

j
1√
2

(vj + ρj + iηj )

)
(with j = 1, 2).

After EWSB, three Goldstone bosons (G±,G0), which are eaten by W± and Z , and five
physical scalar fields: two CP-even (h,H), one CP-odd (a) and two charged (h±).
In the charged sector,(

G±

h±

)
=

(
cosβ sinβ
− sinβ cosβ

)(
φ±1
φ±2

)
.

with M2
h± =

1
sβcβ

[
Re(m2

12)−
1
2

(
{λ4 + Re(λ5)} sβcβ + Re(λ6)c2

β + Re(λ7)s2
β

)]
.

In the CP-odd sector,(
G0

a

)
=

(
cosβ sinβ
− sinβ cosβ

)(
η1
η2

)
.

with M2
a =

1
sβcβ

[
Re(m2

12)− v2
(

Re(λ5)sβcβ +
1
2

{
Re(λ6)c2

β + Re(λ7)s2
β

})]
= M2

h± +
1
2

[λ4 − Re(λ5)] v2.



Quark Yukawa Couplings

By convention, choose hu
1 = 0. For Type-I (Type-II) 2HDM, hd

1 (hd
2 ) = 0.

Quark yukawa couplings w.r.t. the SM are given by

Coupling Type-I Type-II
ght t̄ cosα/ sinβ cosα/ sinβ
ghbb̄ cosα/ sinβ − sinα/ cosβ
gHtt̄ sinα/ sinβ sinα/ sinβ
gHbb̄ sinα/ sinβ cosα/ cosβ
gat t̄ cotβ cotβ
gabb̄ − cotβ tanβ
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Yukawa Coupling Effects
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