Alignment in multi-Higgs doublet models through family symmetries

Ivo de Medeiros Varzielas

University of Southampton

Lisbon, 2014/09/03

Acknowledgments

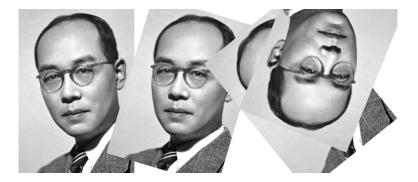
This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no PIEF-GA-2012-327195 SIFT

Multi-Higgs

Hideki Yukawa ("maiden" name, Hideki Ogawa) We might be saying "Ogawa couplings" today...

Multi-Higgs models and Yukawa

In MHDM, for each family (u, d, l, ν) there is a Yukawa for each Higgs.


$$\mathcal{L}_{u} = \sum_{A=1}^{N} \left(Y_{A}^{u} \right)^{ij} H_{A}^{\dagger} Q_{i} u_{j}^{c} + h.c.$$
(1)

The $Y_A^{u,d,l,\nu}$ are in principle unrelated... Not simultaneously diagonal:

would lead to FCNC which have not been observed.

Multi-Ogawa

Yukawa alignment

Solution: Yukawa alignment, no FCNC: A. Pich and P. Tuzon, Phys.Rev. D80 (2009)

Alignment can not be preserved by renormalisation (unless additional symmetries are applied): P. Ferreira, L. Lavoura, and J. P. Silva, Phys.Lett. B688 (2010)

But deviations from running may be sufficiently small (for current bounds):

C. B. Braeuninger, A. Ibarra, and C. Simonetto, Phys.Lett. B692 (2010)

Exact alignment from family symmetries

IdMV, Phys.Lett. B701 (2011)

- Single FS invariant combination (for each family)
- All *H_A* trivial singlets under the FS

See also different approach: H. Serôdio, Phys.Lett. B700 (2011)

Exact alignment example

FS: $SU(3)_{[]} \otimes SU(3)_{()}$

$$\mathcal{L}_{u} = \sum_{A=1}^{N} c_{A}^{u} \mathcal{H}_{A}^{\dagger} [\phi_{Q}^{i} Q_{i}] (\phi_{u}^{j} u_{j}^{c}) + h.c.$$
⁽²⁾

All $(Y_A^u)^{ij} \propto \langle \phi_Q^i \phi_u^j \rangle$: exact alignment Note: single SU(3) has also $\sum_{A=1}^N c_A'^u H_A^{\dagger}(\phi_u^i Q_i)(\phi_Q^j u_i^c)...$

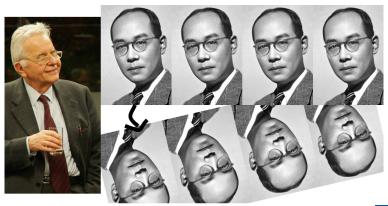
Alignment

Up, Down

$$SU(3)_{[]}\otimes SU(3)_{()}\otimes C_2$$

$$\mathcal{L}_{Q} = \sum_{A=1}^{N} [\phi_{Q}^{i} Q_{i}] \left(c_{A}^{d} H_{A}(\phi_{d}^{j} d_{j}^{c}) + c_{A}^{u} H_{A}^{\dagger}(\phi_{u}^{j} u_{j}^{c}) \right) + h.c.$$

With e.g. ϕ_d , d^c as -1 under the C_2 (prevents ϕ_u , ϕ_d swapping places)



Up and down alignment

Ivo de Medeiros Varzielas AMHDM through FSs

Up and down alignment

		и ^с	dc	L	ec	ϕ_{Q}	ϕ_{u}	ϕ_{d}	ϕ_L	$\phi_{\boldsymbol{e}}$
SU(3) _[] SU(3) ₍₎	3	1	1	3	1	Ī	1	1	Ī	1
$SU(3)_{()}^{"}$	1	3	3	1	3	1	Ī	Ī	1	Ī
<i>C</i> ₇	1	1	α^{3}	α	α^4	α	α^{6}	α^{3}	α^2	1

Table : $SU(3)_{[]} \otimes SU(3)_{()} \otimes C_7$ assignments. $\alpha^7 = 1$.

All families

	Q	и ^с	dc	L	ec	ν^{c}	ϕ_{Q}	ϕ_{u}	$\phi_{\it d}$	ϕ_L	$\phi_{\pmb{e}}$	$\phi_{ u}$
SU(3) _[] SU(3) ₍₎	3	1	1	3	1	1	Ī	1	1	3	1	1
$SU(3)_{()}$	1	3	3	1	3	3	1	Ī	Ī	1	Ī	3
<i>C</i> ₁₀	1	1	α^{3}	α	α^4	α^7	α	α^{9}	α^{6}	α^2	α^{3}	1

Table : $SU(3)_{[]} \otimes SU(3)_{()} \otimes C_{10}$ assignments. $\alpha^{10} = 1$.

- All the mass matrices in the above example are rank 1 (this is a feature of using $SU(3)_{[]} \otimes SU(3)_{()}$).
- Can use discrete subgroups (example in paper). IdMV, Phys.Lett. B701 (2011)

Approximate alignment

Abandon single FS invariant combination Keep leading order rank 1 Yukawa (as observed): approximate alignment!

Conclusion

Conclusions

- Exact alignment from single FSIC + Family singlet H
- Single FSIC: too restrictive for realistic Yukawas
- FS + LO rank 1 provides approximate alignment

