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Motivation

e Standard Model flavor puzzle.
e Flavor and CP are intertwined.

- CP violation established in quark sector,
consistent with SM (CKM).
- open question: CP violation in lepton sector ?
- open question: Why § < 10719 ?
Why CP violation only in FV processes?

e The theory of flavor should also be the theory of CPV.

e Plan: be humble, try to understand origin of CPV
(“only” one parameter).

e The 3HDM with A(27) symmetry has very interesting CP
properties.
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Outline

The model: 3HDM with A(27)
Spontaneous geometrical CP violation
What is an outer automorphism?

Outer automorphisms in 3HDM with A(54)

Summary
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The model
3HDM model with [A(27) =] A(54) symmetry.

(This is the original “geometrical T violation” model of Branco, Gerard, and Grimus.)  [Branco, Gerard, Grimus, '83]
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The model
3HDM model with [A(27) =] A(54) symmetry.
(This is the original “geometrical T violation” model of Branco, Gerard, and Grimus.)  [Branco, Gerard, Grimus, '83]
Model:
® Triplet H := (H1, H2, H3) of Higgs doublets H;,
each transforming as (1, 2)1/2 under Ggn.
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The model
3HDM model with [A(27) =] A(54) symmetry.
(This is the original “geometrical T violation” model of Branco, Gerard, and Grimus.)  [Branco, Gerard, Grimus, '83]
Model:

® Triplet H := (H1, H2, H3) of Higgs doublets H;,
each transforming as (1, 2)1/2 under Ggn.

® Three—Higgs potential invariant under A(54), generated by

0 1 0 1 0 0 1 0 0
A= |0 0 1|,B=(0 w 0],c=+|0 0 1
1 0 0 0 0 w? 0 1 0
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The model
3HDM model with [A(27) =] A(54) symmetry.
(This is the original “geometrical T violation” model of Branco, Gerard, and Grimus.)  [Branco, Gerard, Grimus, '83]
Model:
® Triplet H := (H1, H2, H3) of Higgs doublets H;,
each transforming as (1, 2)1/2 under Ggn.

® Three—Higgs potential invariant under A(54), generated by

0 1 0 1 0 0 1 0 0
A= |0 0 1|,B=(0 w 0],c=+|0 0 1
1 0 0 0 0 w? 0 1 0
® “Traditional” way to write the potential: (4,=1,.,3; i £ 7)
2
V= —m2HH, + )\ (HJHI) NP (HjH,) (H]TH]-)+,\3 (HJH]-) (H;Hl)

+¢ 9\ [(H]H2) (H]Hs) + oylic] + hec.
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The model
3HDM model with [A(27) =] A(54) symmetry.

(This is the original “geometrical T violation” model of Branco, Gerard, and Grimus.)  [Branco, Gerard, Grimus, '83]

Model:
® Triplet H := (H1, H2, H3) of Higgs doublets H;,
each transforming as (1, 2), ;, under Gs.
® Three—Higgs potential invariant under A(54), generated by

0 1 0 1 0 0 1 0 0
A= 1|0 0 1|,B=(0 w 0], Cc=+(0 0 1
1 0 0 0 0 w? 0 1 0
e “Traditional” way to write the potential: (5,5 =1,.,3; i £ j)
2
Vo= —m?HlH+ 5 (HIH) 20 (B[ ) (H]H;) + s (H]H;) (H] )

+¢ 9\ [(H]H2) (H]Hs) + oylic] +hec. .

® Notation:
_ 0 A
(0| H; |0) = (H;) := (viei%) for i=1,.,3
(H) = (Vlei“‘jl,vzei‘”,vgei”ﬂT.
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The model
3HDM model with [A(27) =] A(54) symmetry.
(This is the original “geometrical T violation” model of Branco, Gerard, and Grimus.)  [Branco, Gerard, Grimus, '83]
Model:

® Triplet H := (H1, H2, H3) of Higgs doublets H;,
each transforming as (1, 2)1/2 under Gign.

® Three—Higgs potential invariant under A(54), generated by
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e “Traditional” way to write the potential: (5,5 =1,.,3; i # J)
2
Vo= —m?HIHi+ 5 (HIH) + 20 (B H:) (HIH;) + s (H]H;) (H] )
+¢' O [(H]H2) (H]Hs) + eylic] +hec.
e Potential gives rise to four classes of VEVs: v; = ——" (.= ¢271/3
2(ao + a;)
1 w w? V3
(Hi=v (1] (Hu=wv (1|, (Hm=uv|1] ,(Hw=uvs| 0
1 1 1 0

Andreas Trautner, TUM 3HDM from an outer automorphism perspective, 6.9.16 4/12



The model
3HDM model with [A(27) =] A(54) symmetry.
(This is the original “geometrical T violation” model of Branco, Gerard, and Grimus.)  [Branco, Gerard, Grimus, '83]
Model:
® Triplet H := (H1, H2, H3) of Higgs doublets H;,
each transforming as (1, 2)1/2 under Ggn.

® Three—Higgs potential invariant under A(54), generated by

0 1 0 1 0 0 1 0 0
A= |0 0 1|,B=(0 w 0],c=+|0 0 1
1 0 0 0 0 w? 0 1 0
® “Traditional” way to write the potential: (4,=1,.,3; i £ 7)
2
V= —m2HH, + )\ (HJHI) NP (HjH,) (H]TH]-)+,\3 (HJH]-) (H;Hl)
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e Potential gives rise to four classes of VEVs: v; = ——— ;= &271/3
2(ao + a;)
1 w w2 V3
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1 1 1 0
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Spontaneous geometrical CP violation

If a CP transformation H — UH* is a symmetry of the Lagrangian,

then

(H) # U(H)"
must hold in order for this CP transformation to be spontaneously
violated. [Branco et al. '83]

e For example: U = 1 is a CP symmetry if Q =0, 7.
It is broken by VEVs of type 1T and III.
~ there appears a physical CPV phase: w = e

e All possible forms of U are given by solutions to the “consistency
condition” (for various u’s)

2mi/3

Ups-(9)UT = pa(u(g)).

[Holthausen, Lindner, Schmidt, '13; Feruglio, Hagedorn, Ziegler, '13]

= Actually: CP transformations are special outer automorphism
transformations of all present symmetries (in particular A (54)).

Andreas Trautner, TUM 3HDM from an outer automorphism perspective, 6.9.16
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What is an outer automorphism?

Example: Z3; symmetry, generated by a® = id.

] ) Zs ‘ id a a2
e All elements of Z; : {id, a, a“}. 1 T 9 3
e Outer automorphism group (“Out”) 1 |1 w WP
of Zs: generated by 17 |1 wQ( w -

u(a):a—a’ (think:uau™' = a?
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What is an outer automorphism?

Example: Z3; symmetry, generated by a® = id.

: B Zs | id ava?
e All elements of Zj : {id, at¥a“}. 1 T 9 3
e Outer automorphism group (“Out”) 1 |1 w WP
of Z3: generated by (171 w0 w »
(w = c 2 )

u(a):a—a’ (think:uau™' = a?

Abstract: Out is a reshuffling of symmetry elements. (Out := Aut/inn)
A “symmetry of the symmetry”.
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What is an outer automorphism?

Example: Z3; symmetry, generated by a® = id.

: B Zs | id ava?
e All elements of Zj : {id, at¥a“}. 1 T 9 3
e Outer automorphism group (“Out”) (1 w WP
of Z3: generated by (171 w0 w »
(w = c 2 )

u(a):a—a’ (think:uau™' = a?

Abstract: Out is a reshuffling of symmetry elements. (Out := Aut/inn)
A “symmetry of the symmetry”.

Concrete: Out is a mapping between representations r — r’.
The transformation matrix U is given by the solution to

Up(g)U ™" = pr(u(g)), VgeG.

(Note: »’ = r* is a special case of this). [Fallbacher, AT, '15]
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Outer automorphisms of A(54)

Outer automorphisms of a discrete group are symmetries of the

character table.
— — —
A(54) | Cla O3 C3 C3e C3q Cy Cea  Cg  C3e  Csy
1o 1 T 1 1 T 1 1 1
1 1 11 1 o= =i =il 1 1
2; 2 2 -1 -1 -1 0 2 2
2; 2 -1 2 -1 -1 0 0 0 2 2
23 2 -1 -1 2 -1 0 0 2 2
2 » =1 =i =i 2 0 0 0 2 2
t 3 3 0 0 0 0 1 W w o 3w 3w?
3 3 0 0 0 0 1 w w? 3w? 3w
E 32 3 0 0 0 0 -1 —-w? —w 3w 3w?
3, 3 0 0 0 0 -1 -—w —w 3w 3w
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Outer automorphisms of A(54)

Outer automorphisms of a discrete group are symmetries of the

character table.
— —
A(4) | Cla C3a C3p C3c C3q¢ Coa Coa Cep  C3e  Cay
1o 1 T 1 1 T 1 1 1 1 1
1 1 11 1 o= =i =il 1 1
2; 2 2 -1 -1 -1 0 0 0 2 2
2; 2 -1 2 -1 -1 0 0 0 2 2
23 2 -1 -1 2 -1 0 0 0 2 2
2 » =1 =i =i 2 0 0 0 2 2
3 3 0 0 0 0 1 W w o 3w 3w?
{ 3, 3 0 0 0 0 1 w o 3w 3w
E 32 3 0 0 0 0 -1 —w? —w 3w 3w?
3, 3 0 0 0 0 -1 -—w —w 3w 3w
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Outer automorphisms of A(54)

Outer automorphisms of a discrete group are symmetries of the

character table.
— —

A(54) | Cla O3 C3 C3e C3q Cy Cea  Cg  C3e  Csy
1 1 I 1 1 I 1 1 1 1 1
1, 1 101 1 i =1 =1 =i 1 1
2 2 2 -1 -1 -1 0 0 0 2 2
2, R =1 B =1 =1 @ 0 0 2 2
23 2 -1 -1 2 -1 0 0 0 2 2
2, 2 -1 -1 -1 2 0 0 0 2 2 Out(A(54)) =~ Sy

T 3, 3 0o 0 0 0 1 W w o 3w 3w?
3 3 0 0 0 0 1 w o 3w 3w

t 3, 3 0 0 0 0 -1 —w? -w 3w 3w
3, 3 0 0 0 0 -1 -—w —w 3w 3w

e But: not all outer automorphisms are CP transformations!
[Chen, Fallbacher, Mahanthappa, Ratz, AT, '14]

[Fallbacher, AT, "15]

Out:r; — 7;
CP:»r» — r*
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Outer automorphisms in A(54) 3HDM

Note: All quartic interactions arise from

[(EloHs) © (HloHs)| |

0

sithervia [(3©3),) ® B©3), | ovia [B®3), ® (3a3),]
0 * 1o
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Outer automorphisms in A(54) 3HDM

Note: All quartic interactions arise from

[(EloHs) © (HloHs)| |

0

eithervia  [(3©3), ® (3®3), | orvia [B®3), © (3®3), |
0 * 1o

~ A more “natural” way to write the potential:

+a1 L(H', H) +as L(H, H)
V(H,@) = —m?HIH; +aoIo(H', H)
+a3 I3(H',H) +a4 Is(HY, H) |

with @ = (ao,al,ag,ag,cm) & R,
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Outer automorphisms in A(54) 3HDM

Note: All quartic interactions arise from

(e Hs) © (H@Hs)],

either via [(§®3)lo®(§®3)10]10 orvia [(3®3), ® (3©3), ]

1o
~ A more “natural” way to write the potential:

+a1 L(H', H) +as L(H, H)
V(H,@) = —m?HIH; +aoIo(H', H)

a3 I3(HT,H) +a4 L4(HT,H) ,

with @ = (ao,al,ag,ag,cm) & R,

Large outer automorphism group:

Out(A(54)) =S4, maps H — UH (even) or H — UH™ (odd).
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Outer automorphisms in A(54) 3HDM

Note: All quartic interactions arise from

[(EloHs) © (HloHs)| |

0

eithervia  [(3©3), ® (3®3), | orvia [B®3), © (3®3), |
0 * 1o

~ A more “natural” way to write the potential:

>
+ a1 Il(HT,H) + a2 IZ(HTvH)
V(H,@) = —m?H H; +aolo(H', H) Jout X 7
+ a3 I3(HT,H) + aq 14(HT7H) )
>

with @ = (ao,al,ag,ag,cm) & R,

Large outer automorphism group:

Out(A(54)) =S4, maps H — UH (even) or H — UH™ (odd).

Andreas Trautner, TUM 3HDM from an outer automorphism perspective, 6.9.16 8/12



Outer automorphisms in A(54) 3HDM

Outer automorphism group applied to the VEVs:

Out(A(54)) =S4, (H) — U(H) (even) or (H) — U(H)™* (odd).

Four classes of VEVs: wi=e2mi/3 gy =™
v2(ao + a;)
(H)1 = vi(1,1,1), (H)n = v2(w,1,1),
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Outer automorphisms in A(54) 3HDM

Outer automorphism group applied to the VEVs:
Out(A(54)) =S4, (H) — U(H) (even) or (H) — U(H)™* (odd).

g m
— e27'r 1/3,

Vi v/2(ag +a,i),

Four classes of VEVs: w:
(H)1 = v1(1,1,1), «— (H)g = v2(w,1,1),

fou  Ng 1

(Hym = v3(w? 1,1), < (H)rv = v4(v/3,0,0).
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Outer automorphisms in A(54) 3HDM

Outer automorphism group applied to the VEVs:
Out(A(54)) =S4, (H) — U(H) (even) or (H) — U(H)™* (odd).

g m
_ e27‘rl/3, J—

Vi = —F/—
v/ 2(ap + a;)

Four classes of VEVs: w:

<H>1 = vl(l,l,l), “—> <H>11 = ’Uz(w,l,l),

fou  Ng 1

(Hym = v3(w? 1,1), < (H)rv = v4(v/3,0,0).

Insights:
® Couplings {a1,az2,as,as} form a 4-plet under S4.
= physically degenerate parameter space (a1, a2,a3,a4) = a1 < a2 < az < aa.
® VEVs @ := ((H)1, (H)11, (H)111, (H)1v) form a 4-plet under Sy.
=- VEVs are calculable from a homogeneous linear equation M ® = 0.
® This completely fixes the directions, and relative (physical) phases of the VEVs.

® VEVs break to ismorphic subgroups — each VEV encodes the same physics!
[Fallbacher, AT, '15]
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Outer automorphisms in A(54) 3HDM

This “derived” parametrization simplifies the understanding of CP and symmetry
enhancement.

CP—-odd basis invariant:

16 ENS 9\/5((11 = a2)(a1 — a3)(a1 = a4)(a2 = ag)(ag — a4)(a3 = a4) . [Nishi]
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Outer automorphisms in A(54) 3HDM

This “derived” parametrization simplifies the understanding of CP and symmetry
enhancement.

CP—-odd basis invariant:

16 ENS 9\/5((11 = a2)(a1 — a3)(a1 = a4)(a2 = ag)(ag — a4)(a3 = a4) . [Nishi]

® CP transformation: H — UH™ (odd permutations of 4 elements)
= 6 possible CP trafos (order 2) < 6 ways to set a; = a;.
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Outer automorphisms in A(54) 3HDM

This “derived” parametrization simplifies the understanding of CP and symmetry
enhancement.

CP—-odd basis invariant:

16 ENS 9\/5((11 = ag)(al — a3)(a1 = a4)(a2 = ag)(ag — a4)(a3 = a4) . [Nishi]

® CP transformation: H — UH™* (odd permutations of 4 elements)
= 6 possible CP trafos (order 2) < 6 ways to set a; = a;.
® Spontaneous CP violation:
~ Require order 2 CP as a symmetry. For example:
(a) a1 < a2 < az = a4 = global minimum conserves CP
(b) a3z = a4 < a1 < a2 = global minimum breaks CP
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Outer automorphisms in A(54) 3HDM

This “derived” parametrization simplifies the understanding of CP and symmetry
enhancement.

CP—-odd basis invariant:

16 ENS 9\/5((11 = ag)(al — a3)(a1 = a4)(a2 = ag)(ag — a4)(a3 = a4) . [Nishi]

® CP transformation: H — UH™ (odd permutations of 4 elements)
= 6 possible CP trafos (order 2) < 6 ways to set a; = a;.
® Spontaneous CP violation:

~ Require order 2 CP as a symmetry. For example:
(a) a1 < a2 < az = a4 = global minimum conserves CP
(b) a3z = a4 < a1 < a2 = global minimum breaks CP
® Equating more than one pair of couplings a; leads to enhancement of linear
symmetry of the model.

(We “add” the corresponding Out to the symmetry group).
possible symmetries in agreement with [lvanov, Vdovin, '12;'13]
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Outer automorphisms in A(54) 3HDM

This “derived” parametrization simplifies the understanding of CP and symmetry
enhancement.

CP—-odd basis invariant:

16 ENS 9\/5((11 = a2)(a1 — a3)(a1 = a4)(a2 = ag)(ag — a4)(a3 = a4) . [Nishi]

® CP transformation: H — UH™ (odd permutations of 4 elements)
= 6 possible CP trafos (order 2) < 6 ways to set a; = a;.
® Spontaneous CP violation:

~ Require order 2 CP as a symmetry. For example:
(a) a1 < a2 < az = a4 = global minimum conserves CP
(b) a3z = a4 < a1 < a2 = global minimum breaks CP
® Equating more than one pair of couplings a; leads to enhancement of linear
symmetry of the model.

(We “add” the corresponding Out to the symmetry group).
possible symmetries in agreement with [lvanov, Vdovin, '12;'13]

5(36)
Sy A(54)/Zs
Dy Ay Dg
LN AN A4

Andreas Trautner, TUM 3HDM from an outer automorphism perspective, 6.9.16 10/ 12



Outer automorphisms in general (beyond C,P)

This 3HDM model is an example for some very general statements
on outer automorphisms: [Fallbacher, AT, '15], [AT '16]

e Outs allow to identify physically redundant regions in the
parameter space.
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e Stationary points appear in multiplets of the Out group.
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Outer automorphisms in general (beyond C,P)

This 3HDM model is an example for some very general statements
on outer automorphisms: [Fallbacher, AT, '15], [AT '16]

e Outs allow to identify physically redundant regions in the
parameter space.

e Stationary points appear in multiplets of the Out group.

e Quts can give rise to emergent symmetries.
here: U (H); = (H);, where U € Out(G).
= VEV has higher symmetry than potential.
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Outer automorphisms in general (beyond C,P)

This 3HDM model is an example for some very general statements

on outer automorphisms: [Fallbacher, AT, '15], [AT '16]

e Outs allow to identify physically redundant regions in the
parameter space.

e Stationary points appear in multiplets of the Out group.
e Quts can give rise to emergent symmetries.
here: U (H); = (H);, where U € Out(G).
= VEV has higher symmetry than potential.
e Ultimately, the direction and relative phases of the VEVs are

fixed, because each VEV has to be an eigenvector of some
element of the outer automorphism group.

This is at the heart of (spontaneous) geometrical CP violation.

Andreas Trautner, TUM 3HDM from an outer automorphism perspective, 6.9.16
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Summary

e Outer automorphisms are the non—trivial symmetries of a
symmetry (— think of them as mappings among the irreps).

e CP is a special outer automorphism which maps all present
representations to their complex conjugate representation.

e Quter automorphisms in general:

- Act as permutation of symmetry invariants,

= point to physical degeneracies in the parameter space.
- Can give rise to VEVs with emergent symmetry,

= allow for a very simple calculation of VEVs.

e In the 3HDM with A(54) [A(27)] symmetry, the large outer
automorphism group can be viewed as the reason for
spontaneous geometrical CP violation with calculable phases.
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Thank You!
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Backup slides
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What is an outer automorphism?

@ There are easy ways to depict this...

Continuous groups:

Outer automorphisms of a Lie algebra are the symmetries of
the corresponding Dynkin diagram.

Dno—0------ ﬁ An>1
g D, —
EG n=4

Em—o—i—o—o—o Eg

Lie Group Out Action on reps
SU(N) Zo r — r
SO(8) S3 T — T
Dn>a SO(2N) Z2 r — r’
FEg 7o r — r*
/ /

g all others
EB
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What is an outer automorphism?
Discrete groups:

Outer automorphisms of a discrete group are the symmetries of
the character table.

— s o
A(54) | Cla O34 C3 C3c C3g Cya Csa Cg  C3.  Cyy
1o 1 1 1 1 1 1 1 1 1 1
1; 1 1 1 1 1 —1 —1 -1 1 1
2 2 2 -1 -1 -1 0 0 0 2 2
29 2 -1 2 -1 -1 0 0 0 2 2
23 2 -1 -1 2 -1 0 0 0 2 2
24 2 -1 -1 -1 2 0 0 0 2
c3, 3 0 0 0 0 1 WP ow 3w 3w?
3 3 0 0 0 0 1 w Wt 3w 3w
o 3, 3 0 0 0 0 -1 - —w 3w 3w?
3 3 0 0 0 0o -1 —w —w? 3w? 3w
Group Out Action on reps
V/ V/ r — r
Advantage: A 3 ZQ .
; T =T
The outer automorphisms of any n#6 2
« T . Sn#b‘ / /
(“small”) discrete group can easily be
. A(27) GL(2,3) ri — Tj
found with cap [GAP] .
A(54) Sy ri — Tj
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Cla C3¢ C3 C3c C3q Cs3e  Czp O3y O3 Cs; Cs;

1 3 3 3 3 3 3 3 3 1 1
A7) | e A A B B?> ABA BAB AB A?B®> AB?ABA BA’BAB
1o 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 w? w w? w w? w 1 1
1y 1 1 1 w w? w w? w w? 1 1
13 1 w? w 1 1 w w? w? w 1 1
14 1 w? w w? w 1 1 w w? 1 1
15 1 i w w w? w? w 1 1 1 1
16 1 w w? 1 1 w? w w w? 1 1
17 1 w W WP w w w? 1 1 1 1
1g 1 w w? w w? 1 1 w? w 1 1
3 3 0 0 0 0 0 0 0 0 3w? 3w
3 3 0 0 0 0 0 0 0 0 3w 3w?

Tabelle: Character table of A(27). We define w := ¢**/3. The
conjugacy classes (c.c.) are labeled by the order of their elements
and a letter. The second line gives the cardinality of the
corresponding c.c. and the third line gives a representative of the c.c.
in the presentation specified in the text.
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3HDM dictionary

A more “natural” way to write the potential:

(3o ) © (Hy@Ha)], = ao [(HT@H)l o (#' o), |
& (1), 0 (10m), ] +25 [(a10m), o(er), ]
+% [(HT®H)24®<HT®H) } a {H‘L@H ®<HT®H)22LO.

Relations between the two different bases:

31
3\ = |a1 +w2a2—|—wa3} , and Q = arg(a1 +w?asy +wa3) .

apo+as, 3X2 = 2a0—as4, 3A3 = a1 +az+as,

Bounded-below criterions:
0 < A\ and 0 < A1+ X2z +2X0g cos[2m/3 4+ (2 mod 27/3)]

VS.
0 < ap+tag, for £=1,..,4.
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Invariants spelled out:

Io(H', H) =

L(H', H) =

Iy(HY, H) =

I3(H', H)

o[

L(H' H) =

Andreas Trautner, TUM

Lt t 1)
§<H1H1+H2H2+H3H3> ,

2

H{H,HH, + H{H, H{H, + H{H, H{ H, + h.c.) +

HIHZH;Hl +HIH3H§H1 +H;H3H§H2i| ’

S

2
= [H{H, H B, + B{H, B H, + H Hy H] H,

—HH,H{H, + —H{H, H{H, + —-H{H, H{H,] ,
[(w? B} Hy B Hy + o? B} H, B} H, + 2 HYH, HYH, + hc.) +

HIHy HH, + H]HyHYH, + HYHyH{H,) |

=[S

[(w] Hy B Hy + wB}H, B Hy + wH H, HYH, + he.) +

H{H,H{H, + H{H,H{H, + H{H,HIH,| .
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If there is an outer automorphism transformation v acting consistently
with the symmetries and representations of a model then it is possible
to obtain new VEVs from a known one (®(\)) simply by taking

U@AN—=XN))y, if u:re— Urg,or

:
U@A- NN, if u:rg = Urk. ()

<®(>‘)>new = {

This implies that stationary points of potentials always appear in
complete multiplets of the available group of outer automorphisms.
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