Soft lepton number violation in multi-Higgs doublet Seesaw models

Elke Aeikens

University Vienna
PhD-advisor Prof. Walter Grimus

6th September 2016

Why we care about neutrinos

experimentally unsolved: anomalies...

theoretical unsolved: (all about mass)

- different mixing matrices then quarks
- normal or inverted mass hierarchy
- hierarchy problem: very light mass
- origin of mass: Dirac, Majorana

properties:

- just weak interacting
- no observed right handed partner

Why we care about neutrinos

experimentally unsolved: anomalies...

theoretical unsolved: (all about mass)

- different mixing matrices then quarks
- normal or inverted mass hierarchy
- hierarchy problem: very light mass
- origin of mass: Dirac, Majorana

$$\mathcal{L}_{M} \stackrel{?}{=} \mathcal{L}_{Dirac} + \mathcal{L}_{Majorana}$$
 $\sim \bar{v}_{R} M_{D} v_{L} + \bar{v}_{\alpha} M_{M} v_{\beta} + h.c.$

properties:

- just weak interacting
- no observed right handed partner

Desperately seeking sterile
The three known types of neutrino might be
"balanced out" by a bashful fourth type

First ingredient for a good model

Hierarchy problem:

Neutrino mass is small $m_{\nu} <$ 0.1 eV (exp. limits) Masses are normally $m_{e} \simeq$ 0.5 MeV to $m_{t} \simeq$ 173 GeV

⇒ small Yukawa masses seem to be unnatural

First ingredient for a good model: v_R

Hierarchy problem:

Neutrino mass is small $m_{\nu} <$ 0.1 eV (exp. limits) Masses are normally $m_{e} \simeq$ 0.5 MeV to $m_{t} \simeq$ 173 GeV

⇒ small Yukawa masses seem to be unnatural

Solution: Seesaw mechanism

Majorana neutrinos with right handed partners ν_R

flavour scale: $m_R \gtrsim \text{TeV}$, $m_D \sim m_e$

$$M_{maj} = \begin{pmatrix} 0 & M_D^T \\ M_D & M_R \end{pmatrix}$$

diagonalisation:

mass scale: $m_{\nu} = -m_D^2/m_R \rightarrow m_{\nu}$ small

First ingredient for a good model: v_R

Hierarchy problem:

Neutrino mass is small $m_{\nu} <$ 0.1 eV (exp. limits) Masses are normally $m_{e} \simeq$ 0.5 MeV to $m_{t} \simeq$ 173 GeV

⇒ small Yukawa masses seem to be unnatural

Solution: Seesaw mechanism

Majorana neutrinos with right handed partners ν_R

flavour scale: $m_R \gtrsim \text{TeV}$, $\boxed{m_D \sim m_e}$

$$M_{maj} = \begin{pmatrix} 0 & M_D^T \\ M_D & M_R \end{pmatrix}$$

diagonalisation:

mass scale: $m_{\nu} = -m_D^2/m_R \quad \rightarrow \quad m_{\nu}$ small

Second ingredient for a good model

Problem:

Yukawa couplings $Y \simeq \frac{m}{v}$ small, when m < GeV & VEV: $v \sim 246 \, \text{GeV}$ Other gauge couplings large: e.g. Positron $e = \sqrt{4\pi\alpha} = 0.303$

 \Rightarrow small Y_{ν} seem to be unnatural

Second ingredient for a good model: Φ_k

Problem:

Yukawa couplings Y $\simeq \frac{m}{v}$ small, when $m < \text{GeV \& VEV: } v \sim 246\,\text{GeV}$ Other gauge couplings large: e.g. Positron $e = \sqrt{4\pi\alpha} = 0.303$

 \Rightarrow small Y_{ν} seem to be unnatural

Solution: multi-Higgs doublet model (mHdm)

include n_H Higgs doublets

$$\begin{aligned} & \Phi_k = \begin{pmatrix} \Phi_k^+ \\ \Phi_k^0 \end{pmatrix}, \quad \langle 0 | \Phi_k^0 | 0 \rangle = \frac{v_k}{\sqrt{2}}, \quad \sum_k |v_k|^2 \sim (246 \, \text{GeV})^2, \quad m = \sum_k \frac{v_k}{\sqrt{2}} \, Y_k \\ & \to \text{small } v_k \text{ so that } Y \sim O(e). \end{aligned}$$

e.g.
$$\begin{aligned} & \text{lepton Yukawa couplings} \\ \mathcal{L}_{Y} = -\sum_{k=1}^{n_{H}} \sum_{I,I'=e_{\ell},\mu,\tau} \left[\left(\phi_{k}^{-},\phi_{k}^{0*}\right) \underbrace{Y_{IkII}}_{IR} \overline{I}_{R} + \left(\phi_{k}^{0},-\phi_{k}^{+}\right) \underbrace{Y_{\nu kII}}_{\nu IR} \overline{\nu}_{IR} \right] \begin{pmatrix} \nu_{I'L} \\ I'_{L} \end{pmatrix} + \text{H.c.} \end{aligned}$$

Second ingredient for a good model: Φ_k

Problem:

Yukawa couplings Y $\simeq \frac{m}{v}$ small, when $m < \text{GeV & VEV: } v \sim 246\,\text{GeV}$ Other gauge couplings large: e.g. Positron $e = \sqrt{4\pi\alpha} = 0.303$

 \Rightarrow small Y_{ν} seem to be unnatural

Solution: multi-Higgs doublet model (mHdm)

include n_H Higgs doublets

$$\Phi_k = \begin{pmatrix} \Phi_k^+ \\ \Phi_k^0 \end{pmatrix}, \quad \langle 0 | \Phi_k^0 | 0 \rangle = \frac{v_k}{\sqrt{2}}, \quad \sum_k |v_k|^2 \sim (246 \, \text{GeV})^2, \quad m = \sum_k \frac{v_k}{\sqrt{2}} Y_k$$

 \rightarrow small v_k so that $Y \sim O(e)$.

e.g. lepton Yukawa

interesting effect:
observable processes!

$$\mathcal{L}_{Y} = -\sum_{k=1}^{n_{H}} \sum_{L'=\mathbf{e},\mu,\tau} \left[\left(\phi_{k}^{-}, \phi_{k}^{0*} \right) \underbrace{Y_{lkll}}_{I_{R}} \bar{I}_{R} + \left(\phi_{k}^{0}, -\phi_{k}^{+} \right) \underbrace{Y_{vkll}}_{V_{l}} \bar{v}_{lR} \right] \begin{pmatrix} v_{l'L} \\ l'_{L} \end{pmatrix} + \text{H.c.}$$

experimentally testable processes

Third ingredient for a good model

mHdm Problem:

Flavour-changing neutral scalar interactions (FCNIs) at tree level appear.

⇒ strong experimental bounds on FCNIs

FCNI from hart brocken lepton number

Third ingredient for a good model: L_{α}

mHdm Problem:

Flavour-changing neutral scalar interactions (FCNIs) at tree level appear.

⇒ strong experimental bounds on FCNIs

Solution: **soft lepton number** L_{α} **violation** $\{\alpha = e, \mu, \tau\}$

 L_{α} conservation:

in Yukawa interactions

$$\Rightarrow$$
 diag. Y_l , Y_{ν}

$$M_I \sim \textstyle \sum_k v_k^* \, Y_{Ik}, \quad M_D \sim \textstyle \sum_k v_k \, Y_{\nu k}$$

 L_{α} explicit soft breaking:

in Majorana term \Rightarrow non-diag. M_R

Third ingredient for a good model: L_{α}

mHdm Problem:

Flavour-changing neutral scalar interactions (FCNIs) at tree level appear.

⇒ strong experimental bounds on FCNIs

Solution: **soft lepton number** L_{α} **violation** $\{\alpha = e, \mu, \tau\}$

 L_{α} conservation:

in Yukawa interactions

 \Rightarrow diag. Y_l , Y_v \Rightarrow diag. M_l , $M_D = diag(m_e, m_\mu, m_\tau)$

 L_{α} explicit soft breaking:

in Majorana term \Rightarrow **non-diag. M**_R

additional advantages:

- explain atm. & sol. maxaimal mixing [Grimus, 01]
- ampl. of FC processes are finite at one-loop
- ampl. are stable under radiative corrections

experimentally testable processes

experimentally testable processes

Nice model but: Can it be tested? Does it bring Limits?

Evtl. experimentally testable processes:

Additional fermion interactions:

Processes including the sub-process $I^- \to I'^- S^{0*}$, $(S^{0*} \to e^+ e^-)$ have $(n_H \ge 2)$ non- m_R -suppressed contributions from graphs with charged-scala exchange S^\pm (plot) in their Amplitudes \mathcal{A} , [Grimus, Lavoura, 02].

Figure: The tree diagrams for $\tau^- \to \mu^- S^{0*}$

Evtl. experimentally testable processes:

Additional fermion interactions:

Processes including the sub-process $I^- \to I'^- S^{0*}$, $(S^{0*} \to e^+ e^-)$ have $(n_H \ge 2)$ non- m_B -suppressed contributions from graphs with charged-scala exchange S^+ (plot) in their Amplitudes \mathcal{A} , [Grimus, Lavoura, 02].

Figure: The tree diagrams for $\tau^- \to \mu^- S^{0*}$

Expected outcome and goals

Nice model but: Can it be tested? Does it bring Limits?

Expectations:

- Finding upper bounds on flavour diagonal Yukawa couplings (Y_l, Y_v) at one loop (with $m_R \to \infty$)
- Finding lower benchmarks on seesaw scale m_R
 ⇒ with comparing them to the experimental upper bounds on branching ratios.
- Pointing out experimental signatures.

Thank you!

Backup slides

Advantage of right handed neutrinos

- Explain mass hierarchy in right handed neutrino mass models via the seesaw mechanism. $[m_{\nu_R} \gtrsim {\rm TeV}]$ (with additional higgs doublets...)
- Dark matter candidates $[keV \lesssim m_{\nu_R} \lesssim TeV]$
- Baryon asymmetry via Leptogenesis in ν MSM models $[keV \lesssim m_{\nu_R} \lesssim GeV]$
- **Detected anomalies** at: LSND, MiniBooNE, gallium detectors: GALLEX, SAGE, reactor experiments... $[m_{\nu_R} \sim eV]$ (a.o. also IceCube)

tightest constrains from cosmology:

- Boundaries from BBN
- CMB measurement from PLANCK sets limits on N_{ν} and also the Large Scale Structure.

Advantage of right handed neutrinos

- Explain mass hierarchy in right handed neutrino mass models via the seesaw mechanism. $[m_{\nu_R} \gtrsim {\rm TeV}]$ (with additional higgs doublets...)
- Dark matter candidates $[keV \lesssim m_{\nu_R} \lesssim TeV]$
- Baryon asymmetry via Leptogenesis in ν MSM models $[keV \lesssim m_{\nu_R} \lesssim GeV]$
- **Detected anomalies** at: LSND, MiniBooNE, gallium detectors: GALLEX, SAGE, reactor experiments... $[m_{\nu_R} \sim eV]$ (a.o. also IceCube)

tightest constrains from cosmology:

Boundaries from BBN

previous work

• CMB measurement from PLANCK sets limits on N_{ν} and also the Large Scale Structure.

Advantage of right handed neutrinos

• Explain mass hierarchy in right handed neutrino mass models via the seesaw mechanism. $[m_{\nu_R} \gtrsim \text{TeV}]$ (with additional higgs doublets...)

actual work

- Dark matter candidates $[\text{keV} \leq \text{m}_{\nu_R} \leq \text{TeV}]$
- Baryon asymmetry via Leptogenesis in vMSM models $[\text{keV} \leq m_{\nu_P} \leq \text{GeV}]$
- Detected anomalies at: LSND, MiniBooNE, gallium detectors: GALLEX, SAGE, reactor experiments... $[m_{\nu_p} \sim eV]$ (a.o. also IceCube)

tightest constrains from cosmology:

Boundaries from BBN

previous work

• CMB measurement from PLANCK sets limits on N_v and also the Large Scale Structure.