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The idea of composite two Higgs doublet model

Higgs boson emerges as a pseudo-Nambu-Goldstone Boson

(pNGB) from a new strong interaction at the compositeness

scale f .

The Composite 2 Higgs Doublet Model (C2HDM) based on

SO(6)/SO(4)× SO(2) coset developing 8 pNGBs, which are

identi�ed with the (composite) two Higgs doublet �elds.

Symmetry breaking occurs in two steps
1 Spontaneously global symmetry breaking

SO(6)
f→ SO(4)× SO(2) at scale f .

2 Electroweak symmetry breaking is triggered by coupling of the
SM particles to the composite sector via the
Coleman-Weinberg (CW) potential at loop levels.

Minimal composite Higgs model (with a single Higgs doublet)

can explain hierarchy problem by its pNGB nature. It's

remarkable motivation to study C2HDM for describing

presence of extra Higgs particles as pNGBs and explain their

mass and phenomenological di�erences.



E�ective Lagrangian approach for C2HDM

⇒ The SO(6) invariant e�ective kinetic Lagrangian, can be

constructed by the analogue of the construction in non-linear sigma

models developed by Callan-Coleman-Wess-Zumino (CCWZ) as

Lkin =
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E�ective Yukawa Lagrangian in C2HDM

LY = f
[
Q̄u

L (auΣ− buΣ2)UR + Q̄d
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Perturbative Unitarity in C2HDM

⇒ A(VLVL → VLVL) grows with energy due to modi�ed hVLVL,

unitarity is lost in the C2HDM.

M(W+
L
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L
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L
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L
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= − s
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2
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where φ is the scattering angle and ξ = υ2

f 2
with υ ' 246GeV .

WLWL →WLWL



Perturbative Unitarity In (H+H− → H+H−) Scattering

M(H+H− → H+H−) =

[
s

2υ2
SM

ξ(1 + cφ) −

↘
Kinetic Term

m2
H±

υ2
SM

ξ(
2

3
+ 4cφ) +

↘
Kinetic and Potential Term
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↓
Emerges From Potential Term

]
+O(s−1).
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Figure : S-wave amplitude for the H+H− → H+H− process as a function of
√
s in the case

of cos θ = 1, tanβ = 1 and f = 500 (black), 750 (blue) and 1000 GeV (red). The solid
(dashed) curves are the results with (without) O(ξs0) term. The left, center and right panels
show the results for mΦ(mA = mH = mH±) = M = 500, 1000 and 1500 GeV, respectively.

O(ξs0) contributions are not so important as long as we consider the case

mφ ≤ 1 TeV and
√
s ≥ mφ.



Perturbative Unitarity in (G+G− → G+G−) process with
and without O(1/s) term

Figure : Allowed regions from perturbative unitarity in the plane
(
√
s,m

H
) from G+G− → G+G− scattering amplitudes within the

C2HDM. We take cos θ = 0.99, tanβ = 1 and mH = mA = mH± = M.
The grey regions are obtained by using the exact formulae (with O(1/s)
terms), the green ones by neglecting O(1/s) terms. The left, center and
right panels show the cases with f = 3000 GeV, 5000 GeV and in�nity
(corresponding to the E2HDM).

If we focus on the region of
√
s ≥ 1TeV and mφ ≤ 1TeV ,

O(s0ξ) and O(s−1) terms can be neglected safely.



Unitarity Constraint on the parameter space of the
C2HDM

Unitarity Bound In All 2→ 2 Scalar Scattering Channels

Figure : Constraint on the parameter space of the C2HDM from the
unitarity and the vacuum stability in the case of tanβ = 1 and
m
H± = m

A
for several �xed values of f . The left and right panels show

the case with cos θ = 1 and 0.99, respectively. The lower left region from
each curve is allowed. We take the value of m

H
to be equal to m

A
for the

solid curves, while we scan it within the region of m
A
± 500 GeV for the

dashed curves. For all the plots, M is scanned.



Phenomenology of
C2HDM



Decays of Extra Higgs Boson H
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Figure : Branching ratios of H as a function of tanβ with
mΦ(= m

H
= m

A
= mH±) = M = 500 GeV.The upper panels show the

results in the E2HDM (ξ = 0 and sθ = −0.2), while the lower ones show
the results in the C2HDM (ξ = 0.04 and θ = 0)



Mass Dependence of the Branching ratios for Extra Higgs
Boson H
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Figure : Branching ratios of H as a function of mΦ(= m
H

= m
A

= mH±)
with tanβ = 3(10) for solid (dashed) curves, M = mΦ and ∆κ

V
= −2%.

The upper panels show the results in the E2HDM (ξ = 0 and sθ = −0.2),
while the lower ones show the results in the C2HDM (ξ = 0.04 and
θ = 0)



σ(gg →H/A) in the C2HDM and E2HDM
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Figure : Gluon fusion production cross section as a function of the mass
of the neutral Higgs boson at

√
s = 13 TeV. We take tanβ = 1 (black),

3 (blue) and 10 (red). The solid (dashed) curves show the results in the
E2HDM with sθ = −0.2 and ξ = 0 (C2HDM with sθ = 0 and ξ = 0.04).



Conclusion

We have explicitly shown that the amplitude grows with
√
s in

scattering processes, so that unitarity is broken at a certain

energy scale depending on the scale f.

We have discovered signi�cant di�erences of the allowed

parameter space in E2HDM and C2HDM from unitarity.

The di�erences between types of Yukawas a�ect the BRs and

production cross section at the LHC.

We can distinguish decays and productions of the extra Higgs

bosons in the C2HDM from that of E2HDM.



Thank You!



Backup Slides

the SM quarks and leptons can be embedded into into the 6-plet

representation ΨX as follows:

(Ψ2/3)L ≡ Qu

L = (−idL,−dL,−iuL, uL, 0, 0)T ,

(Ψ−1/3)L ≡ Qd

L = (−iuL, uL, idL, dL, 0, 0)T ,

(Ψ2/3)R ≡ UR = (0, 0, 0, 0, 0, uR)T ,

(Ψ−1/3)R ≡ DR = (0, 0, 0, 0, 0, dR)T ,

(Ψ−1)L ≡ LL = (−iνL, νL, ieL, eL, 0, 0)T ,

(Ψ−1)R ≡ ER = (0, 0, 0, 0, 0, eR)T .

Σ = UΣ0U
T ,

where Σ0 is the SO(4)× SO(2) invariant VEV parameterized as

Σ0 =

(
04×4 04×2
02×4 iσ2

)
.

Now, the �eld Σ is transformed linearly under SO(6), i.e.,
Σ→ gΣgT .
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