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Introduction

Goal: Merge custom code for THDM global fit with pre release 
GAMBIT framework. I am not part of the GAMBIT collaboration.
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• Benefits of a statistical global fit. 
• What is GAMBIT & how does it work? 
• Model introduction. 
• Application of theoretical & experimental constraints. 
• Scans of the parameter space with Bayesian inference. 
• Very preliminary results - status update. 
• To come…

Talk Outline



Global Fits

Model

Parameters

• Multiple Models. 
• Each with multiple parameters to scan over. 
• Each with multiple constraints to apply.

Constraints

Model

Model

Model
1. Statistically compare 

multiple models - which 
model best fits the data? 

2. Map the parameter space 
of each model - what 
regions of parameter 
space best fit the data?

Benefits
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GAMBIT
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slide courtesy P. Scott (GAMBIT Collaboration)
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GAMBIT

G AM B I T
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slide courtesy P. Scott (GAMBIT Collaboration)



Model Implementation

Model: THDM in alignment limit

J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang, S. Kraml 

 arXiv:1507.00933  
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Model Implementation

Model: THDM in alignment limit

• Start with most general THDM potential. 
• Softly broken discrete       symmetry 
•         is real.  

Z2 =) �6 = �7 = 0

m2
12

• In alignment limit, physics of the light Higgs 
approaches that of the SM Higgs: 

• Alignment limit can be realised when  
H0

1 ! HSM

sin(� � ↵) ! 1
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Model Implementation: Constraints

• Each constraint assigned a (Gaussian) likelihood depending on 
distance from true values                            . 

• For constraints with limits set by > or < a certain limit value, we 
replace a ‘hard limit’ of acceptance/rejection with a half 
Gaussian limit curve. 

• Combining each point in parameter space to form a composite 
likelihood. 

• Greatly improves ability to discover accepted points.
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Model Implementation: Constraints

• Stability of the potential. 
• Unitarity of the scattering matrix. 
• Perturbativity of quartic Higgs coupling. 

• Electroweak oblique parameters: S, T & U. 
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sin(� � ↵) > 0.99
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CHSMV V
= sin(� � ↵)• Apply: 

Mode of observation 
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HiggsBounds

• Contains tabulated Higgs expected 
and observed analysis values at 95% 
exclusion from LEP/Tevatron/LHC. 

• Statistically most excluding channel 
for quantity Q given by: 

• Observed limit ratio then:  

• HiggsBounds log-likelihood function

X
0

= X : max

Q
model(X)

Q
expec(X)

k
0

=
Q

model(X0)

Q
obs(X0)

logLHB =

(
0, k0  1

� (k0�1)2

2�2
HB

, k0 > 1

• Flavour Physics observables. 
• Charged Higgs (particularly) contribute 

to rare B meson decay box and penguin 
diagrams. 

• Main SuperIso calculations include:

SuperIso
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arXiv:hep-ph/0609232

Estimate of B(B̄ → Xsγ) at O(α2
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Combining our results for various O(α2
s) corrections to the weak radiative B-meson decay, we

are able to present the first estimate of the branching ratio at the next-to-next-to-leading order in
QCD. We find B(B̄ → Xsγ) = (3.15 ± 0.23) × 10−4 for Eγ > 1.6 GeV in the B̄-meson rest frame.
The four types of uncertainties: nonperturbative (5%), parametric (3%), higher-order (3%) and
mc-interpolation ambiguity (3%) have been added in quadrature to obtain the total error.

PACS numbers: 12.38.Bx, 13.20.He

The inclusive radiative B-meson decay provides im-
portant constraints on the minimal supersymmetric stan-
dard model and many other theories of new physics at the
electroweak scale. The power of such constraints depends
on the accuracy of both the experiments and the stan-
dard model (SM) calculations. The latest measurements
by Belle and BABAR are reported in Refs. [1, 2]. The
world average performed by the Heavy Flavor Averaging
Group [3] for Eγ > 1.6 GeV reads

B(B̄ → Xsγ) =
(

3.55 ± 0.24 +0.09
−0.10 ± 0.03

)

× 10−4. (1)

The combined error in the above result is of the same
size as the expected O(α2

s) next-to-next-to-leading or-
der (NNLO) QCD corrections to the perturbative de-
cay width Γ(b → Xparton

s γ), and larger than the known
nonperturbative corrections to the relation Γ(B̄ →
Xsγ) ≃ Γ(b → Xparton

s γ) [4]–[6]. Thus, calculating the
SM prediction for the b-quark decay rate at the NNLO is
necessary for taking full advantage of the measurements.

Evaluating the O(α2
s) corrections to B(b → Xparton

s γ)
is a very involved task because hundreds of three-loop
on-shell and thousands of four-loop tadpole Feynman di-
agrams need to be computed. In a series of papers [7]–
[14], we have presented partial contributions to this en-
terprise. The purpose of the present Letter is to combine
all the existing results and obtain the first estimate of
the branching ratio at the NNLO. We call it an estimate
rather than a prediction because some of the numeri-
cally important contributions have been found using an
interpolation in the charm quark mass, which introduces
uncertainties that are difficult to quantify.

γ

W−b s
t t

FIG. 1: Sample LO diagram for the b → sγ transition.

Let us begin with recalling that the leading-order (LO)
contribution to the considered decay originates from one-
loop diagrams in the SM. An example of such a diagram
is shown in Fig. 1. Dressing this diagram with one or
two virtual gluons gives examples of diagrams that one
encounters at the next-to-leading order (NLO) and the
NNLO. In addition, one should include diagrams describ-
ing the bremsstrahlung of gluons and light quarks.

An additional difficulty in the analysis of the con-
sidered decay is the presence of large logarithms
(αs ln M2

W /m2
b)

n that should be resummed at each or-
der of the perturbation series in αs. To do so, one em-
ploys a low-energy effective theory that arises after de-
coupling the top quark and the heavy electroweak bosons.
Weak interaction vertices (operators) in this theory are
either of dipole type (s̄σµνbFµν , s̄σµνT abGa

µν) or con-
tain four quarks ([s̄Γb][q̄Γ′q]). Coupling constants at
these vertices (Wilson coefficients) are first evaluated
at the electroweak renormalization scale µ0 ∼ mt, MW

by solving the so-called matching conditions. Next,
they are evolved down to the low-energy scale µb ∼ mb

6 Bs,d → ℓ+ℓ− in a Two-Higgs-doublet Model

Figure 2: Dominant diagrams in the 2HDM with large tanβ.

αs

4π
Y1(xt), where Y0(xt) gives the leading order (LO) contribution calculated in [11] and

Y1(xt) incorporates the next-to-leading (NLO) QCD corrections and is given in [14].
The NLO corrections increase Y (xt) by about 3%, if mt is normalized at µ = mt.
Numerically,

Y (xt) = 0.997

[

mt(mt)

166 GeV

]1.55

, (9)

where we have parameterized the dependence on the running top quark mass in theMS
scheme.
We limit our consideration to the case of large tanβ, for which the 2HDM contributions
to this decay are significant. In the large tanβ limit, the Wilson coefficients CP and
CS receive sizeable contributions from the box diagram involving W and H+ and the
penguins and fermion self-energy diagrams with neutral Higgs boson exchange shown
in fig. 2. There are no new contributions to CA in the 2HDM, which therefore retains its
SM value.
We have calculated the individual diagrams explicitly in a general Rξ gauge, keeping
only the terms proportional to tan2 β. Although each diagram that involves a W± or
G± boson is gauge-dependent, their sum is gauge-independent. For compactness, we
give the results of the individual diagrams below in the ’t Hooft-Feynman gauge.

Model Implementation: Constraints

B ! Xs�

B ! Xsll, B ! ll

• Calculation of isospin asymmetry in:
B ! K⇤�
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•

•

•

GAMBIT

G AM B I T

2HDMC

HiggsBounds

Constraint Likelihood calculations

Parameter space scanner

HiggsSignals

SuperIso

Lilith

• Input • Output
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Scanner: MultiNest

• Bayesian Statistics: Nested Sampling Algorithm

4 R. Allison et al.

Figure 1. Nested sampling: the active set (N = 300, black points)
and the inferred bounding ellipse (blue solid curve, f = 1.06) for
a two-parameter Gaussian likelihood (�

1

= �
2

= 1, ⇢ = 0.7). The
input mean is µ = (0, 0). The ellipse is inferred from the mean and
covariance of the active set (Eq. 17). The true likelihood contour
(green dashed curve) corresponding to the lowest likelihood point
(red point) is everywhere encompassed by the ellipse, as necessary
for unbiased results.

density as T . Thus the prior mass enclosing all points in the
active set shrinks to X

1

= tX
0

, where t ⇠ T . For each subse-
quent iteration i we choose the lowest likelihood point from
which to restrict the prior, and therefore each iteration the
prior mass X

i

shrinks by a factor t, given probabilistically
by Eq. 10. We obtain a sequence for the remaining prior
mass at each iteration:

X
0

= 1, X
1

= t
1

X
0

, X
2

= t
2

X
1

, ... (11)

where the t
i

⇠ T . After many iterations the logarithmic
prior mass ln(X

i

) = ln(t
1

...t
i

X
0

) is the sum of many inde-
pendent and identically distributed random variables, and
so the expectation and standard deviation fully characterise
the distribution of ln(X

i

):

ln(X
i

) = �

i±
p

i

N
. (12)

Thus the prior mass shrinks exponentially with each itera-
tion; to estimate the evidence and posterior we set

X
i

= exp

✓

�

i

N

◆

, (13)

and we may straightforwardly propagate the uncertainty on
the X

i

into an uncertainty on posterior statistics and the
final evidence estimate. The evidence is estimated, by the
trapezium rule, as

Z =
M

X

i=1

L
i

w
i

+ L̄X
M

, (14)

where the L
i

are the points of lowest likelihood at each it-
eration, w

i

= 1

2

(X
i+1

�X
i�1

) is the prior mass over which

L(✓) ⇡ L
i

and M is the total number of iterations. The ad-
ditional term L̄X

M

is added to account for the contribution
from the active set; we assume each point in the active set
occupies an equal fraction of remaining prior volume X

M

,
and L̄ is their average likelihood. Including the active set en-
sures that the peak of the distribution is fully mapped out.
The joint posterior distribution may be inferred by binning
up the sample points x

i

with weights

p
i

=

8

>

>

>

>

<

>

>

>

>

:

L
i

w
i

Z

, i 2 {1, ...,M} ,

L
i

X
M

NZ

, i 2 {M + 1, ...,M +N} .

(15)

The mean and covariance of the posterior can be estimated
by

x̄ =
n

X

i=1

p
i

x
i

, C =
n

X

i=1

p
i

(x
i

� x̄)(x
i

� x̄)T, (16)

where n = M +N .

2.3.2 Drawing from a restricted prior

At each iteration i we need to sample the prior restricted
to the region of parameter space such that L(⇥) > L

i

.
Because the prior mass shrinks exponentially with each it-
eration (Eq. 13), it is important computationally to avoid
sampling the whole prior throughout the course of the algo-
rithm, since this would lead to exponentially worsening ac-
ceptance rates. Mukherjee, Parkinson & Liddle (2006) and
Shaw, Bridges & Hobson (2007) suggest using an ellipsoidal
approximation to the likelihood contour which is defined by
the active set, sampling the prior restricted to this ellipsoid.
We summarise this method below, while Fig. 1 shows the
process pictorially.

We define the ellipsoidal approximation to the bounding
likelihood contour by

(x� µ)TC�1(x� µ) = k, (17)

where µ is the centroid, and C the covariance matrix, of the
active set A. Also

k = max
n

(x
i

� µ)TC�1(x
i

� µ) : x
i

2 A
o

, (18)

is defined such that the ellipsoid is scaled to encompass
the entire active set. We further expand the ellipsoid along
each principal axis by a factor f to ensure the entire prior
mass X(L

i

) is encompassed; this is required for unbiased
results. We adopt f = 1.06 following Shaw, Bridges &
Hobson (2007). This expansion is e↵ected by redefining
k ! kf2. Note that correspondingly the volume of the el-
lipsoid V ! V fD.

To sample uniformly from the D-dimensional ellipsoid
we sample uniformly from the unit D-ball and then con-
struct a linear map T from the latter to the former. We
draw a D-dimensional vector of Gaussian random numbers
w then define the unit-vector

z =
w
|w|

, (19)

c
� 2013 RAS, MNRAS 000, 1–13

• Bayes Theorem: 

Useful to map parameter space and 
compare parameters in single model.

Pr(✓|D,M) =
Pr(D|✓,M) Pr(✓|M)

Pr(D|M)
=

L(✓)⇡(✓)
Z

Independent of parameters. Useful to 
compare different models.

Z =

Z

✓
L(✓)⇡(✓)dD✓

Pr(M1|D)

Pr(M2|D)
=

Z1 Pr(M1)

Z2 Pr(M2)

• Compare models 1 & 2:
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Scan Setup: Parameters

J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang, S. Kraml 

 arXiv:1507.00933  

Type I Yukawa Couplings

mH0
1
= [124.9 GeV, 126.5 GeV]

mH0
2
= [200 GeV, 1000 GeV]

mA = [5 GeV, 2000 GeV]

mH± = [300 GeV, 2000 GeV]

m2
12 = [(�2 TeV)2, (2TeV)2]

↵ = [�⇡/2,⇡/2]

tan� = [0.5, 60]
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Scan Setup: Parameters

J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang, S. Kraml 

 arXiv:1507.00933  

• Flat random scan used above. 
• Good results but are not statistically meaningful. 
• Bayesian inference means we can statistically map 

the entire parameter space.

14



Preliminary Results: Proof of concept

Marginalised Posterior PDFs 15
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(not yet verified by GAMBIT Collaboration)
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To come…

G AM B I T

• Verification and integration with GAMBIT Collaboration THDM 
studies. 

• Higgs production cross section processes and constraints. 
• Spectrum calculations using FlexibleSUSY. 
• Improved vacuum stability calculations. 
• Pythia for generation of collider events (???) . 

• THDM + extra content analyses
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Thanks!

To come…
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