Phenomenological prospects for BGL models

Miguel Nebot

CFTP - IST Lisbon 🔰

Workshop on Multi-Higgs Models

September 6^{th} 2016

2 BGL models

3 Analysis

4 Conclusions

Based on work done in collaboration with: G.C. Branco, M.N. Rebelo, (Lisbon) & F.J. Botella (Valencia) Eur. Phys. J. C76 (2016) 3, 161, arXiv:1508.05101 + L. Pedro (Lisbon/Graz) and A. Carmona (Zurich/CERN) JHEP 1407 (2014) 078, arXiv:1401.6147 + Work in progress

2HDM		

2HDM (I) – Unnecessary reminder

- Instead of a single doublet $\Phi\left(\begin{smallmatrix}\$\\\bullet\end{smallmatrix}\right)$, two doublets $\Phi_1 \& \Phi_2$
- Full lagrangian

$$\mathscr{L} = \mathscr{L}_{\text{kin+gauge}} - V(\Phi_1, \Phi_2) + \mathscr{L}_{\text{Y}}$$

[T.D.Lee, PRD 8 (1973),..., Branco et al., Phys.Rep. 516 (2013)] In $\mathscr{L}_{\text{kin+gauge}}$, $(D_{\mu}\Phi)(D^{\mu}\Phi)^{\dagger} \rightarrow \sum_{i} (D_{\mu}\Phi_{i})(D^{\mu}\Phi_{i})^{\dagger}$ Scalar potential, instead of $V(\Phi) = \lambda (v^{2} - \Phi^{\dagger}\Phi)^{2}$

$$V(\Phi_{1}, \Phi_{2}) = \mu_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + \mu_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} + (\mu_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{H.C.}) + \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + (\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{H.C.}) + [(\lambda_{6} (\Phi_{1}^{\dagger} \Phi_{1}) + \lambda_{7} (\Phi_{2}^{\dagger} \Phi_{2})) (\Phi_{1}^{\dagger} \Phi_{2}) + \text{H.C.}]$$

• Yukawa couplings $\mathscr{L}_{\mathbf{Y}}$

2HDM			
	(TT) TT		
ZHDM ((11) – Unnecessary r	eminder	

Spontaneous symmetry breaking

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_1 e^{i\alpha_1} \end{pmatrix}, \quad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_2 e^{i\alpha_2} \end{pmatrix}$$

$$\sqrt{v_1^2 + v_2^2} = \mathbf{v} \simeq 246 \,\text{GeV}\,, \quad \frac{v_2}{v_1} \equiv \tan\beta$$

• Expansion around the minimum of $V(\Phi_1, \Phi_2)$

$$\Phi_j = e^{i\alpha_j} \begin{pmatrix} \varphi_j^+ \\ (v_j + \rho_j + i\eta_j)/\sqrt{2} \end{pmatrix}, \quad j = 1, 2$$

■ Rotate to the "Higgs" basis with

$$U \equiv \frac{1}{\sqrt{v_1^2 + v_2^2}} \begin{pmatrix} v_1 e^{-i\alpha_1} & v_2 e^{-i\alpha_2} \\ v_2 e^{-i\alpha_1} & -v_1 e^{-i\alpha_2} \end{pmatrix} = \begin{pmatrix} e^{-i\alpha_1} \cos\beta & e^{-i\alpha_2} \sin\beta \\ e^{-i\alpha_1} \sin\beta & -e^{-i\alpha_2} \cos\beta \end{pmatrix}$$

2HDM			
2HDM (II	II) = IInnecessary	reminder	

- Doublets: $\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = U \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$ with $\langle H_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$ and $\langle H_2 \rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- Components

$$H_1 = \begin{pmatrix} G^+ \\ (v + N^0 + iG^0)/\sqrt{2} \end{pmatrix}, \quad H_2 = \begin{pmatrix} H^+ \\ (R^0 + iA)/\sqrt{2} \end{pmatrix}$$

- $\blacksquare ~G^0,~G^\pm :$ Goldstone \fbox bosons (longitudinal $Z~\&~W^\pm)$
- IF the fields in the Higgs basis where the physical (mass eigenstates) scalars ...
 - N⁰, "SM Higgs"
 - additional \mathbb{R}^0 scalar & A pseudoscalar,
 - additional H^{\pm} charged scalar.

... and now, the Yukawa couplings \mathscr{L}_{Y}

Yukawa couplings (I)

■ Yukawa couplings in 2HDM

$$\begin{aligned} \mathscr{L}_{\mathbf{Y}} &= -\bar{Q}_{L}^{0} \big(\Delta_{1} \tilde{\Phi}_{1} + \Delta_{2} \tilde{\Phi}_{2} \big) u_{R}^{0} - \bar{Q}_{L}^{0} \big(\Gamma_{1} \Phi_{1} + \Gamma_{2} \Phi_{2} \big) d_{R}^{0} \\ &- \bar{L}_{L}^{0} \big(\Sigma_{1} \tilde{\Phi}_{1} + \Sigma_{2} \tilde{\Phi}_{2} \big) \nu_{R}^{0} - \bar{L}_{L}^{0} \big(\Pi_{1} \Phi_{1} + \Pi_{2} \Phi_{2} \big) \ell_{R}^{0} + \text{h.c.} \end{aligned}$$

Quark Yukawa couplings + Mass terms

$$\begin{split} \mathscr{L}_{\mathbf{Y}} \supset -\bar{u}_{L}^{0} \frac{1}{v} \Big(M_{u}^{0}(v + \mathbf{N}^{0}) + N_{u}^{0} \mathbf{R}^{0} + i N_{u}^{0} A \Big) u_{R}^{0} \\ &- \bar{d}_{L}^{0} \frac{1}{v} \Big(M_{d}^{0}(v + \mathbf{N}^{0}) + N_{d}^{0} \mathbf{R}^{0} + i N_{d}^{0} A \Big) d_{R}^{0} \\ &- \frac{\sqrt{2}}{v} \Big(\bar{u}_{L}^{0} N_{d}^{0} d_{R}^{0} - \bar{u}_{R}^{0} N_{u}^{0^{\dagger}} d_{L}^{0} \Big) H^{+} + \mathbf{H.C.} \end{split}$$
where
$$\begin{split} M_{u}^{0} &= \frac{1}{\sqrt{2}} \Big(v_{1} \Delta_{1} + v_{2} e^{i\theta} \Delta_{2} \Big) , \quad M_{d}^{0} &= \frac{1}{\sqrt{2}} \Big(v_{1} \Gamma_{1} + v_{2} e^{i\theta} \Gamma_{2} \Big) \\ \text{and} \quad N_{u}^{0} &= \frac{1}{\sqrt{2}} \Big(v_{2} \Delta_{1} - v_{1} e^{i\theta} \Delta_{2} \Big) , \quad N_{d}^{0} &= \frac{1}{\sqrt{2}} \Big(v_{2} \Gamma_{1} - v_{1} e^{i\theta} \Gamma_{2} \Big) \end{split}$$

2HDM		

Fermion Masses and Flavour Changing Couplings

Pictorially

$$M = v_1 \mathbf{a} + v_2 e^{i\theta} \mathbf{a} = v \mathbf{a}, \quad N = v_2 \mathbf{a} - v_1 e^{i\theta} \mathbf{a} = v \mathbf{a}$$

Diagonalisation of mass matrices:

$$U_{uL}^{\dagger} M_u^0 U_{uR} = M_u \equiv \text{diag} (m_u, m_c, m_t)$$
$$U_{dL}^{\dagger} M_d^0 U_{dR} = M_d \equiv \text{diag} (m_d, m_s, m_b)$$

• ... gives flavour changing couplings with R⁰ and A, the "non-SM" neutral scalars!

$$U_{uL}^{\dagger} N_u^0 U_{uR} \equiv N_u = ?$$
$$U_{dL}^{\dagger} N_d^0 U_{dR} \equiv N_d = ?$$

Yukawa couplings (II)

 \blacksquare \mathscr{L}_{Y} in terms of physical quark fields

$$\begin{split} \mathscr{L}_{\mathbf{Y}} \supset &-\frac{1}{v} \mathbf{N}^{0} \big(\bar{u} M_{u} u + \bar{d} M_{d} d \big) \\ &- \frac{1}{v} \mathbf{R}^{0} \Big[\bar{u} \big(N_{u} \gamma_{R} + N_{u}^{\dagger} \gamma_{L} \big) u + \bar{d} \big(N_{d} \gamma_{R} + N_{d}^{\dagger} \gamma_{L} \big) d \Big] \\ &+ \frac{i}{v} A \Big[\bar{u} \big(N_{u} \gamma_{R} - N_{u}^{\dagger} \gamma_{L} \big) u - \bar{d} \big(N_{d} \gamma_{R} - N_{d}^{\dagger} \gamma_{L} \big) d \Big] \\ &- \frac{\sqrt{2}}{v} H^{+} \bar{u} \big(V N_{d} \gamma_{R} - N_{u}^{\dagger} V \gamma_{L} \big) d + \text{h.c.} \end{split}$$

• Mixing matrix (CKM), $V = U_{uL}^{\dagger} U_{dL}$

Ways out

- Discrete symmetries & Natural Flavour Conservation
 [Paschos, Glashow & Weinberg, PRD 15 (1977), ...]
 - **Type I:** Φ_2 couples to u_R , d_R , e_R
 - Type II: Φ_2 couples to u_R , Φ_1 couples to d_R , e_R
 - Lepton specific: Φ_2 couples to u_R , d_R , Φ_1 couples to e_R
 - Flipped: Φ_2 couples to u_R , e_R , Φ_1 couples to d_R
- Aligned 2HDM: $\Delta_2 \propto \Delta_1$, $\Gamma_2 \propto \Gamma_1$

[Pich & Tuzón, PRD 80 (2009), ...]

• *Effective* alignment

[Serôdio, PLB 700 (2011), Medeiros-Varzielas, PLB 701 (2011)]

2HDM			
FCNC (II)			
)		
Alternativ	ve:		
suppi	ression factors in FCNC		
		Joshipura & Rindani, PL	B 260 (1991)]
	[Ant	aramian, Hall & Rasin, P	RL 69 (1992)]
		[Hall & Weinberg, Pl	RD 48 (1993)]
natur	ally suppressed – i.e. "c	controlled" – FCNC	
	v II	Lavoura, Int.J.Mod.Phy	vs. A9 (1994)]
	Branco, Grin	nus & Lavoura (BGL), PL	B 380 (1996)]
	Bot	ella, Branco & Rebelo, PL	B 687 (2010)]
	[Botella, Brand	co, Nebot & Rebelo, JHEF	P 1110 (2011)]
	_		
	Bhattacl	naryya, Das & Kundu, PR	LD 89 (2014)]
	Γhe general idea: symmet	ry imposes small FCNC	
I	in the BGL case:		
	FCNC pro	portional to fermion mass	es & mixings!
Miguel Nebot			CFTP - IST Lisbon

2HDM	BGL models	
Enter BC	GL models (I)	

Symmetry

 $\begin{aligned} Q_{Lj}^0 &\mapsto e^{i\tau} \ Q_{Lj}^0 \ , \qquad u_{Rj}^0 \mapsto e^{i2\tau} u_{Rj}^0 \ , \qquad \Phi_2 \mapsto e^{i\tau} \Phi_2 \\ & \text{with } \tau \neq 0, \pi \text{ and } j \text{ is 1 or 2 or 3 (at will)} \end{aligned}$

Reminder:

 $\mathscr{L}_Y \supset -\bar{Q}^0_L \big(\Delta_1 \tilde{\Phi}_1 + \Delta_2 \tilde{\Phi}_2 \big) u^0_R - \bar{Q}^0_L \big(\Gamma_1 \Phi_1 + \Gamma_2 \Phi_2 \big) d^0_R$

Consider for example j = 3:

$$\begin{aligned} \Delta_1 \mapsto \Delta_1' &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\tau} \end{pmatrix} \ \Delta_1 \ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i2\tau} \end{pmatrix} \\ &\Rightarrow \arg \Delta_1' - \arg \Delta_1 &= \begin{pmatrix} 0 & 0 & +2\tau \\ 0 & 0 & +2\tau \\ -\tau & -\tau & +\tau \end{pmatrix} \end{aligned}$$

2HDM	BGL models	
Enter BG	L models (II)	

while

$$\begin{split} \Delta_2 &\mapsto \Delta'_2 = e^{-i\tau} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\tau} \end{pmatrix} \ \Delta_2 \ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i2\tau} \end{pmatrix} \\ &\Rightarrow \arg \Delta'_2 - \arg \Delta_2 = \begin{pmatrix} -\tau & -\tau & +\tau \\ -\tau & -\tau & +\tau \\ -2\tau & -2\tau & 0 \end{pmatrix} \end{split}$$

The symmetry requires

Up Yukawas:
$$\Delta_{1} = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Delta_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \times \end{pmatrix}$$

Down Yukawas:
$$\Gamma_{1} = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ 0 & 0 & 0 \end{pmatrix}, \quad \Gamma_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & \times \end{pmatrix}$$

2HDM	BGL models		
Up Yukawas –	Example up	j = 3	

■ Up Yukawas:

$$\Delta_1 = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Delta_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \times \end{pmatrix}$$

Reminder:

$$M_{u}^{0} = \frac{1}{\sqrt{2}} \left(v_{1} \Delta_{1} + v_{2} e^{i\theta} \Delta_{2} \right), \quad N_{u}^{0} = \frac{1}{\sqrt{2}} \left(v_{2} \Delta_{1} - v_{1} e^{i\theta} \Delta_{2} \right)$$

For the Up Yukawas, M⁰_u and N⁰_u are simultaneously diagonalised ⇒ NO FCNC
 The U_{uL} rotation is block diagonal, U_{uL} = (××0) (××0) (××0) (××0)

2HDM	BGL models		
Darra Valarra	E	<u>ົງ</u>	

Down Yukawas – Example up j = 3

Down Yukawas:

$$\Gamma_1 = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ 0 & 0 & 0 \end{pmatrix}, \quad \Gamma_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & \times \end{pmatrix}$$

Reminder:

$$M_d^0 = rac{1}{\sqrt{2}} ig(v_1 \Gamma_1 + v_2 e^{i heta} \Gamma_2 ig), \quad N_d^0 = rac{1}{\sqrt{2}} ig(v_2 \Gamma_1 - v_1 e^{i heta} \Gamma_2 ig)$$

■ For the Down Yukawas

$$U_{dL}^{\dagger} M_d^0 U_{dR} = M_d , \quad U_{dL}^{\dagger} N_d^0 U_{dR} = ?$$

2HDM BGL models Analysis Conclusions The BGL magic (I) – Example up j = 3

Rewrite

$$N_{d}^{0} = \frac{1}{\sqrt{2}} \left(v_{2}\Gamma_{1} - v_{1}e^{i\theta}\Gamma_{2} \right) = \frac{v_{2}}{v_{1}} \underbrace{\frac{1}{\sqrt{2}} \left(v_{1}\Gamma_{1} + v_{2}e^{i\theta}\Gamma_{2} \right)}_{M_{d}^{0}} - \frac{v_{2}}{\sqrt{2}} \left(\frac{v_{1}}{v_{2}} + \frac{v_{2}}{v_{1}} \right) e^{i\theta}\Gamma_{2}$$

$$U_{dL}^{\dagger} N_{d}^{0} U_{dR} = \frac{v_2}{v_1} M_d - \frac{v_2}{\sqrt{2}} \left(\frac{v_2}{v_1} + \frac{v_1}{v_2}\right) U_{dL}^{\dagger} e^{i\theta} \Gamma_2 U_{dR}$$

• Problem with $U_{dL}^{\dagger} e^{i\theta} \Gamma_2 U_{dR}$

• The solution: if $\Gamma_2 \propto P M_d^0$ with P some fixed matrix,

$$U_{dL}^{\dagger} \Gamma_2 U_{dR} \propto U_{dL}^{\dagger} P M_d^0 U_{dR} = U_{dL}^{\dagger} P U_{dL} M_d$$

2HDM	BGL models		
The BGL	magic $(II) - Exa$	$ample up \ j = 3$	

• Which P?

$$P = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \frac{v_2}{\sqrt{2}} e^{i\theta} \Gamma_2 = P M_d^0$$

• The final touch: since $U_{uL} = \begin{pmatrix} \times \times & 0 \\ \times & \times & 0 \\ 0 & 0 & 1 \end{pmatrix}$,

$$\boldsymbol{V} = \boldsymbol{U}_{uL}^{\dagger} \boldsymbol{U}_{dL} \; \Rightarrow \; [\boldsymbol{U}_{dL}]_{3i} = \boldsymbol{V}_{3i}$$

and

$$[U_{dL}^{\dagger}PU_{dL}]_{ij} = V_{3i}^*V_{3j}$$

Finally

$$[N_d]_{ij} = [U_{dL}^{\dagger} N_d^0 U_{dR}]_{ij} = t_{\beta} [M_d]_{ij} - \left(t_{\beta} + t_{\beta}^{-1}\right) V_{3i}^* V_{3j} [M_d]_{jj}$$

2HDM	BGL models		
Neutral	couplings in BG	L models – Exampl	e up $j = 3$

 \blacksquare Up sector

$$N_{\boldsymbol{u}} = -t_{\beta}^{-1}\operatorname{diag}(0, 0, m_t) + t_{\beta}\operatorname{diag}(m_{\boldsymbol{u}}, m_c, 0)$$

Down sector

$$\begin{split} N_{d} &= t_{\beta} \begin{pmatrix} m_{d} & 0 & 0 \\ 0 & m_{s} & 0 \\ 0 & 0 & m_{b} \end{pmatrix} \\ & & - \left(t_{\beta} + t_{\beta}^{-1} \right) \begin{pmatrix} m_{d} |V_{td}|^{2} & m_{s} V_{td}^{*} V_{ts} & m_{b} V_{td}^{*} V_{tb} \\ m_{d} V_{ts}^{*} V_{td} & m_{s} |V_{ts}|^{2} & m_{b} V_{ts}^{*} V_{tb} \\ m_{d} V_{tb}^{*} V_{td} & m_{s} V_{tb}^{*} V_{ts} & m_{b} |V_{tb}|^{2} \end{pmatrix} \end{split}$$

It all comes from the symmetry

ý

2HDM	BGL models	
BGL mod	lels - The zoo (I)	

• We have seen an example with

$$Q_{Lj}^0 \mapsto e^{i\tau} Q_{Lj}^0$$
, $u_{Rj}^0 \mapsto e^{i2\tau} u_{Rj}^0$, $\Phi_2 \mapsto e^{i\tau} \Phi_2$

and j = 3, leading to FCNC in the **DOWN** sector,

controlled by $V_{ti}V_{tk}^*$

- but we can as well choose j = 1 or j = 2, then leading to FCNC in the DOWN sector controlled by $V_{ui}V_{uk}^*$ or $V_{ci}V_{ck}^*$
- ... or start with this symmetry

$$Q^0_{Lj} \mapsto e^{i\tau} \ Q^0_{Lj} \ , \qquad d^0_{Rj} \mapsto e^{i2\tau} d^0_{Rj} \ , \qquad \Phi_2 \mapsto e^{i\tau} \Phi_2$$

which would lead to FCNC in the UP sector, controlled by $V_{ij}V_{kj}^*$ Models: for the moment 3 up quark + 3 down quark

Models

- Quark sector 3 up quark + 3 down quark
- Lepton sector $3 \ell + 3 \nu$ (Dirac neutrinos)

[N.B. for Majorana $\nu {\rm 's,~only~half,~no}~\nu {\rm -FCNC}]$

• Need all for Renormalization Group Evolution, e.g.

$$\begin{aligned} \mathcal{D}\Gamma_k &= a_{\Gamma}\Gamma_k + \\ &+ \sum_{l=1}^2 \left[3 \mathrm{Tr} \left(\Gamma_k \Gamma_l^{\dagger} + \Delta_k^{\dagger} \Delta_l \right) + \mathrm{Tr} \left(\Pi_k \Pi_l^{\dagger} + \Sigma_k^{\dagger} \Sigma_l \right) \right] \Gamma_l + \\ &+ \sum_{l=1}^2 \left(-2 \Delta_l \Delta_k^{\dagger} \Gamma_l + \Gamma_k \Gamma_l^{\dagger} \Gamma_l + \frac{1}{2} \Delta_l \Delta_l^{\dagger} \Gamma_k + \frac{1}{2} \Gamma_l \Gamma_l^{\dagger} \Gamma_k \right) ,\end{aligned}$$

BGL models - The zoo (III)

- \blacksquare In the previous example, "model t ",
 - flavour changing couplings of down quarks with \mathbb{R}^0 and A,
 - flavour conserving couplings of up quarks with \mathbb{R}^0 and A,
- 3 choices of symmetry with down fields,
 3 choices of symmetry with up fields
 → 6 different quark models
- In the lepton sector: 6 different choices for neutrinos and charged leptons, overall, 36 models

[Botella, Branco, Nebot & Rebelo, JHEP(2011) 1102.0520]

but...

What about flavour changing couplings of the **Higgs**?

The answer: N^0 and R^0 are NOT the physical scalars

2HDM	BGL models	Conclusions
Physical 1	neutral scalars	

• Neutral mass eigenstates, with only one mixing (no CP),

$$\begin{pmatrix} \mathbf{H} \\ \mathbf{h} \end{pmatrix} = \begin{pmatrix} -c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & -c_{\alpha} \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} = \begin{pmatrix} -c_{\beta\alpha} & -s_{\beta\alpha} \\ s_{\beta\alpha} & -c_{\beta\alpha} \end{pmatrix} \begin{pmatrix} \mathbf{N}^0 \\ \mathbf{R}^0 \end{pmatrix}$$

with h "the Higgs"

From

$$egin{aligned} \mathscr{L}_{ar{q}qN} \supset -\mathrm{N}^0 \, rac{1}{v} \left[ar{u} M_u u + ar{d} M_d d
ight] \ &- \mathrm{R}^0 \, rac{1}{v} \left[ar{u} \left(N_u \gamma_R + N_u^\dagger \gamma_L
ight) u + ar{d} \left(N_d \gamma_R + N_d^\dagger \gamma_L
ight) d
ight] \end{aligned}$$

we arrive to

$$\begin{aligned} \mathscr{L}_{\bar{q}qN} \supset &- \frac{\mathbf{h}}{v} \bar{u} \left((s_{\beta\alpha} M_u - c_{\beta\alpha} N_u) \gamma_R + (s_{\beta\alpha} M_u - c_{\beta\alpha} N_u^{\dagger}) \gamma_L \right) u \\ &- \frac{\mathbf{h}}{v} \bar{d} \left((s_{\beta\alpha} M_d - c_{\beta\alpha} N_d) \gamma_R + (s_{\beta\alpha} M_d - c_{\beta\alpha} N_d^{\dagger}) \gamma_L \right) d \\ &+ \frac{\mathbf{H}}{v} \bar{u} \left((c_{\beta\alpha} M_u + s_{\beta\alpha} N_u) \gamma_R + (c_{\beta\alpha} M_u + s_{\beta\alpha} N_u^{\dagger}) \gamma_L \right) u \\ &+ \frac{\mathbf{H}}{v} \bar{d} \left((c_{\beta\alpha} M_d + s_{\beta\alpha} N_d) \gamma_R + (c_{\beta\alpha} M_d + s_{\beta\alpha} N_d^{\dagger}) \gamma_L \right) d \end{aligned}$$

Miguel Nebot

2HDM	BGL models	
Higgs in BGL	models	

Most salient features

- Flavour changing couplings of the Higgs with up or with down quarks, e.g. $h \rightarrow bs, bd, t \rightarrow hc, hu$
- Flavour changing couplings of the Higgs with neutrinos or with charged leptons, e.g. $h \rightarrow \mu \tau$
- Modified flavour conserving (diagonal) couplings
- Only two new parameters involved, $\tan \beta$ and $\beta \alpha$ \Rightarrow correlated predictions, magic combination $c_{\beta\alpha}(t_{\beta} + t_{\beta}^{-1})$

2HDM	Analysis	
Analysis		

Goal

- Analyse prospects for the previous Higgs flavour changing processes
- Concentrate on $\tan \beta$ and $\alpha \beta$

Constraints

- From Higgs diagonal couplings: $\gamma\gamma$, WW, ZZ, $t\bar{t}$, $b\bar{b}$, $\tau\bar{\tau}$ Notice that both decay and production are modified!
- From low-energy flavour physics: more involved since H, A and H[±] do participate together with h, extended (additional parameters)
 Without mixing [Botella et al., JHEP 1407 (2014) 078, arXiv:1401.6147]
- From the scalar sector

Top decays $t \to hq$ (I)

Rate

$$\Gamma_{(d_{\rho})}(t \to hq) = \frac{m_t^3}{32\pi v^2} \left(1 - \frac{m_h^2}{m_t^2}\right)^2 |V_{q\rho}|^2 |V_{t\rho}|^2 c_{\beta\alpha}^2 (t_{\beta} + t_{\beta}^{-1})^2$$

Branching ratio

$$\operatorname{Br}_{(d_{\rho})}(t \to hq) = \frac{\Gamma_{(d_{\rho})}(t \to hq)}{\Gamma(t \to Wb)} = f(x_{h}, y_{W}) \frac{|V_{q\rho}V_{t\rho}|^{2}}{|V_{tb}|^{2}} c_{\beta\alpha}^{2} (t_{\beta} + t_{\beta}^{-1})^{2}$$

where

$$f(x_{\rm h}, y_W) = \frac{1}{2} (1 - x_{\rm h})^2 \left(1 - 3y_W^2 + 2y_W^3\right)^{-1} ,$$

$$x_{\rm h} = \frac{m_{\rm h}^2}{m_t^2} , \ y_W = \frac{M_W^2}{m_t^2} , \quad f(x_{\rm h}, y_W) \simeq 0.1306$$

Top decays $t \to hq$ (II)

Relevant CKM combinations

Model	$t ightarrow \mathrm{h} u$	$t ightarrow \mathrm{h}c$
d	$ V_{ud}V_{td} ^2 (\sim \lambda^6) = 7.51 \cdot 10^{-5}$	$ V_{cd}V_{td} ^2 (\sim \lambda^8) = 4.01 \cdot 10^{-6}$
s	$ V_{us}V_{ts} ^2 (\sim \lambda^6) = 8.20 \cdot 10^{-5}$	$ V_{cs}V_{ts} ^2 (\sim \lambda^4) = 1.53 \cdot 10^{-3}$
b	$ V_{ub}V_{tb} ^2 (\sim \lambda^6) = 1.40 \cdot 10^{-5}$	$ V_{cb}V_{tb} ^2 (\sim \lambda^4) = 1.68 \cdot 10^{-3}$

N.B. $\lambda\simeq 0.22$

 \blacksquare With upper bounds 0.79% and 0.56% from the ATLAS and CMS collaborations in b and s models

 $|c_{\beta\alpha}(t_{\beta}+t_{\beta}^{-1})| \lesssim 4.9$

Higgs decays $h \to bq$ (I)

Rate

$$\Gamma_{(u_k)}(\mathbf{h} \to \bar{b}q + b\bar{q}) = c_{\beta\alpha}^2 (t_\beta + t_\beta^{-1})^2 |V_{kq}|^2 |V_{kb}|^2 \Gamma_{\rm SM}(\mathbf{h} \to b\bar{b})$$

with $Br_{SM}(h \rightarrow b\bar{b}) = 0.578$

CKM factors

Model	$h \rightarrow bd$	$\mathrm{h} ightarrow bs$
u	$ V_{ud}V_{ub} ^2 (\sim \lambda^6) = 1.33 \cdot 10^{-5}$	$ V_{us}V_{ub} ^2 (\sim \lambda^8) = 7.14 \cdot 10^{-7}$
с	$ V_{cd}V_{cb} ^2 (\sim \lambda^6) = 8.52 \cdot 10^{-5}$	$ V_{cs}V_{cb} ^2 \ (\sim \lambda^4) = 1.59 \cdot 10^{-3}$
t	$ V_{td}V_{tb} ^2 (\sim \lambda^6) = 7.90 \cdot 10^{-5}$	$ V_{ts}V_{tb} ^2 (\sim \lambda^4) = 1.61 \cdot 10^{-3}$

N.B. $\lambda\simeq 0.22$

■ Best prospects for $h \to bs$ in c, t models, for $c_{\beta\alpha}^2 (t_\beta + t_\beta^{-1})^2 \sim 1$, with Br(h → bs) up to the 10⁻³ level

Leptonic Higgs decays, $h \rightarrow \mu \tau$ (I)

Rate

$$\Gamma_{(\nu_{\sigma})}(\mathbf{h} \to \mu \bar{\tau} + \bar{\mu} \tau) = c_{\beta\alpha}^2 (t_{\beta} + t_{\beta}^{-1})^2 |U_{\mu\sigma} U_{\tau\sigma}|^2 \Gamma_{\rm SM}(\mathbf{h} \to \tau \bar{\tau})$$

with $Br_{SM}(h \rightarrow \tau \bar{\tau}) = 0.0637$

Mod.	$h \rightarrow e\mu$	$h \rightarrow e \tau$	$h \rightarrow \mu \tau$
ν_1	$ U_{e1}U_{\mu1} ^2(\frac{1}{9}) = 0.11$	$ U_{e1}U_{\tau 1} ^2(\frac{1}{9}) = 0.12$	$ U_{\mu 1}U_{\tau 1} ^2(\frac{1}{36}) = 0.028$
ν_2	$ U_{e2}U_{\mu2} ^2(\frac{1}{9}) = 0.09$	$ U_{e2}U_{\tau 2} ^2(\frac{1}{9}) = 0.13$	$ U_{\mu 2}U_{\tau 2} ^2(\frac{1}{9}) = 0.115$
ν_3	$ U_{e3}U_{\mu3} ^2 = 0.0128$	$ U_{e3}U_{\tau3} ^2 = 0.0097$	$ U_{\mu3}U_{\tau3} ^2(\frac{1}{4}) = 0.234$

PMNS factors; rough estimates correspond to tri-bimaximal mixing (except for $|U_{e3}|$)

Leptonic Higgs decays, $h \rightarrow \mu \tau$ (II)

From LHC run I,

■ CMS analysis:

$$Br(h \to \mu \bar{\tau} + \tau \bar{\mu}) = (0.84 \,{}^{+0.39}_{-0.37})\,\%$$

ATLAS analysis:

$$Br(h \to \mu \bar{\tau} + \tau \bar{\mu}) = (0.77 \pm 0.62)\%$$

• Br(h $\rightarrow \mu \bar{\tau} + \tau \bar{\mu}$) in the 1% ballpark with

 $c_{\beta\alpha}^2 (t_\beta + t_\beta^{-1})^2 \sim 1$

Leptonic Higgs decays, $h \rightarrow \mu \tau$ (III)

■ ... but yet to be seen at LHC@13TeV

2HDM		Analysis	
Higgs sig	mals (I)		

Signal strengths of the form

$$\mu_i^X = \frac{[\sigma(pp \to \mathbf{h})]_i}{[\sigma(pp \to \mathbf{h})_{\rm SM}]_i} \frac{\mathrm{Br}(\mathbf{h} \to X)}{\mathrm{Br}(\mathbf{h} \to X)_{\rm SM}}$$

- i for the different combinations of production mechanisms
- X for the decay channels

Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s} = 7$ and 8 TeV, [ATLAS & CMS, JHEP 1608 (2016) 045, arXiv:1606.02266]

Higgs signals (II)

Table 8: Best fit values of σ , B^{f} for each specific channel $i \rightarrow H \rightarrow f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurement, using the $V_{5} = 7$ and 8 TeV data. The cross sections are given for $\sqrt{5} = 8$ TeV, assuming the SM values for $\sigma/\sqrt{12}$ RTeV). The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The expected uncertainties in the measurements are displayed in parentheses. The SM predictions [52] and the ratios of the results to these SM predictions are also shown. The values labelled with a^{-1} are either not measured with a meaningful precision and therefore not quoted, in the case of the $H \rightarrow ZZ$ decay channel for the WH, ZH, and tHP production processes, or not measured with the godian UBTP production processes.

Produ	ction		Decay mode													
proce	55	$H \rightarrow$	γy [fb]		$H \rightarrow$	22 (fl	o]	$H \rightarrow W$	W [pb]		$H \rightarrow$	TT (fb]	$H \rightarrow$	bb [pb]	
		Best fit	Unce	rtainty	Best fit	Uncer	rtainty	Best fit	Unce	rtainty	Best fit	Unce	rtainty	Best fit	Unce	rtainty
		value	Stat	Syst	value	Stat	Syst	value	Stat	Syst	value	Stat	Syst	value	Stat	Syst
ggF	Measured	48.0 +10.0	+9.4	+3.2 -2.3	580 +170	+170 -160	+40 40	3.5 +0.7	+0.5 -0.5	+0.5	1300 +700 -700	+400	+500		-	
		(+9.7 (-9.5)	$\binom{+9.4}{-9.4}$	$\binom{+2.5}{-1.6}$	(*150 (~150)	$\binom{+140}{-130}$	$\binom{+30}{-20}$	$\binom{+0.7}{-0.7}$	$\binom{+0.5}{-0.5}$	$\binom{+0.5}{-0.5}$	(+700) (-700)	$(^{+400}_{-400})$	$\binom{+500}{-500}$		-	
	Predicted	44 ±5			510 ± 60			4.1 ± 0.5			1210 ±140			$11.0\pm\!\!1.2$		
	Ratio	$1.10 \substack{+0.23 \\ -0.22}$	+0.22 -0.21	+0.07 -0.05	$1.13 \substack{+0.34 \\ -0.31}$	+0.33 -0.30	$^{+0.09}_{-0.07}$	0.84 +0.17	+0.12 -0.12	$^{+0.12}_{-0.11}$	1.0 +0.6	+0,4 -0,4	+0.4		-	
VBF	Measured	4.6 +1.9	+1.8 -1.7	+0.6	3 +46 -20	+46 -25	+7	0.39 +0.14	+0.13	+0.07	125 +39	+34 -32	+19 -18		-	
		$\binom{+1.8}{-1.6}$	$\binom{+1.7}{-1.6}$	$\binom{+0.5}{-0.4}$	(+60) (-39)	(+60 39)	$\binom{+8}{-5}$	(+0.15) (-0.13)	$\binom{+0.13}{-0.12}$	$\binom{+0.07}{-0.06}$	(+39) (-37)	$\binom{+34}{-32}$	$\binom{+19}{-18}$		-	
	Predicted	3.60 ± 0.20			42.2 ± 2.0			0.341 ± 0.017			100 ±6			0.91 ± 0.04		
	Ratio	1.3 +0.5	+0.5	+0.2 -0.1	$0.1 {}^{+1.1}_{-0.6}$	+1.1 -0.6	$^{+0.2}_{-0.2}$	1.2 +0.4	+0.4 -0.3	$^{+0.2}_{-0.2}$	1.3 +0.4	+0.3	$^{+0.2}_{-0.2}$		-	
WH	Measured	$0.7^{+2.1}_{-1.9}$	+2.1	+0.3		-		0.24 +0.18	+0.15	+0.10	-64 +64	+55	+32	$0.42^{+0.21}_{-0.20}$	+0.17	+0.12
		$\binom{+1.9}{-1.8}$	$\binom{*1.9}{-1.8}$	$\binom{+0.1}{-0.1}$		-		$\binom{+0.16}{-0.14}$	(+0.14 (-0.13)	$\binom{+0.08}{-0.07}$	(+6? -64)	(*60) (-54)	$\binom{+30}{-32}$	$\binom{+0.22}{-0.21}$	$\binom{+0.18}{-0.17}$	$\binom{+0.12}{-0.11}$
	Predicted	1.60 ± 0.09			18.8 ± 0.9			0.152 ± 0.007			44.3 ±2.8			0.404 ± 0.01	7	
	Ratio	$0.5^{+1.3}_{-1.2}$	+1.3 -1.1	+0.2 -0.2		-		1.6 +1.2 -1.0	+1.0 -0.9	+0.6 -0.5	$-1.4^{+1.4}_{-1.4}$	+1.2 -1.1	+0.7	$1.0 \substack{+0.5 \\ -0.5}$	+0.4 -0.4	+0.3
ZH	Measured	0.5 +2.9	+2.8 -2.3	+0.5		-		0.53 +0.23	+0.21	+0.10 -0.07	58 +56	+52	+20	$0.08 \substack{+0.09 \\ -0.09}$	+0.08	+0.04 -0.04
		$\binom{+2.3}{-1.9}$	$\binom{*2.3}{-1.9}$	$\binom{+0.1}{-0.1}$		-		$\binom{+0.17}{-0.14}$	$\binom{+0.16}{-0.14}$	$\binom{+0.05}{-0.04}$	(+49) (-42)	(*46 -38)	$\binom{+16}{-12}$	(+0.10) -0.09)	$\binom{+0.09}{-0.08}$	$\binom{+0.05}{-0.04}$
	Predicted	0.94 ± 0.06			11.1 ± 0.6			0.089 ± 0.005			26.1 ± 1.8			0.238 ±0.01	2	
	Ratio	$0.5 \substack{+3.0 \\ -2.5}$	+3.0 -2.5	+0.5 0.2		-		5.9 +2.6	+2.3 -2.1	$^{+1.1}_{-0.8}$	2.2 +2.2	+2.0 -1.7	+0.8 -0.6	$0.4 ^{+0.4}_{-0.4}$	+0.3	$^{+0.2}_{-0.2}$
пH	Measured	0.64 +0.48 -0.38	+0.48 -0.38	+0.07 -0.04		- 1		0.14 +0.05	+0.04	+0.03	-15 +30 -26	+26 -22	+15 -15	$0.08 \substack{+0.07 \\ -0.07}$	$^{+0.04}_{-0.04}$	+0.05
		(+0.45) (-0.34)	$\binom{*0.44}{-0.33}$	$\binom{+0.10}{-0.05}$		-		$\binom{+0.04}{-0.04}$	$\binom{+0.04}{-0.04}$	$\binom{+0.02}{-0.02}$	(+31) (-26)	$\binom{*26}{-22}$	$\binom{+16}{-13}$	(+0.07 -0.06)	$\binom{+0.04}{-0.04}$	$\left({}^{+0.06}_{-0.05} \right)$
	Predicted	0.294 ±0.035	;		3.4 ± 0.4			0.0279 ±0.003	2		8.1 ±1.0			0.074 ± 0.001	8	
	Ratio	$2.2 + 1.6 \\ -1.3$	+1.6 -1.3	+0.2 -0.1		-		5.0 +1.8	+1.5 -1.5	+1.0 -0.9	-1.9 +3.7	+3.2 -2.7	+1.9 -1.8	$1.1^{+1.0}_{-1.0}$	+0.5	+0.8 -0.8

Higgs signals (III)

Table 4: Higgs boon production cross sections or, partial decay withhs I7, and total decay within (in the absence of BSM decays) parameterised as a function of the x coupling modifiers as discussed in the text, including higher-orden QCD and EW corrections to the inclusive cross sections and decay partial within. The coefficients in the expression for I7, do not sum exactly to unity because some contributions that are negligible or not relevant to the analyses presented in this paper are not shown.

			Effective	Resolved
Production	Loops	Interference	scaling factor	scaling factor
$\sigma(ggF)$	~	t-b	κ_q^2	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma(VBF)$	-	-		$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	-	-		κ_W^2
$\sigma(qq/qg \to ZH)$	-	-		κ _Z ²
$\sigma(gg \to ZH)$	~	t-Z		$2.27\cdot\kappa_Z^2+0.37\cdot\kappa_t^2-1.64\cdot\kappa_Z\kappa_t$
$\sigma(ttH)$	-	-		κ ² ₁
$\sigma(gb \to tHW)$	-	t-W		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qq/qb \to tHq)$	-	t-W		$3.40\cdot\kappa_t^2+3.56\cdot\kappa_W^2-5.96\cdot\kappa_t\kappa_W$
$\sigma(bbH)$	-	-		κ_b^2
Partial decay width				
Γ^{ZZ}	-	-		κ ² _Z
Γ^{WW}	-	-		κ_W^2
$\Gamma^{\gamma\gamma}$	~	t-W	κ_{γ}^2	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
Γτ	-	-		κ_T^2
Γ^{bb}	-	-		κ_b^2
$\Gamma^{\mu\mu}$	-	-		κ_{μ}^2
Total width (B _{BSM} =	0)			
				$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_q^2 +$
Γ_H	~	-	κ_H^2	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$
				$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{(Z\gamma)}^2 +$
				$0.0001 \cdot \kappa_s^2 + 0.00022 \cdot \kappa_{\mu}^2$

2HDM	BGL models	Analysis	Conclusions
BGL vs.	Higgs signals – Me	odified couplings	

 $h\bar{t}t$ coupling $(\times m_t/v)$ in BGL models

u,c	t	d_i
$s_{\beta\alpha} + c_{\beta\alpha}t_{\beta}$	$s_{\beta\alpha} - c_{\beta\alpha}t_{\beta}^{-1}$	$s_{\beta\alpha} + c_{\beta\alpha} [(1 - V_{td_i} ^2)t_{\beta} - V_{td_i} ^2 t_{\beta}^{-1}]$

 $h\bar{b}b$ coupling $(\times m_b/v)$ in BGL models

d,s	b	u_i
$s_{\beta\alpha} + c_{\beta\alpha}t_{\beta}$	$s_{\beta\alpha} - c_{\beta\alpha}t_{\beta}^{-1}$	$s_{\beta\alpha} + c_{\beta\alpha} [(1 - V_{u_ib} ^2)t_{\beta} - V_{u_ib} ^2 t_{\beta}^{-1}]$

 $h\bar{\tau}\tau$ coupling $(\times m_{\tau}/v)$ in BGL models

${ m e},\mu$	au	$ u_i $
$s_{\beta\alpha} + c_{\beta\alpha}t_{\beta}$	$s_{\beta\alpha} - c_{\beta\alpha} t_{\beta}^{-1}$	$s_{\beta\alpha} + c_{\beta\alpha} [(1 - U_{\tau i} ^2) t_{\beta} - U_{\tau i} ^2 t_{\beta}^{-1}]$

Don't forget that $hVV \mapsto s_{\beta\alpha}hVV!$

2HDM	BGL models	Analysis	Conclusions

68%, 95% and 99% CL regions in t_β vs $\alpha-\beta$ for a sample of models N.B. As in arXiv:1508.05101

Prospects $-t \rightarrow hq \& h \rightarrow \mu\tau$

Miguel Nebot

Prospects $-t \rightarrow hq \& h \rightarrow \mu\tau$

- Involves additional parameters: masses of H^{\pm} , A, H
- Without mixing in the scalar sector, provides a first understanding of valid t_β ranges

Botella et al., JHEP 1407 (2014) 078, arXiv:1401.6147

- With mixing, interplay of different contributions very relevant
- Massive amount of observables (meson mixings, rare decays, ...)
- Scalar sector constraints (positivity, perturbative unitarity, oblique corrections)

+ Scalar potential (Positivity, Perturbative unit., \dots) + oblique EW

Summary & Conclusions

Class of models with reduced parametric freedom: $\tan \beta \& \alpha - \beta$: \Rightarrow predictivity & correlations,

 \Rightarrow importance of flavour diagonal Higgs data to constrain flavour changing couplings.

- $t \to hu \& t \to hc$ branching ratios can saturate current bounds
- Different correlated patterns, $Br(t \rightarrow hc) > Br(t \rightarrow hu)$ in s, b models but $Br(t \rightarrow hc) < Br(t \rightarrow hu)$ in d models
- $\mathbf{h} \rightarrow bs \& \mathbf{h} \rightarrow bd$ branching ratios within reach of ILC sensitivity
- $\mathbf{h} \rightarrow \mu \tau$ branching ratios can match the run I "CMS hint"
- Correlations between flavour changing processes in the quark and lepton sectors

Summary & Conclusions

- Word of caution: in some models, low-energy constraints will play an important role
- ... more involved game including all scalars
- Detailed analysis of all models in progress, addressing implications beyond the SM-like Higgs
 - in terms of deviations from SM expectations in different observables (+ correlations)
 - in terms of prospects for the new scalars

Thank you for your attention!

Backup: Old full analysis, No scalar mixing results

2HDM		Conclusions
Backup: 1	Meson mixings	

- Naive bounds from the h contribution alone shown as dashed lines in t → hu, hc, h → bs, bd plots
- **B**ut...

$$M^{0}$$
 $\rightarrow M_{12} \propto (t_{\beta} + t_{\beta}^{-1})^{2} \left(\frac{c_{\beta\alpha}^{2}}{m_{\rm h}^{2}} + \frac{s_{\beta\alpha}^{2}}{m_{\rm H}^{2}} - \frac{1}{m_{\rm A}^{2}} \right)$

- with $c_{\beta\alpha} \to 0$, $m_{\rm H} \simeq m_{\rm A}$ is safe (favoured in addition by EW precision data, oblique parameters)
- departing from $c_{\beta\alpha} \to 0$ in $\{c_{\beta\alpha}, m_{\rm H}, m_{\rm A}\}$, cancellation is still complete in this subspace

$$(c_{\beta\alpha}^2, m_{\rm H}^2, m_{\rm A}^2) = (c^2, M^2, [c^2/m_{\rm h}^2 + (1 - c^2)/M^2]^{-1})$$

• explicitly check that the naive "h alone bound" sizably overconstrains with respect to the "full" situation

2HDM			Conclusions
Rackup 1	Porturbative unit	arity	

- Scalar potential with $\lambda_5 = \lambda_6 = \lambda_7 = 0$
- In terms minimal set of parameters, relations like

$$m_{\mathcal{A}}^2 s_{\beta\alpha} c_{\beta\alpha} = v^2 [s_{2\alpha} (\lambda_2 s_\beta^2 - \lambda_1 c_\beta^2) + (\lambda_3 + \lambda_4) s_{2\beta} c_{2\alpha})]$$

Gunion & Haber, Phys. Rev. D67 (2003) 075019

• Since $c_{\beta\alpha}(t_{\beta} + t_{\beta}^{-1}) = \frac{c_{\beta\alpha}}{s_{\beta}c_{\beta}}$,

$$\frac{c_{\beta\alpha}s_{\beta\alpha}}{s_{\beta}c_{\beta}} = c_{\beta\alpha}(t_{\beta} + t_{\beta}^{-1})s_{\beta\alpha} = \frac{v^2}{m_{\rm A}^2}[s_{2\alpha}(\lambda_2 t_{\beta} - \lambda_1 t_{\beta}^{-1}) + 2(\lambda_3 + \lambda_4)c_{2\alpha}]$$

For example, for $m_{\rm A} \sim v$, $c_{\beta\alpha}(t_{\beta} + t_{\beta}^{-1}) \sim \mathcal{O}(1)$ does not challenge naive perturbativity requirements $\lambda_i \leq 4\pi$

Conclusions

Backup: $\mu \to e\gamma$ (I)

• Chiral suppression at one loop lifted at two loops Bjorken & Weinberg, Phys. Rev. Lett. 38 (1977) 622

Barr-Zee contributions

Barr & Zee, Phys. Rev. Lett. 65 (1990) 21

$$Br(\mu \to e\gamma)_{2 \text{ loop}} = \frac{3}{8} \left(\frac{\alpha}{\pi}\right)^3 (t_\beta + t_\beta^{-1})^2 |U_{ej}U_{\mu j}^*|^2 |A_{(Q)}|^2 \simeq 5.77 \times 10^{-9} (t_\beta + t_\beta^{-1})^2 |U_{ej}U_{\mu j}^*|^2 |A_{(Q)}|^2$$

Backup: $\mu \to e\gamma$ (II)

• $A_{(Q)}$ is the amplitude:

$$A_{(Q)} = c_{\beta\alpha}s_{\beta\alpha}\left[\Sigma(m_{\rm h}) - \Sigma(m_{\rm H})\right] + \frac{8}{3}K_t\left[c_{\beta\alpha}^2f(z_{\rm h}) + s_{\beta\alpha}^2f(z_{\rm H}) - g(z_{\rm A})\right]$$

 $y_X=M_W^2/M_X^2$ and $z_X=m_t^2/M_X^2~(X={\rm h,H,A}),$ and K_t the model dependent ${\rm h}t\bar{t}$ factor

Backup: $\mu \to e\gamma$ (III)

Explicit check

ý