Vacua of an S3-symmetric scalar potential

Multi-Higgs-Doublet Models
Lisboa 2016

Per Osland
University of Bergen

Work with D. Emmanuel-Costa, O. M. Ogreid, M. N. Rebelo
arXiv:1601.04654, JHEP



Consider 3 SU(2) doublets

3 fermion families, 3 scalar doublets”
Perhaps “natural” dark matter?
Spontaneous CP violation?

Impose Sz discrete symmetry

Rich phenomenology



Arguments for S3 symmetry

General potential has 46 parameters

Most general Ss3 symmetric potential has 10
More predictive!

Symmetries help to control FCNC

Symmetry may help stabilise Dark Matter
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S3 decomposition

S3 can be decomposed

— asinglet and a doublet (with respect to Ss)
— a pseudosinglet and a doublet (with respect to S3)

These two choices are very similar



Two “Frameworks”

May work with the

® reducible representation (Derman) or the

® irreducible representations (Pakvasa & Sugawara,
Das & Dey)

There is a linear map from one framework to the other
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Irreducible representations
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Note that irreducible representation
chooses a particular “direction” among

¢17 ¢27 ¢3

Not unigue — convention



This potential exhibits
hi — —h, symmetry
but ho — —ho

Equivalent doublet representation
X1 1 i1 hy
(2) -7 ()G

the above symmetry becomes

X1 < X2



In the irreducible-rep framework
the case A =0 SPECIAL

or, in the reducible-rep framework
4A -2(C+C+D)— B+ Ey + Es + E; =0

(which (to Derman) did not look “natural”)

leads to a continuous SO(2) symmetry

hi \ [ cos —sinf hy
hy )\ sinf cosf ho

Massless states, when vevs break it!



At this stage, the two frameworks are
equivalent

However, introducing Yukawa
couplings, for example, in terms of

¢17 ¢27 ¢3
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they would in general be different



The vevs are related
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Summary of representations
2 “frameworks”

Reducible representation (Derman):

G1, P2, O3 P1, P2, P3

Irreducible representation (Pakvasa & Sugawara, Das & Dey):

hl, hg, hs Wy, W2, Ws



Vacua—-a classification

Derivatives of potential wrt (complex) fields must vanish

Three complex derivatives =0 or

Five real derivatives (3 moduli, 2 relative phases) =0

The minimisation conditions must be consistent.
This is an important

May work in either framework

But a particular vacuum may look simpler in one framework
than in the other.



Vacua—-a classification

Derivatives of potential wrt (complex) fields must vanish

Three complex derivatives =0 or

Five real derivatives (3 moduli, 2 relative phases) =0

Note: Alternative classification given by Ivanov and Nishi,
1410.6139, JHEP

Symmetries of 3HDM vacua



Our approach

The 5 minimisation equations give 5 constraints
on 10 potential parameters —
for a given vacuum configuration

A 101 N 109 A

(w17w27w5) = (wle , WoCl ,UJS)

T

. real (convention
Irreducible framework. ( )

Are the 5 equations independent?
Are they consistent?
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These derivatives do not depend on A5 and Ag separately, only on the sum, A5 + Aq.

Likewise, no dependence on A1, Ay and A3 separately, only on two combinations orthogonal

o +X =24 =0 grglevant parameters



> equations

a1 Pr + a1oPo + a13P3 + au Py + aisPs = by
a21P1 + a2 P + a3 P53 + a4 Py + a5 P5 = by
az1P1 + azgaPo + aszP3 + az Py + agsPs = bs
a1 P + agoPo + ag3Ps + aqa Py + ags B5 = by

as1 Py + asoPo + a53Ps + asa Py 4+ as5 P = b

The P, denote different parameters of the potential.

These five equations define five hyperplanes in the parameter space.

Are the 5 equations independent? Study determinant!

Not all of the possible (2) = 56 combinations will lead to five independent equations.

Are they consistent?



11 real vacua .
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|6 complex vacua

IRF (Irreducible Rep.) |

RRF (Reducible Rep.)
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Complex 3 independent constraints



|6 complex vacua
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« C-IV-a, C-IV-d, C-V:
When constraints are imposed,
the vacuum turns out to be real!



|6 complex vzfga,
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Vacuum
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Philosophy

Note that we do not consider the potential parameters
“God given”, but rather specity the desired form of the
vacuum (“designer vacuum”) and then ask:

Which choice of potential parameters can produce this
vacuum?

Of special interest:

 Complex vacuum (Spontaneous CP violation?)

e Vacuum with zero vevs (DM candidate)



Some complex vacua are related to a real vacuum, as a
“generalization” (but note more constraints)

Complex Real “origin”
C-I-a none
C-I1I-a R-II-1a
C-11I-b none
C-1II-c | R-I-2a,2b,2¢c, R-1I-3
C-111-d.e none
C-1III-f none
C-11I-g none
C-1II-h R-II-1b,1c
C-111- R-II-1b,1c
C-IV-a* R-III
C-IV-b none
C-IV-c R-II-1b,1c
C-1V-d* R-III
C-1V-e none
C-IV-f R-II-1b,1c
C-V* R-III




We start with real coefficients in the potential

® Complex vevs are no guarantee for SCPV

® The symmetry of the Lagrangian could
“hide” the complex conjugation

2im /3 —27j7r/3)

Example: C-I-a  (p1, p2,p3) = 2(1,e77/7 e

Complex conjugation:
ZE(l, 62’i7r/37 6—2i7r/3) s ZE(l, 6—21'77/37 €2i7r/3)
But the Lagrangian has a symmetry:

P2 <> @3 and  py <> p3
which will undo the complex conjugation



Two special complex vacua

Pakvasa & Sugawara (1978)

A 10 A _—10 A

(w17w27w5) = (UJ@ , WE ,UJS)

lvanov & Nishi (2014)

AN ’I:O' A )

(w1, we, wg) = (we', we' , wg)

Neither violates CP



Both these vacua require Ay =0

PS vacuum, for example

(w1, wo, wg) = (wew,we—w,ws) =X (we—w,wew,ws)

When )\, =0 have symmetry
hl < hQ



Several complex vacua represent spontaneous CP violation
All vacua with Ay, = 0 conserve CP

Ay = 0 leads to an additional SO(2) symmetry

Vacuum | Ay | SCPV || Vacuum | Ay, | SCPV || Vacuum | A\, | SCPV
C-I-a X no C-1II-f,g | O no C-IV-c | X | yes
C-III-a | X | yes C-III-h | X | yes C-IV-d | 0 no
C-III-b | 0 no C-III-i | X no C-IV-e | O no
C-III-¢c | 0 no C-IV-a | 0 no C-IV-f | X | yes
C-III-d,e | X no C-IV-b | O no C-V 0 no




Several complex vacua represent CP conservation

Some of these require Ay = 0

(massless states, must break SO(2) in the potential)

Irred rep Reducible rep
C-I-a Wy, 1wy, O x, xei%, ret 5
ho <+ —hs P2 < O3

since A =0




Several complex vacua represent CP conservation

Irred rep Reducible rep

C-I1I-b +2104, 0, wg xr+iy,x—1y,x

hl < —hl §b2 < Qb?)




Several complex vacua represent CP conservation

Irred rep Reducible rep
C-1II-c W€, Wye'?, () re'’ — 2, — e — 2,y
No spontaneous CP violation Not obvious

However, in this case we have an SO(2) symmetry.
Rotate to basis with equal moduli, using SO(2)
(1€, 0272, 0) — (ae, ae™?,0)
Overall phase rotation:
(ae, ae?,0) = (ae®,ae™,0)




Formal argument

CP is conserved if one can find a transformation U such that

Us{0]@;]0)" = {0]®;]0)
which is also a symmetry of the Lagrangian

Branco, Gerard, Grimus, 1984

In this case: [J =

o = O
o O =
—_ O O

which is a symmetry of the potential



Several complex vacua represent CP conservation

Irred rep Reducible rep
C-IV-e \/— :iﬁ ggf Woe'l re'f? 4 re'P1€ 4+ x retf? — re'P1€ 4+ g,
Woe'?? g —2re'’? 4+ g

More complicated to show CP conservation




Several complex vacua represent CP conservation

Less obvious explanation:
With A\, = 0 there is an SO(2) symmetry within Ay, hs
Exploit this to transform such that vevs get same modulus

By invoking relation between moduli of vevs of doublet,
get equal and opposite phases:

(1€t Wee'?, wg) — (ae™, ae™™, wg)

As a result U;;(0|®;]0)" = (0|P;|0)

IS satisfied, like in case C-lll-c



Summary

We start with an S3-symmetric potential with
real coefficients

WWe list all possible vacua and their constraints

Vacua with additional SO(2) symmetry do not
violate CP spontaneously

There are solutions that violate CP
spontaneously

There are solutions with potential Dark
Matter candidates

Flavour sector potentially very rich



