# From $E_8$ -inspired trinification to a L-R symmetric theory

#### A. P. Morais<sup>1,2</sup>

J. E. Camargo-Molina<sup>2</sup> A. Ordell<sup>2</sup> R. Pasechnik<sup>2</sup> M. O. P. Sampaio<sup>1</sup> J. Wessen<sup>2</sup>

<sup>1</sup>Center for Research and Development in Mathematics and Applications (CIDMA)
Aveiro University, Aveiro, Portugal

<sup>2</sup>Theoretical High Energy Physics (THEP) Lund University, Lund, Sweden

September 7, 2016











# Outline

- Motivations and issues
- 2 The Model
- Symmetry breaking
- Final remarks

### Outline

- Motivations and issues
- 2 The Model
- Symmetry breaking
- 4 Final remarks

# Trinification models (Glashow, Georgi and De Rujula 1984)

- LR gauge interactions and well motivated by E<sub>6</sub>
- $\bullet \ SU(3)_L \times SU(3)_R \times SU(3)_C$  with  $\mathbb{Z}_3 \to \text{gauge unification}$

# Trinification models (Glashow, Georgi and De Rujula 1984)

- LR gauge interactions and well motivated by E<sub>6</sub>
- $SU(3)_L \times SU(3)_R \times SU(3)_C$  with  $\mathbb{Z}_3 \to$  gauge unification
- All matter can be elegantly arranged in bi-fundamental representations for each generation

$$27^{i}=\left(3,\overline{3},1
ight)^{i}\otimes\left(1,3,\overline{3}
ight)^{i}\otimes\left(\overline{3},1,3
ight)^{i}\equiv L\otimes \mathcal{Q}_{R}\otimes \mathcal{Q}_{L}$$

- The model can accomodate any quark and lepton masses and mixing angles (Sayre et al. 2006)
- Naturally light neutrinos via, e.g. radiative seesaw (Cauet et al. 2011)

# Trinification models (Glashow, Georgi and De Rujula 1984)

- LR gauge interactions and well motivated by E<sub>6</sub>
- $SU(3)_L \times SU(3)_R \times SU(3)_C$  with  $\mathbb{Z}_3 \to$  gauge unification
- All matter can be elegantly arranged in bi-fundamental representations for each generation

$$27^{i} = \left(3, \overline{3}, 1\right)^{i} \otimes \left(1, 3, \overline{3}\right)^{i} \otimes \left(\overline{3}, 1, 3\right)^{i} \equiv L \otimes Q_{R} \otimes Q_{L}$$

- The model can accomodate any quark and lepton masses and mixing angles (Sayre et al. 2006)
- Naturally light neutrinos via, e.g. radiative seesaw (Cauet et al. 2011)
- Well motivated as low energy versions of  $E_8 \times E_8$  heterotic string theory (Gross et al. 1985),  $E_6$  orbifold (Braam et al. 2010) or N=8 supergravity (Cremmer et al. 1979).

# Issues of standard trinification

- ullet GUT scale fermion masses through  $L \cdot L' \cdot L''$  type operators
  - Higher dimensional operators needed (Cauet et al. 2011)

## Issues of standard trinification

- GUT scale fermion masses through  $L \cdot L' \cdot L''$  type operators
  - Higher dimensional operators needed (Cauet et al. 2011)
- Considerable amount of particles and many couplings involved
  - Realistic calculations cumbersome
- Unmotivated Hierarchy between the trinification and the EW breaking scales (common to most GUTs)

# Issues of standard trinification

- GUT scale fermion masses through  $L \cdot L' \cdot L''$  type operators
  - Higher dimensional operators needed (Cauet et al. 2011)
- Considerable amount of particles and many couplings involved
  - Realistic calculations cumbersome
- Unmotivated Hierarchy between the trinification and the EW breaking scales (common to most GUTs)

Trinification-based models were left as the least developed GUT scenarios

# Our proposal

#### Novel solution including

- A global SU(3)<sub>F</sub> family symmetry inspired by E<sub>8</sub>
- Unification of the Higgs and lepton sectors via a common chiral supermultiplet

# Our proposal

#### Novel solution including

- igoplus A global  $SU(3)_F$  family symmetry inspired by  $E_8$
- Unification of the Higgs and lepton sectors via a common chiral supermultiplet

#### Low energy completion

non-SUSY multi-scalar and multi-fermion models

### Outline

- Motivations and issues
- 2 The Model
- Symmetry breaking
- 4 Final remarks

# The Model — Chiral supermultiplet representations

#### $SU(3)_F \times E_6$ is a maximal subgroup of $E_8$

Branching rules for the fundamental representation of E<sub>8</sub> (Slansky)

$$248 = (8,1) \oplus (1,78) \oplus (3,27) \oplus (\overline{3},\overline{27})$$

Branching rules for the adjoint representation of E<sub>6</sub> down to trinification

**78** = (**8**, **1**, **1**) 
$$\oplus$$
 (**1**, **8**, **1**)  $\oplus$  (**1**, **1**, **8**)  $\oplus$  (**3**, **3**,  $\overline{\textbf{3}}$ )  $\oplus$  ( $\overline{\textbf{3}}$ ,  $\overline{\textbf{3}}$ , **3**)

# The Model — Chiral supermultiplet representations

#### $SU(3)_F \times E_6$ is a maximal subgroup of $E_8$

Branching rules for the fundamental representation of E<sub>8</sub> (Slansky)

$$248 = (8,1) \oplus (1,78) \oplus (3,27) \oplus (\overline{3},\overline{27})$$

Branching rules for the adjoint representation of E<sub>6</sub> down to trinification

$$78 = (8, 1, 1) \oplus (1, 8, 1) \oplus (1, 1, 8) \oplus (3, 3, \overline{3}) \oplus (\overline{3}, \overline{3}, 3)$$

Matter content of our E<sub>8</sub>-inspired model in red

$$[SU(3)_L \times SU(3)_R \times SU(3)_C] \times \mathbb{Z}_3 \times SU(3)_F$$
,

ullet  $\mathbb{Z}_3$  is a cyclic permutation symmetry that enables **gauge coupling unification** 

$$[SU(3)_L \times SU(3)_R \times SU(3)_C] \times \mathbb{Z}_3 \times SU(3)_F$$
,

ullet  $\mathbb{Z}_3$  is a cyclic permutation symmetry that enables gauge coupling unification

| Chiral Supermultiplet Fields |                            |                       |                    |                       |                       |
|------------------------------|----------------------------|-----------------------|--------------------|-----------------------|-----------------------|
| Superfield                   |                            | SU(3) <sub>C</sub>    | SU(3) <sub>L</sub> | $SU(3)_R$             | SU(3) <sub>F</sub>    |
| Lepton                       | $(L^i)^l_r$                | 1                     | $3^l$              | $\bar{3}_r$           | <b>3</b> <sup>i</sup> |
| Right-Quark                  | $\left(Q_R^i\right)^r{}_x$ | $\bar{3}_{x}$         | 1                  | <b>3</b> <sup>r</sup> | $3^{i}$               |
| Left-Quark                   | $\left(Q_L^i ight)^x{}_l$  | <b>3</b> <sup>x</sup> | $\bar{3}_{l}$      | 1                     | $3^{i}$               |
| Colour-adjoint               | $\Delta^a_C$               | <b>8</b> <sup>a</sup> | 1                  | 1                     | 1                     |
| Left-adjoint                 | $\Delta_L^a$               | 1                     | $8^{a}$            | 1                     | 1                     |
| Right-adjoint                | $\Delta_R^a$               | 1                     | 1                  | $8^a$                 | 1                     |
| Flavour-adjoint              | $\Delta_F^a$               | 1                     | 1                  | 1                     | <b>8</b> <sup>a</sup> |

| Gauge Supermultiplet Fields                       |                               |                       |         |   |   |
|---------------------------------------------------|-------------------------------|-----------------------|---------|---|---|
|                                                   |                               |                       |         |   |   |
| Gluon                                             | $G_C^{\mu a}$ , $\lambda_C^a$ | <b>8</b> <sup>a</sup> | 1       | 1 | 1 |
| Left-Gluon                                        | $G_L^{\mu a}$ , $\lambda_L^a$ | 1                     | $8^{a}$ | 1 | 1 |
| Right-Gluon $G_R^{\mu a}$ , $\lambda_R^a$ 1 1 8 1 |                               |                       |         |   |   |

#### Fundamental tri-triplets:

#### $\mathbb{Z}_3$ cyclic permutations:

$$L\overset{\mathcal{Z}_3}{
ightarrow} Q_{\mathsf{L}},$$
  $Q_{\mathsf{L}}\overset{\mathcal{Z}_3}{
ightarrow} Q_{\mathsf{R}},$   $Q_{\mathsf{R}}\overset{\mathcal{Z}_3}{
ightarrow} L.$ 

We refer to the model as Supersymmetric Higgs-Unified Trinification

#### Fundamental tri-triplets:

$$\left(L^{i}\right)^{l}{}_{r} = \left(\begin{array}{ccc} H_{11} & H_{12} & \nu_{L} \\ H_{21} & H_{22} & e_{L} \\ \nu_{R} & e_{R} & \Phi \end{array}\right)^{i}, \\ \left(Q_{R}^{i}\right)^{r}{}_{x} = \left(\begin{array}{ccc} u_{R}^{\bar{1}} & u_{R}^{\bar{2}} & u_{R}^{\bar{3}} \\ d_{R}^{\bar{1}} & d_{R}^{\bar{2}} & d_{R}^{\bar{3}} \\ D_{R}^{\bar{1}} & D_{R}^{\bar{2}} & D_{R}^{\bar{3}} \end{array}\right)^{i}, \\ \left(Q_{L}^{i}\right)^{x}{}_{l} = \left(\begin{array}{ccc} u_{L}^{1} & d_{L}^{1} & D_{L}^{1} \\ u_{L}^{2} & d_{L}^{2} & D_{L}^{2} \\ u_{L}^{3} & d_{L}^{3} & D_{L}^{3} \end{array}\right)^{i}$$

#### $\mathbb{Z}_3$ cyclic permutations:

$$L\overset{\mathcal{Z}_3}{
ightarrow} Q_{\mathsf{L}},$$
  $Q_{\mathsf{L}}\overset{\mathcal{Z}_3}{
ightarrow} Q_{\mathsf{R}},$   $Q_{\mathsf{R}}\overset{\mathcal{Z}_3}{
ightarrow} L.$ 

We refer to the model as Supersymmetric Higgs-Unified Trinification



$$\begin{split} W &= \sum_{A=L,R,C} \left( \lambda_{78} d_{abc} \Delta_A^a \Delta_A^b \Delta_A^c + \mu_{78} \delta_{ab} \Delta_A^a \Delta_A^b \right) + \left( \lambda_1 d_{abc} \Delta_F^a \Delta_F^b \Delta_F^c + \mu_1 \delta_{ab} \Delta_F^a \Delta_F^b \right) \\ &+ \lambda_{27} \varepsilon_{ijk} \left( \underline{Q}_L^i \right)^x {}_l \left( \underline{Q}_R^j \right)^r {}_x \left( \underline{L}^k \right)^l {}_r \,, \quad \text{with} \quad d_{abc} = 2 \text{Tr} \left[ \left\{ T_a, T_b \right\} T_c \right] \end{split}$$

- i, j and  $k \rightarrow$  flavour indices
- x, l and  $r \rightarrow$  colour, left-chirality and right-chirality respectively
- a, b and  $c \rightarrow$  adjoint indices.
- Universal Yukawa coupling for chiral quarks at unification scale,  $\lambda_{27}$

$$\begin{split} W &= \sum_{A=L,R,C} \left( \lambda_{78} d_{abc} \Delta_A^a \Delta_A^b \Delta_A^c + \mu_{78} \delta_{ab} \Delta_A^a \Delta_A^b \right) + \left( \lambda_1 d_{abc} \Delta_F^a \Delta_F^b \Delta_F^c + \mu_1 \delta_{ab} \Delta_F^a \Delta_F^b \right) \\ &+ \lambda_{27} \varepsilon_{ijk} \left( Q_L^i \right)^x {}_l \left( Q_R^i \right)^r {}_x \left( L^k \right)^l {}_r, \quad \text{with} \quad d_{abc} = 2 \text{Tr} \left[ \left\{ T_a, T_b \right\} T_c \right] \end{split}$$

- i, j and  $k \rightarrow$  flavour indices
- $\bullet$  x, l and  $r \rightarrow$  colour, left-chirality and right-chirality respectively
- a, b and  $c \rightarrow$  adjoint indices.
- Universal Yukawa coupling for chiral quarks at unification scale, λ<sub>27</sub>
- In a minimal  $E_6$ -inspired model with flavour  $SU(3)_F$  the superpotential would be just the last term

$$\begin{split} W &= \sum_{A=L,R,C} \left( \lambda_{78} d_{abc} \Delta_A^a \Delta_A^b \Delta_A^c + \mu_{78} \delta_{ab} \Delta_A^a \Delta_A^b \right) + \left( \lambda_1 d_{abc} \Delta_F^a \Delta_F^b \Delta_F^c + \mu_1 \delta_{ab} \Delta_F^a \Delta_F^b \right) \\ &+ \lambda_{27} \varepsilon_{ijk} \left( \underline{Q}_L^i \right)^x {}_l \left( \underline{Q}_R^j \right)^r {}_x \left( \underline{L}^k \right)^l {}_r \,, \quad \text{with} \quad d_{abc} = 2 \text{Tr} \left[ \left\{ T_a, T_b \right\} T_c \right] \end{split}$$

- i, j and  $k \rightarrow$  flavour indices
- ullet x, l and r o colour, left-chirality and right-chirality respectively
- a, b and  $c \rightarrow$  adjoint indices.
- Universal Yukawa coupling for chiral quarks at unification scale, λ<sub>27</sub>
- In a minimal E<sub>6</sub>-inspired model with flavour SU(3)<sub>F</sub> the superpotential would be just the last term
  - Why then E<sub>8</sub>?
  - Minimal SUSY trinification with  $SU(3)_F$  and Higgs-lepton unification does not have a stable vacuum  $\rightarrow SU(3)_C$  and  $SU(2)_L$  fully broken at GUT scale

$$\begin{split} W &= \sum_{A=L,R,C} \left( \lambda_{78} d_{abc} \Delta_A^a \Delta_A^b \Delta_A^c + \mu_{78} \delta_{ab} \Delta_A^a \Delta_A^b \right) + \left( \lambda_1 d_{abc} \Delta_F^a \Delta_F^b \Delta_F^c + \mu_1 \delta_{ab} \Delta_F^a \Delta_F^b \right) \\ &+ \lambda_{27} \varepsilon_{ijk} \left( \underline{Q}_L^i \right)^x {}_l \left( \underline{Q}_R^i \right)^r {}_x \left( \underline{L}^k \right)^l {}_r, \quad \text{with} \quad d_{abc} = 2 \text{Tr} \left[ \left\{ T_a, T_b \right\} T_c \right] \end{split}$$

- i, j and  $k \rightarrow$  flavour indices
- $\bullet$  x, l and  $r \rightarrow$  colour, left-chirality and right-chirality respectively
- a, b and  $c \rightarrow$  adjoint indices.
- Universal Yukawa coupling for chiral quarks at unification scale, λ<sub>27</sub>
- In a minimal E<sub>6</sub>-inspired model with flavour SU(3)<sub>F</sub> the superpotential would be just the last term
  - Why then E<sub>8</sub>?
  - Minimal SUSY trinification with SU(3)<sub>F</sub> and Higgs-lepton unification does not have a stable vacuum → SU(3)<sub>C</sub> and SU(2)<sub>L</sub> fully broken at GUT scale
- SHUT is the minimal working model!

### Outline

- Motivations and issues
- 2 The Model
- Symmetry breaking
- 4 Final remarks

# Symmetry breaking

#### Scalar potential

$$V = V_{\mathcal{F}} + V_{\mathcal{D}} + V_{\text{soft}}$$
 (F – terms from the superpotential)

# Symmetry breaking

#### Scalar potential

$$V = V_{\mathcal{F}} + V_{\mathcal{D}} + V_{\text{soft}}$$
 (F – terms from the superpotential)

#### (1) D-terms

$$\begin{split} V_{\mathcal{D}} &= -\frac{1}{2} g_{U}^{2} \left\{ \sum_{c} \left( \tilde{\Delta}_{L}^{a*} f_{abc} \tilde{\Delta}_{L}^{b} \right) \left( \tilde{\Delta}_{L}^{d*} f_{dec} \tilde{\Delta}_{L}^{e} \right) \right. \\ &\left. - \mathrm{i} \left( \tilde{\Delta}_{L}^{a*} f_{abc} \tilde{\Delta}_{L}^{b} \right) \left[ \left( \tilde{L}_{i}^{*} \right)^{r_{1}} \, l_{1} \left( T^{c} \right)^{l_{1}} \, l_{2} \left( \tilde{L}^{i} \right)^{l_{2}} \, r_{1} - \left( \tilde{Q}_{L}^{i} \right)^{x_{1}} \, l_{3} \left( T^{c} \right)^{l_{3}} \, l_{2} \left( \tilde{Q}_{Li}^{*} \right)^{l_{2}} \, x_{1} \right] \right\} \\ &\left. + \frac{1}{2} g_{U}^{2} \left[ T^{a} \right]^{l_{1}} \, l_{2} \left[ T_{a} \right]^{l_{3}} \, l_{4} \left[ \left( \tilde{L}_{i}^{*} \right)^{r_{1}} \, l_{1} \left( \tilde{L}^{i} \right)^{l_{2}} \, r_{1} \left( \tilde{L}_{j}^{*} \right)^{r_{2}} \, l_{3} \left( \tilde{L}^{i} \right)^{l_{4}} \, r_{2} \right. \\ &\left. + \left( \tilde{Q}_{L}^{i} \right)^{x_{1}} \, l_{1} \left( \tilde{Q}_{Li}^{*} \right)^{l_{2}} \, x_{1} \left( \tilde{Q}_{L}^{i} \right)^{x_{2}} \, l_{3} \left( \tilde{Q}_{Lj}^{*} \right)^{l_{4}} \, x_{2} \right. \\ &\left. - 2 \left( \tilde{L}_{i}^{*} \right)^{r_{1}} \, l_{1} \left( \tilde{L}^{i} \right)^{l_{2}} \, r_{1} \left( \tilde{Q}_{L}^{i} \right)^{x_{2}} \, l_{3} \left( \tilde{Q}_{Lj}^{*} \right)^{l_{4}} \, x_{2} \right] \right. \\ &\left. + \left( \mathbb{Z}_{3} \text{ permutations} \right) \end{split}$$

- D-term interactions between adjoint and fundamental scalars

#### (2) Soft SUSY-breaking terms

$$\begin{split} V_{\text{soft}}^{\text{gauge}} &= m_{27}^2 \left[ \left( \tilde{L}^i \right)^l{}_r \left( \tilde{L}^*_i \right)^r{}_l \right] + \delta_{ab} \left[ b_{78} \tilde{\Delta}_L^a \tilde{\Delta}_L^b + m_{78}^2 \tilde{\Delta}_L^{*a} \tilde{\Delta}_L^b + c.c \right] \\ &+ d_{abc} \left[ A_{78} \tilde{\Delta}_L^a \tilde{\Delta}_L^b \tilde{\Delta}_L^c + C_{78} \tilde{\Delta}_L^{*a} \tilde{\Delta}_L^b \tilde{\Delta}_L^c + c.c. \right] \\ &+ A_G \left[ \tilde{\Delta}_L^a \left( T_a \right)_{l_1}^{l_2} \left( \tilde{L}^*_i \right)^r{}_{l_1} \left( \tilde{L}^i \right)^{l_2}{}_r + c.c. \right] \\ &+ A_{27} \left[ \varepsilon_{ijk} \left( \tilde{Q}_L^i \right)^x{}_l \left( \tilde{Q}_R^i \right)^r{}_x \left( \tilde{L}^k \right)^l{}_r + c.c. \right] + \mathbb{Z}_3 \text{ permutations} \end{split}$$

$$\begin{split} V_{\text{soft}}^{\text{global}} &= \delta_{ab} \left[ b_{1}^{2} \tilde{\Delta}_{F}^{a} \tilde{\Delta}_{F}^{b} + m_{1}^{2} \tilde{\Delta}_{F}^{*a} \tilde{\Delta}_{F}^{b} + c.c \right] + A_{1} d_{abc} \left[ \tilde{\Delta}_{F}^{a} \tilde{\Delta}_{F}^{b} \tilde{\Delta}_{C}^{c} + c.c. \right] \\ &+ A_{F} \left[ \tilde{\Delta}_{F}^{a} \left( T_{a} \right)_{j}^{i} \left( \tilde{L}_{i}^{*} \right)^{r} {}_{l} \left( \tilde{L} \right)^{l} {}_{r} + c.c. \right] + \mathbb{Z}_{3} \text{ permutations} \end{split}$$

#### Vacuum choice:

• Assign vevs to  $\tilde{\Delta}^a_L$ ,  $\tilde{\Delta}^a_R$  (gauge breaking) and  $\tilde{\Delta}^a_F$  (flavour breaking):

#### Vacuum choice:

- Assign vevs to  $\tilde{\Delta}^a_L$ ,  $\tilde{\Delta}^a_R$  (gauge breaking) and  $\tilde{\Delta}^a_F$  (flavour breaking):
- The only fully diagonal SU(3) generator is  $T^8$

$$T_{\rm A}^8 = rac{1}{2\sqrt{2}} \left( egin{array}{c|ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ \hline 0 & 0 & -2 \end{array} 
ight),$$

•  $\langle \tilde{\Delta}_{LR}^8 \rangle = v$  and  $\langle \tilde{\Delta}_F^8 \rangle = v_F$  we break SHUT symmetry to a rank-6 LR effective model:

$$\begin{split} &[SU(3)_C \times SU(3)_L \times SU(3)_R] \times \mathbb{Z}_3 \times SU(3)_F \longrightarrow \\ &SU(3)_C \times [SU(2)_L \times SU(2)_R \times U(1)_L \times U(1)_R] \times \mathbb{Z}_2 \times SU(2)_F \times U(1)_F \end{split}$$

#### Vacuum choice:

- Assign vevs to  $\tilde{\Delta}_L^a$ ,  $\tilde{\Delta}_R^a$  (gauge breaking) and  $\tilde{\Delta}_F^a$  (flavour breaking):
- The only fully diagonal SU(3) generator is T<sup>8</sup>

$$T_{\rm A}^8 = \frac{1}{2\sqrt{2}} \left( \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & -2 \end{array} \right),$$

•  $\langle \tilde{\Delta}_{L,R}^8 \rangle = v$  and  $\langle \tilde{\Delta}_F^8 \rangle = v_F$  we break SHUT symmetry to a rank-6 LR effective model:

$$\begin{split} &[SU(3)_C \times SU(3)_L \times SU(3)_R] \times \mathbb{Z}_3 \times SU(3)_F \longrightarrow \\ &SU(3)_C \times [SU(2)_L \times SU(2)_R \times U(1)_L \times U(1)_R] \times \mathbb{Z}_2 \times SU(2)_F \times U(1)_F \end{split}$$

#### Minimization:

- Positive mass spectrum for the full scalar sector→STABLE MINIMUM
- 2 8 gauge goldstones in the adjoint sector

$$\left|D^{\mu}\left\langle ilde{\Delta}_{L,R}^{b}
ight
angle 
ight|^{2}=rac{3}{4}g_{U}^{2}v^{2}\sum_{a=4}^{7}\eta_{\mu
u}G_{L,R}^{\mu a}G_{L,R}^{
u a}\,,$$

4 flavour goldstones (absorbed by flavour gauge bosons or decouple according to Burgess [hep-ph/9812468])

# Higgs-slepton and squark masses

| # ( | of real d.o.f.'s | (mass) <sup>2</sup>                                              | Scalar components                                                                                               |
|-----|------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 8   | 2 doublets       | $m_{27}^2 - \frac{1}{\sqrt{6}} \left( A_G v + 2 A_F v_F \right)$ | $	ilde{oldsymbol{v}}_R^{(3)}$ , $	ilde{e}_R^{(3)}$ , $	ilde{oldsymbol{v}}_L^{(3)}$ , $	ilde{e}_L^{(3)}$         |
| 2   | 1 singlet        | $m_{27}^2 - \frac{1}{\sqrt{6}} \left( 4A_G v + 2A_F v_F \right)$ | $\tilde{\Phi}^{(3)}$                                                                                            |
| 8   | 1 bi-doublet     | $m_{27}^2 + \frac{1}{\sqrt{6}} \left( 2A_G v - 2A_F v_F \right)$ | $H_{11}^{(3)}$ , $H_{21}^{(3)}$ , $H_{12}^{(3)}$ , $H_{22}^{(3)}$                                               |
| 4   | 2 singlets       | $m_{27}^2 - \frac{1}{\sqrt{6}} \left( 4A_G v - A_F v_F \right)$  | $\tilde{\Phi}^{(1,2)}$                                                                                          |
| 16  | 4 doublets       | $m_{27}^2 - \frac{1}{\sqrt{6}} \left( A_G v - A_F v_F \right)$   | $	ilde{oldsymbol{v}}_R^{(1,2)}$ , $	ilde{e}_R^{(1,2)}$ , $	ilde{oldsymbol{v}}_L^{(1,2)}$ , $	ilde{e}_L^{(1,2)}$ |
| 16  | 2 bi-doublets    | $m_{27}^2 + \frac{1}{\sqrt{6}} \left( 2A_G v + A_F v_F \right)$  | $H_{11}^{(1,2)}$ , $H_{21}^{(1,2)}$ , $H_{12}^{(1,2)}$ , $H_{22}^{(1,2)}$                                       |
| 24  |                  | $m_{27}^2 + \frac{1}{\sqrt{6}} \left( A_G v - 2 A_F v_F \right)$ | $	ilde{u}_L^{(3)}$ , $	ilde{d}_L^{(3)}$ , $	ilde{u}_R^{(3)}$ , $	ilde{d}_R^{(3)}$                               |
| 12  |                  | $m_{27}^2 - \frac{1}{\sqrt{6}} \left( 2A_G v + 2A_F v_F \right)$ | $	ilde{D}_L^{(3)}$ , $	ilde{D}_R^{(3)}$                                                                         |
| 48  |                  | $m_{27}^2 + \frac{1}{\sqrt{6}} \left( A_G v + A_F v_F \right)$   | $	ilde{u}_L^{(1,2)}$ , $	ilde{d}_L^{(1,2)}$ , $	ilde{u}_R^{(1,2)}$ , $	ilde{d}_R^{(1,2)}$                       |
| 24  |                  | $m_{27}^2 - \frac{1}{\sqrt{6}} \left( 2A_G v + A_F v_F \right)$  | $	ilde{D}_L^{(1,2)}$ , $	ilde{D}_R^{(1,2)}$                                                                     |

$$\left( \begin{array}{c|c|c} H_{11} & H_{12} & \nu_L \\ H_{21} & H_{22} & e_L \\ \hline \nu_R & e_R & \Phi \end{array} \right)^{(1,2|3)}, \left( \begin{array}{c|c|c} u_R^{\bar{1}} & u_R^{\bar{2}} & u_R^{\bar{3}} \\ d_R^{\bar{1}} & d_R^{\bar{2}} & d_R^{\bar{3}} \\ \hline D_R^{\bar{1}} & D_R^{\bar{2}} & D_R^{\bar{3}} \end{array} \right)^{(1,2|3)}, \left( \begin{array}{c|c|c} u_L^1 & d_L^1 & D_L^1 \\ u_L^2 & d_L^2 & D_L^2 \\ u_L^3 & d_L^3 & D_L^3 \end{array} \right)^{(1,2|3)},$$

# Effective non-SUSY multi-Higgs models

#### A plethora of effective L-R non-SUSY models

| Light eigenstates                                                                                                                                                    | model label                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| $\tilde{\Phi}^{(3)}$                                                                                                                                                 | Model 1 A                            |  |
| $	ilde{\Phi}^{(1,2)}$                                                                                                                                                | Model 1 B                            |  |
| $	ilde{\Phi}^{(3)}$ , $	ilde{\Phi}^{(1,2)}$                                                                                                                          | Model 1 A+B                          |  |
| $H^{(1,2 3)}$ , $\tilde{E}_{L,R}^{(1,2 3)}$ , $\tilde{\Phi}^{(1,2 3)}$ , $\tilde{D}^{(1,2 3)}$ , $\tilde{u}_{L,R}^{(1,2 3)}$ , $\tilde{d}_{L,R}^{(1,2 3)}$           | Model 1 C , Model 1 C Z <sub>3</sub> |  |
| $H^{(3)}$                                                                                                                                                            | Model 2 A                            |  |
| $H^{(3)}$ , $	ilde{E}_{L,R}^{(3)}$ , $	ilde{\Phi}^{(3)}$ , $	ilde{D}^{(3)}$ , $	ilde{u}_{L,R}^{(3)}$ , $	ilde{d}_{L,R}^{(3)}$                                        | Model 2 B , Model 2 B Z <sub>3</sub> |  |
| $H^{(1,2)}$ , $	ilde{E}_{L,R}^{(1,2)}$ , $	ilde{\Phi}^{(1,2)}$ , $	ilde{D}^{(1,2)}$ , $	ilde{u}_{L,R}^{(1,2)}$ , $	ilde{u}_{L,R}^{(1,2)}$ , $	ilde{d}_{L,R}^{(1,2)}$ | Model 3 , Model 3 Z <sub>3</sub>     |  |
| $H^{(1,2)}$                                                                                                                                                          | Model 4                              |  |
| $H^{(1,2)}$ , $H^{(3)}$                                                                                                                                              | Model 5                              |  |

- Z₃ denotes softly broken Z₃ symmetry in the scalar sector
  - if preserved need to be radiatively broken by  $\phi^{(1,2)}$  or  $\phi^{(3)}$  VEVs

### Fermion masses

#### Scalar-fermion terms

$$\mathcal{L}^{\text{fermion}} = \mathcal{L}_{\mathfrak{F}}^{\text{fermion}} + \mathcal{L}_{\mathfrak{D}}^{\text{fermion}} + \mathcal{L}_{\text{soft}}^{\text{fermion}} \qquad (F-\text{terms from the superpotential})$$

No F-term interactions mixing adjoint and fundamental sectors

#### **D-terms**

$$\begin{split} \mathcal{L}_{\mathcal{D}}^{\text{fermion}} &= -\sqrt{2} g_{U} \left[ \left( \tilde{L}_{i}^{*} \right)^{r}_{l_{1}} \left( T^{a} \right)^{l_{1}}_{l_{2}} \left( L^{i} \right)^{l_{2}}_{r_{1}} \tilde{\lambda}_{L}^{a} + \left( \tilde{L}_{i}^{*} \right)^{r_{1}}_{l} \left( T^{a} \right)^{r_{2}}_{r_{1}} \left( L^{i} \right)^{l}_{r_{2}} \tilde{\lambda}_{R}^{a} \right. \\ & \left. - \mathrm{i} f_{abc} \tilde{\Delta}_{L}^{*b} \tilde{\Delta}_{L}^{c} \tilde{\lambda}_{L}^{a} \right] + \left( \mathbb{Z}_{3} \text{ permutations} \right). \end{split}$$

#### Soft SUSY-breaking terms

$$\mathcal{L}_{\text{soft}}^{\text{fermion}} = -\frac{1}{2} \textit{M}_0 \delta_{ab} \tilde{\lambda}_L^a \tilde{\lambda}_L^b - \textit{M}_0' \delta_{ab} \tilde{\lambda}_L^a \Delta_L^b + h.c. + (\mathbb{Z}_3 \text{ permutations}) \,,$$

• The model naturally contains Dirac gaugino mass terms

| # of Weyl spinors    | (mass) <sup>2</sup>                                                                         | Fermionic components                                                                                                                                                                                                                                                                                             |
|----------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 81                   | 0                                                                                           | $\Phi^{(1,2 3)}$ , $\tilde{H}^{(1,2 3)}$ , $e_{L,R}^{(1,2 3)}$ , $v_{L,R}^{(1,2 3)}$                                                                                                                                                                                                                             |
| 1                    | $\frac{1}{6}\left(v_F^2\lambda_1^2 - 2\sqrt{6}v_F\lambda_1\mu_1 + 6\mu_1^2\right)$          | $\Delta_F^8 \equiv \mathbb{S}_F$                                                                                                                                                                                                                                                                                 |
| 3                    | $\frac{1}{6} \left( v_F^2 \lambda_1^2 + 2 \sqrt{6} v_F \lambda_1 \mu_1 + 6 \mu_1^2 \right)$ | $\Delta_F^{1,2,3} \equiv T_F$                                                                                                                                                                                                                                                                                    |
| 4                    | $\frac{1}{24}\left(v_F^2\lambda_1^2 - 4\sqrt{6}v_F\lambda_1\mu_1 + 24\mu_1^2\right)$        | $\Delta_F^{4,5,6,7} \equiv 	ilde{\mathcal{H}}_F$                                                                                                                                                                                                                                                                 |
| 8 low scale gluinos? | $\frac{1}{2}\left(X_{C}^{8}-\sqrt{Y_{C}^{8}+Z_{C}^{8}}\right)$                              | $c_{\theta_{8}}\tilde{\lambda}^a_C - s_{\theta_{8}}\Delta^a_C \equiv \tilde{g}^a$                                                                                                                                                                                                                                |
| 8                    | $\frac{1}{2}\left(X_{C}^{8}+\sqrt{Y_{C}^{8}+Z_{C}^{8}}\right)$                              | $s_{m{	heta}_{m{8}}}	ilde{m{\lambda}}^a_C + c_{m{	heta}_{m{8}}}m{\Delta}^a_C \equiv 	ilde{m{g}}^a_{ot}$                                                                                                                                                                                                          |
| 2                    | $\frac{1}{24}\left(X_{L,R}^{1}-\sqrt{Y_{L,R}^{1}+Z_{L,R}^{1}}\right)$                       | $c_{\theta_1} \tilde{\lambda}_{L,R}^8 - s_{\theta_1} \Delta_{L,R}^8 \equiv \mathbb{S}_{L,R}$                                                                                                                                                                                                                     |
| 2                    | $\frac{1}{24}\left(X_{L,R}^{1}+\sqrt{Y_{L,R}^{1}+Z_{L,R}^{1}}\right)$                       | $s_{\theta_1} \tilde{\lambda}_{L,R}^8 + c_{\theta_1} \Delta_{L,R}^8 \equiv \mathcal{S}_{L,R}^{\perp}$                                                                                                                                                                                                            |
| 6                    | $\frac{1}{24}\left(X_{L,R}^{3}-\sqrt{Y_{L,R}^{3}+Z_{L,R}^{3}}\right)$                       | $c_{\theta_3} \tilde{\lambda}_{L,R}^{1,2,3} - s_{\theta_3} \Delta_{L,R}^{1,2,3} \equiv T_{L,R}$                                                                                                                                                                                                                  |
| 6                    | $\frac{1}{24}\left(X_{L,R}^{3}+\sqrt{Y_{L,R}^{3}+Z_{L,R}^{3}}\right)$                       | $s_{\theta_{3}}\tilde{\lambda}_{L,R}^{1,2,3} + c_{\theta_{3}}\Delta_{L,R}^{1,2,3} \equiv T_{L,R}^{\perp}$                                                                                                                                                                                                        |
| 8                    | $\frac{1}{48}\left(X_{L,R}^2-\sqrt{Y_{L,R}^2+Z_{L,R}^2}\right)$                             | $\rho_{1}\Delta_{\textit{L,R}}^{4,6} + \rho_{2}\Delta_{\textit{L,R}}^{5,7} + \rho_{3}\tilde{\lambda}_{\textit{L,R}}^{4,6} + \rho_{4}\tilde{\lambda}_{\textit{L,R}}^{5,7} \equiv \tilde{\mathcal{H}}_{\textit{L,R}}$                                                                                              |
| 8                    | $\frac{1}{48}\left(X_{L,R}^{2}+\sqrt{Y_{L,R}^{2}+Z_{L,R}^{2}}\right)$                       | $\overline{\rho}_1 \Delta^{4,6}_{\textit{L},\textit{R}} + \overline{\rho}_2 \Delta^{5,7}_{\textit{L},\textit{R}} + \overline{\rho}_3 \tilde{\lambda}^{4,6}_{\textit{L},\textit{R}} + \overline{\rho}_4 \tilde{\lambda}^{5,7}_{\textit{L},\textit{R}} \equiv \tilde{\mathcal{H}}_{\textit{L},\textit{R}}^{\perp}$ |

- $\bullet \ X_A^{\pmb{R}}, \, Y_A^{\pmb{R}}$  and  $Z_A^{\pmb{R}}$  are functions of the theory parameters
- $\bullet \ \, \text{Massless SM fermions} {\rightarrow} \ \, \text{due to} \ \, SU(3)_F \\$



| 17.96 |
|-------|
| 14.58 |
| 11.20 |
| 7.82  |
| 4.44  |
| 1.06  |

| Par             |                 | ange |           |
|-----------------|-----------------|------|-----------|
| v               | 10 <sup>5</sup> | _    | $10^{17}$ |
| μ78             | $-10^{17}$      | _    | $10^{17}$ |
| $M'_0$          | 0               | _    | $10^{17}$ |
| $M_0$           | 0               | _    | $10^{17}$ |
| $g_U$           | 0               | _    | 1.2       |
| λ <sub>78</sub> | -6              | _    | 6         |
|                 |                 |      |           |

- v ,  $M_0'$  ,  $M_0$  ,  $\mu_{78}$  in GeV
- $v \sim \mu_{78}$

- Gauge adjoint fermions can also be naturally very light
- Mass hierarchy up to 15 orders of magnitude
- Similar for remaining gauge adjoint fermions

• Red region: 
$$M_0$$
 ,  $M_0' \gg v$  ,  $\mu_{78}$  
$$m_{\tilde{g}}^2 \sim \mu_{78}^2 - \frac{1}{M_0} M_0'^2 \mu_{78} \,,$$
 
$$m_{\pi^{\perp}}^2 \sim 4 M_0^2 + 2 M_0'^2 + \frac{1}{M_0} M_0'^2 \mu_{78} \,.$$

$$lacktriangle$$
 Yellow region:  $\mathit{M}_0$  ,  $\mathit{M}_0' \ll \mathit{v}$  ,  $\mu_{78}$ 

$$\begin{split} m_{\tilde{g}}^2 \sim 4 M_0^2 - \frac{4 M_0 M_0'^2}{\mu_{78}} \;, \\ m_{\tilde{g}\perp}^2 \sim \mu_{78}^2 + 2 M_0'^2 + \frac{4 M_0 M_0'^2}{\mu_{78}} \end{split}$$

### Outline

- Motivations and issues
- 2 The Model
- Symmetry breaking
- 4 Final remarks

#### $\bullet$ SHUT model: $E_8\text{-inspired SUSY T-GUT model containing family <math display="inline">SU(3)_F$

- > Solved the multi-TeV lepton mass problem
- > Elegantly unified Higgs with leptons, gauge and Yukawa couplings
  - Low scale Yukawa structure radiatively generated (work ongoing)
- > Little amount of parameters

- $\bullet$  SHUT model:  $E_8\text{-inspired SUSY T-GUT model containing family <math display="inline">SU(3)_F$ 
  - > Solved the multi-TeV lepton mass problem
  - > Elegantly unified Higgs with leptons, gauge and Yukawa couplings
    - Low scale Yukawa structure radiatively generated (work ongoing)
  - Little amount of parameters
  - > Accidental  $U(1)_B$  Baryon symmetry  $\rightarrow$  proton stable at all orders

|                                                | $U(1)_W$ | $U(1)_B$ |
|------------------------------------------------|----------|----------|
| $L$ , $	ilde{L}$                               | +1       | 0        |
| $Q_L$ , $	ilde{Q_L}$                           | -1/2     | +1/3     |
| $Q_R^c$ , $	ilde{Q_R}$                         | -1/2     | -1/3     |
| $G_{L,R,C}$ , $\lambda_{L,R,C}$                | 0        | 0        |
| $\Delta_{L,R,C,F}$ , $	ilde{\Delta}_{L,R,C,F}$ | 0        | 0        |

- $\bullet$  SHUT model:  $E_8\text{-inspired SUSY T-GUT model containing family <math display="inline">SU(3)_F$ 
  - > Solved the multi-TeV lepton mass problem
  - > Elegantly unified Higgs with leptons, gauge and Yukawa couplings
    - Low scale Yukawa structure radiatively generated (work ongoing)
  - Little amount of parameters
  - > Accidental  $\mathrm{U}(1)_B$  Baryon symmetry  $\to$  proton stable at all orders

|                                                            | $U(1)_W$ | $U(1)_B$ |
|------------------------------------------------------------|----------|----------|
| $L$ , $	ilde{L}$                                           | +1       | 0        |
| $Q_L$ , $	ilde{Q_L}$                                       | -1/2     | +1/3     |
| $Q_R^c$ , $	ilde{Q_R}$                                     | -1/2     | -1/3     |
| $G_{L,R,C}$ , $\lambda_{L,R,C}$                            | 0        | 0        |
| $\Delta_{	ext{L,R,C,F}}$ , $	ilde{\Delta}_{	ext{L,R,C,F}}$ | 0        | 0        |

Several EFT multi-Higgs models to be studied