Electroweak corrections in the Singlet Extension of the Standard Model

David López-Val

arXiv:1406.1043 [hep-ph]

& arX

arXiv:1511.08120 [hep-ph]

CP3 - Université catholique de Louvain

2 About the model

3 Electroweak precision: Δr and m_W

4 Renormalization

6 Heavy-to-light Higgs decays

Take-home ideas

Outline

About the model

 $\fbox{3}$ Electroweak precision: Δr and m_W

4 Renormalization

5 Heavy-to-light Higgs decays

6) Take-home ideas

We are building on an evidence

We are building on an evidence ...

We are building on an evidence ...

We are building on an evidence ...

Some key questions

- Fundamental or composite?
- Single or multiple? Or even overlapped?
- Natural? Weakly or strongly coupled?
- Stable? Up to an arbitrary UV scale? During inflation?
- Linked to flavor, neutrinos?

Outline

2 About the model

- 3 Electroweak precision: Δr and m_W
- Renormalization
- 6 Heavy-to-light Higgs decays
- 6 Take-home ideas

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{\partial^{\mu} S \partial_{\mu} S - \mu_s^2 S^2 - \lambda_2 S^4 - \lambda_3 \Phi^{\dagger} \Phi S^2}{\left[\Phi = \left(\frac{G^+}{\frac{v + \phi_h + iG^0}{\sqrt{2}}}\right)\right]}$$
$$S = \frac{v_s + \phi_s}{\sqrt{2}}$$

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \partial^{\mu} S \partial_{\mu} S - \mu_s^2 S^2 - \lambda_2 S^4 - \lambda_3 \Phi^{\dagger} \Phi S^2$$

$$\Phi = \begin{pmatrix} G^+ \\ \frac{v + \phi_h + iG^0}{\sqrt{2}} \end{pmatrix}$$

$$S = \frac{v_s + \phi_s}{\sqrt{2}}$$

$$m_h, m_H, \sin \alpha, v, \tan \beta \equiv \frac{v_s}{v}$$

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \partial^{\mu} S \partial_{\mu} S - \mu_s^2 S^2 - \lambda_2 S^4 - \lambda_3 \Phi^{\dagger} \Phi S^2$$

$$\Phi = \begin{pmatrix} G^+ \\ \frac{v + \phi_h + iG^0}{\sqrt{2}} \end{pmatrix}$$

🔶 Paramete

$$S = \frac{v_s + \phi_s}{\sqrt{2}}$$

ers
$$m_h, m_H, \sin \alpha, v, \tan \beta \equiv \frac{v_s}{v}$$

Interactions

$$g_{xxy} = g_{xxy}^{\text{SM}}(1 + \Delta_{xy}) \quad \text{with} \quad 1 + \Delta_{xy} = \begin{cases} \cos \alpha & y = h \\ \sin \alpha & y = H \end{cases}$$

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \partial^{\mu} S \partial_{\mu} S - \mu_s^2 S^2 - \lambda_2 S^4 - \lambda_3 \Phi^{\dagger} \Phi S^2$$

$$\Phi = \begin{pmatrix} G^+ \\ \frac{v + \phi_h + iG^0}{\sqrt{2}} \end{pmatrix}$$

Parameters

$$S = -\sqrt{2}$$

 $v_s + \phi_s$

$$m_h, \, m_H, \, \sin lpha, \, v, \, an eta \equiv rac{v_s}{v}$$

Interactions

$$g_{xxy} = g_{xxy}^{\text{SM}}(1 + \Delta_{xy}) \quad \text{with} \quad 1 + \Delta_{xy} = \begin{cases} \cos \alpha & y = h \\ \sin \alpha & y = H \end{cases}$$

Simplified model $\rightarrow \mathcal{L}_{\text{UV}}$

EW baryogenesis

Proxy for Heavy scalar LHC searches

David López-Val - CP3 Université catholique de Louvain EW corrections in the Singlet Extension of the SM

Outline

About the model

3 Electroweak precision: Δr and m_W

4 Renormalization

5 Heavy-to-light Higgs decays

Take-home ideas

 $m_V - G_F - \tau_\mu$: a golden probe of quantum effects

SM: Djouadi ['83]; Hollik ["88]; Kniehl ['91]; Freitas ['00]; Awramik ['02]; ... Boughezal, Chetykrin ['06]

b MSSM: Van der Bij ['83]; ... Garcia, Chankowski ['93]; ... Heinemeyer ['13]]

- b 2HDM: Frère ['86]; Bertolini ['88] ... DLV, Solà ['12], Hessenberger, Hollik ['16]
- b NMSSM: Stål, Weiglein, Zeune ['15]

 m_V – G_F – au_μ : a golden probe of quantum effects

SM: Djouadi ['83]; Hollik ["88]; Kniehl ['91]; Freitas ['00]; Awramik ['02]; ... Boughezal, Chetykrin ['06]

- b MSSM: Van der Bij ['83]; ... Garcia, Chankowski ['93]; ... Heinemeyer ['13]]
- b 2HDM: Frère ['86]; Bertolini ['88] ... DLV, Solà ['12], Hessenberger, Hollik ['16]
- b NMSSM: Stål, Weiglein, Zeune ['15]

A Matching the μ-lifetime prediction in the Fermi theory onto the SM result:

$$m_{W^{\pm}}^{2}\left(1-\frac{m_{W^{\pm}}^{2}}{m_{Z}^{2}}\right)=\frac{\pi\alpha_{\rm em}}{\sqrt{2}G_{F}}\left(1+\Delta r\right)$$

$m_V - G_F - \tau_\mu$: a golden probe of quantum effects

- **SM:** Djouadi ['83]; Hollik ["88]; Kniehl ['91]; Freitas ['00]; Awramik ['02]; ... Boughezal, Chetykrin ['06]
- b MSSM: Van der Bij ['83]; ... Garcia, Chankowski ['93]; ... Heinemeyer ['13]]
- b 2HDM: Frère ['86]; Bertolini ['88] ... DLV, Solà ['12], Hessenberger, Hollik ['16]
- b NMSSM: Stål, Weiglein, Zeune ['15]

Matching the µ-lifetime prediction in the Fermi theory onto the SM result:

$$m_{W^{\pm}}^{2} \left(1 - \frac{m_{W^{\pm}}^{2}}{m_{Z}^{2}}\right) = \frac{\pi \alpha_{\text{em}}}{\sqrt{2}G_{F}} \left(1 + \Delta r\right)$$

$$\Delta r = \Pi_{\gamma}(0) - \frac{c_w^2}{s_w^2} \left(\frac{\delta m_Z^2}{m_Z^2} - \frac{\delta m_W^2 \pm}{m_W^2 \pm} \right) + \frac{\Sigma_{W} \pm (0) - \delta m_W^2 \pm}{m_W^2 \pm} + 2 \frac{c_w}{s_w} \frac{\Sigma_{\gamma Z}(0)}{m_Z^2} + \Delta r^{[\text{vert,box}]}$$

$m_V - G_F - \tau_\mu$: a golden probe of quantum effects

- SM: Djouadi ['83]; Hollik ['88]; Kniehl ['91]; Freitas ['00]; Awramik ['02]; ... Boughezal, Chetykrin ['06]
- b MSSM: Van der Bij ['83]; ... Garcia, Chankowski ['93]; ... Heinemeyer ['13]]
- b 2HDM: Frère ['86]; Bertolini ['88] ... DLV, Solà ['12], Hessenberger, Hollik ['16]
- b NMSSM: Stål, Weiglein, Zeune ['15]

A Matching the μ -lifetime prediction in the Fermi theory onto the SM result:

$$m_{W\pm}^2 \left(1 - \frac{m_{W\pm}^2}{m_Z^2} \right) = \frac{\pi \alpha_{\text{em}}}{\sqrt{2}G_F} \left(1 + \Delta r \right)$$

$$\Delta r = \Pi_{\gamma}(0) - \frac{c_w^2}{s_w^2} \left(\frac{\delta m_Z^2}{m_Z^2} - \frac{\delta m_W^2 \pm}{m_W^2 \pm} \right) + \frac{\Sigma_{W\pm}(0) - \delta m_W^2 \pm}{m_W^2 \pm} + 2 \frac{c_w}{s_w} \frac{\Sigma_{\gamma Z}(0)}{m_Z^2} + \Delta r^{[\text{vert,box}]}$$

$$\begin{split} & \blacklozenge \quad \Delta r = \Delta \alpha - \frac{c_w^2}{s_w^2} \, \delta \rho + \Delta r_{\rm rem} \\ & \bigstar \quad \delta(\Delta r_{\rm sing}) \equiv \Delta r_{\rm sing}^{[{\rm H}]} - \Delta r_{\rm SM}^{[{\rm H}]} \quad \text{where} \quad \Delta r_{\rm SM}^{[{\rm H}]} = \Delta r_{\rm sing}^{[{\rm H}]} \Big|_{\sin \alpha = 0} \end{split}$$

Oblique corrections to the gauge boson self-energies

Oblique corrections to the gauge boson self-energies

$$\overbrace{Z^0 \ Z^0}^{h^0/H^0} \overbrace{Z^0 \ h^0/H^0}^{G^0} \overbrace{Z^0 \ h^0/H^0}^{Z^0} \overbrace{Z^0 \ h^0/H^0}^{Z^0}$$

Static contributions only: $\delta \rho$

$$\begin{split} \Delta(\delta\rho_{\rm sing}) &\equiv \delta\rho_{\rm sing}^{[\rm H]} - \delta\rho_{\rm SM}^{[\rm H]} \\ & \frac{G_F \, \sin^2 \alpha}{2\sqrt{2}\pi^2} \left\{ m_Z^2 \, \left[\log\left(\frac{m_h^2}{m_H^2}\right) + \frac{m_Z^2}{m_h^2 - m_Z^2} \log\left(\frac{m_h^2}{m_Z^2}\right) - \frac{m_Z^2}{m_H^2 - m_Z^2} \log\left(\frac{m_H^2}{m_Z^2}\right) \right. \\ & \left. + \frac{m_H^2}{4(m_H^2 - m_Z^2)} \log\left(\frac{m_H^2}{m_Z^2}\right) - \frac{m_h^2}{4(m_h^2 - m_Z^2)} \log\left(\frac{m_h^2}{m_Z^2}\right) \right] \\ & \left. - m_W^2 \, \left[\log\left(\frac{m_h^2}{m_H^2}\right) + \frac{m_W^2}{m_h^2 - m_W^2} \log\left(\frac{m_h^2}{m_W^2}\right) - \frac{m_W^2}{m_H^2 - m_W^2} \log\left(\frac{m_H^2}{m_W^2}\right) \right] \\ & \left. + \frac{m_H^2}{4(m_H^2 - m_W^2)} \log\left(\frac{m_H^2}{m_W^2}\right) - \frac{m_h^2}{4(m_h^2 - m_W^2)} \log\left(\frac{m_h^2}{m_W^2}\right) \right] \right\} \end{split}$$

Predicting the *W*-boson mass:

$$\begin{split} m_{W^{\pm}}^{\text{th }2} &= \frac{1}{2} \, m_Z^2 \left[1 + \sqrt{1 - \frac{4 \, \pi \alpha_{\text{em}}}{\sqrt{2} \, G_F \, m_Z^2} [1 + \Delta \, r(m_{W^{\pm}}^2)]} \right] \Rightarrow \\ & \Delta m_{W^{\pm}} \simeq - \frac{1}{2} \, m_{W^{\pm}} \, \frac{s_w^2}{c_w^2 - s_w^2} \, \delta(\Delta r) \end{split}$$

Predicting the W-boson mass:

$$\begin{split} m_{W^{\pm}}^{\text{th }2} &= \frac{1}{2} \, m_Z^2 \left[1 + \sqrt{1 - \frac{4 \, \pi \, \alpha_{\text{em}}}{\sqrt{2} \, G_F \, m_Z^2} [1 + \Delta \, r(m_{W^{\pm}}^2)]} \right] \Rightarrow \\ \Delta m_{W^{\pm}} &\simeq -\frac{1}{2} \, m_{W^{\pm}} \, \frac{s_W^2}{c_w^2 - s_W^2} \, \delta(\Delta r) \end{split}$$

$$m_W^{\rm SM} \,=\, 80.360\,{\rm GeV} ~~ |m_W^{\rm exp} - m_W^{\rm SM}| \simeq {\rm 20~MeV} ~~ m_W^{\rm exp} = 80.385 \pm 0.015\,{\rm GeV}$$

Predicting the W-boson mass:

$$\begin{split} m_{W\pm}^{\mathrm{th}\,2} &= \tfrac{1}{2}\,m_Z^2 \left[1 + \sqrt{1 - \tfrac{4\,\pi\,\alpha_{\mathrm{em}}}{\sqrt{2}\,G_F\,m_Z^2} [1 + \Delta\,r(m_{W\pm}^2)]} \right] \Rightarrow \\ & \Delta m_{W\pm} \simeq -\tfrac{1}{2}\,m_{W\pm}\,\tfrac{s_w^2}{c_w^2 - s_w^2}\,\delta(\Delta r) \end{split}$$

 $m_W^{\rm SM} \,=\, 80.360\,{\rm GeV} \hspace{0.5cm} |m_W^{\rm exp} - m_W^{\rm SM}| \simeq {\rm 20~MeV} \hspace{0.5cm} m_W^{\rm exp} = 80.385 \pm 0.015\,{\rm GeV}$

State-of-the-art theory prediction Awramik et al. [hep-ph/0311148]:

$$\begin{split} M_{W^{\pm}}^{\rm SM} &= M_{W^{\pm}}^0 - d_1 \,\mathrm{dH} - d_2 \,\mathrm{dH}^2 + d_3 \,\mathrm{dH}^4 + d_4 \,(dh-1) - d_5 \,\mathrm{d}\alpha + d_6 \,\mathrm{dt} - d_7 \,\mathrm{dt}^2 \\ &- d_8 \,\mathrm{dH} \,\mathrm{dt} + d_9 \,dh \,dt - d_{10} \,\mathrm{d}\alpha_s + d_{11} \,\mathrm{dZ} \end{split}$$

$$\begin{array}{rclcrcrc} M_{W^{\pm}}^{0} &=& 80.3800 \, {\rm GeV}; & d_{6} &=& 0.5270 \, {\rm GeV}; \\ d_{1} &=& 0.05253 \, {\rm GeV}; & d_{7} &=& 0.0698 \, {\rm GeV}; \\ d_{2} &=& 0.010345 \, {\rm GeV}; & d_{8} &=& 0.004055 \, {\rm GeV}; \\ d_{3} &=& 0.001021 \, {\rm GeV}, & d_{9} &=& 0.000110 \, {\rm GeV}, \\ d_{4} &=& -0.0000070 \, {\rm GeV}, & d_{10} &=& 0.0716 \, {\rm GeV}, \\ d_{5} &=& 1.077 \, {\rm GeV}, & d_{11} &=& 115.0 \, {\rm GeV}; \\ dH &=& \ln \left(\frac{M_{H}}{100 \, \, {\rm GeV}} \right); & dt &=& \left(\frac{m_{t}}{174.3 \, \, {\rm GeV}} \right)^{2} - 1; \\ d\alpha &=& \frac{\Delta \alpha}{0.05907} - 1; & d\alpha_{s} &=& \frac{\alpha_{s}(M_{Z})}{0.119} - 1; \\ dZ &=& M_{Z}/(91.1875 \, {\rm GeV}) - 1; & dh &=& \left(\frac{M_{H}}{100 \, \, {\rm GeV}} \right)^{2}; \end{array}$$

DLV, Robens [arXiv:1406.1043]

Parameter space constraints

Robens, Stefaniak [arXiv:1501.02234] - updated in arXiv:1511.08120

$$\mathcal{L}_{\rm eff}(\phi,m) = \mathcal{L}_{\rm SM} + \sum_{d=5}^{\infty} \sum_{a_d} \frac{C^{(d)}_{a_d}}{\Lambda^{d-4}} \big(\{g_{\rm UV}\},M\big) \, \mathcal{O}^{(d)}_{a_d}(\phi)$$

$$\mathcal{L}_{\rm eff}(\phi,m) = \mathcal{L}_{\rm SM} + \textstyle\sum_{d=5}^{\infty} \, \sum_{a_d} \, \frac{C^{(d)}_{a_d}}{\Lambda^{d-4}}(\{g_{\rm UV}\},M) \, \mathcal{O}^{(d)}_{a_d}(\phi)$$

$$\overset{c_{H}}{\overset{h}{\longrightarrow}} V \overset{c_{H}}{\overset{h}{\longrightarrow}} V \overset{c_{H}}{\overset{h}{\longrightarrow}} V \overset{c_{H}}{\overset{c_{H}}{\longrightarrow}} V \overset{c_{H}}{\overset{c_{H}}{\longrightarrow}} V \overset{c_{T}}{\overset{c_{T}}{\longrightarrow}} V \overset{\delta c_{T}}{\overset{\delta c_{T}}{\longrightarrow}} V \overset{\delta c_{T}}{\overset{\delta c_{T}}{\longrightarrow}} V \overset{\delta c_{T}}{\overset{\delta c_{T}}{\longrightarrow}} V \overset{c_{H}}{\overset{\delta c_{H}}{\longrightarrow}} V \overset{c_{H}}{\overset{\delta c_{H}}{\longrightarrow}} V \overset{c_{H}}{\overset{\delta c_{H}}{\to} V \overset{c_{H}}{\overset{\delta c_{H}}{\to}} V \overset{c_{H}}$$

$$\begin{split} \Pi_{WW}(0) &= \frac{\alpha_{\rm em}\,\overline{c}_H}{16\pi s_w^2} \left\{ 3m_W^2 \Delta_\epsilon - 4m_W^2\,\log\frac{m_h^2}{\mu^2} + \frac{5m_W^2 - m_h^2}{2} + \right. \\ &+ m_W^2\,\log\frac{m_W^2}{\mu^2} - \frac{m_W^2}{m_h^2 - m_W^2}\,\left(4m_W^2 - m_h^2\right)\,\log\frac{m_h^2}{m_W^2} \right\} + \Xi[\delta Z_{eW,B,T}] \end{split}$$

$$\mathcal{L}_{\rm eff}(\phi,m) = \mathcal{L}_{\rm SM} + \textstyle\sum_{d=5}^{\infty} \, \sum_{a_d} \, \frac{C^{(d)}_{a_d}}{\Lambda^{d-4}}(\{g_{\rm UV}\},M) \, \mathcal{O}^{(d)}_{a_d}(\phi)$$

$$\overset{c_{H}}{\overset{h}{\longrightarrow}} V \overset{c_{H}}{\overset{h}{\longrightarrow}} V \overset{c_{H}}{\overset{h}{\longrightarrow}} V \overset{c_{H}}{\overset{c_{H}}{\longrightarrow}} V \overset{c_{H}}{\overset{c_{H}}{\longrightarrow}} V \overset{c_{T}}{\overset{c_{T}}{\longrightarrow}} V \overset{\delta c_{T}}{\overset{\delta c_{T}}{\longrightarrow}} V \overset{\delta c_{T}}{\overset{\delta c_{T}}{\longrightarrow}} V \overset{\delta c_{T}}{\overset{\delta c_{T}}{\longrightarrow}} V \overset{c_{H}}{\overset{\delta c_{H}}{\longrightarrow}} V \overset{c_{H}}{\overset{\delta c_{H}}{\longrightarrow}} V \overset{c_{H}}{\overset{\delta c_{H}}{\to} V \overset{c_{H}}{\overset{\delta c_{H}}{\to}} V \overset{c_{H}}$$

$$\begin{split} \Pi_{WW}(0) &= \frac{\alpha_{\rm em}\,\overline{c}_H}{16\pi s_w^2} \left\{ 3m_W^2 \Delta_\epsilon - 4m_W^2\,\log\frac{m_h^2}{\mu^2} + \frac{5m_W^2 - m_h^2}{2} + \right. \\ &+ m_W^2\,\log\frac{m_W^2}{\mu^2} - \frac{m_W^2}{m_h^2 - m_W^2}\,\left(4m_W^2 - m_h^2\right)\,\log\frac{m_h^2}{m_W^2} \right\} + \Xi[\delta Z_{eW,B,T}] \end{split}$$

1

$$\mathcal{L}_{\rm eff}(\phi,m) = \mathcal{L}_{\rm SM} + \textstyle\sum_{d=5}^{\infty} \, \sum_{a_d} \, \frac{C^{(d)}_{a_d}}{\Lambda^{d-4}}(\{g_{\rm UV}\},M) \, \mathcal{O}^{(d)}_{a_d}(\phi)$$

$$\begin{split} \Pi_{WW}(0) &= \frac{\alpha_{\rm em}\,\bar{c}_H}{16\pi s_w^2} \left\{ 3m_W^2 \Delta_\epsilon - 4m_W^2\,\log\frac{m_h^2}{\mu^2} + \frac{5m_W^2 - m_h^2}{2} + \right. \\ &+ m_W^2\log\frac{m_W^2}{\mu^2} - \frac{m_W^2}{m_h^2 - m_W^2}\,\left(4m_W^2 - m_h^2\right)\,\log\frac{m_h^2}{m_W^2} \right\} + \Xi[\delta Z_{cW,B,T}] \end{split}$$

$$\gamma_{\rm TH} \equiv \gamma_{\rm H \to T} = \frac{3}{2} \frac{e^2}{c_w^2} \qquad \qquad \frac{v^2}{\Lambda^2} c_T(m_Z) = -\frac{3\alpha_{\rm ew}\,\tan^2\theta_W}{(4\pi)^2} \left(\frac{\lambda_3^2\,v^2}{2\lambda_2\,(2\lambda_2v_s^2)}\right) \,\log\left(\frac{2\lambda_2\,v_s^2}{m_Z^2}\right)$$

Electroweak precision: Δr and m_W

Intermezzo: a two-slide EFT perspective

Potential Hazards:

 \clubsuit Multiple M_{heavy} 's

 $\diamond v$ -induced scales

Eigenmass splittings

Electroweak precision: Δr and m_W

Intermezzo: a two-slide EFT perspective

Potential Hazards:

♠ Multiple M_{heavy}'s

 $\diamond v$ -induced scales

Implications

Freitas, DLV, Plehn arXiv:1607.08614

- Λ choice and/or truncation not always univoque
- Additional v-induced scales $\sim M_{\rm heavy} \pm gv \;\;\Rightarrow\;\;$ spoilt scale separation & sizable mass splittings
- Large d > 6 contributions $\mathcal{O}^d \propto \mathcal{O}^{d=6} (\Phi^{\dagger} \Phi)^{d-6} \Rightarrow v$ -improvement

Electroweak precision: Δr and m_W

Intermezzo: a two-slide EFT perspective

 \clubsuit Multiple M_{heavy} 's

 $\diamond v$ -induced scales

Implications

Freitas, DLV, Plehn arXiv:1607.08614

- Λ choice and/or truncation not always univoque
- Additional v-induced scales $\sim M_{\text{heavy}} \pm gv \Rightarrow$ spoilt scale separation & sizable mass splittings
- Large d > 6 contributions $\left| \mathcal{O}^d \propto \mathcal{O}^{d=6} \left(\Phi^{\dagger} \Phi \right)^{d-6} \right| \Rightarrow v$ -improvement

About the model

3 Electroweak precision: Δr and m_W

4 Renormalization

5 Heavy-to-light Higgs decays

Take-home ideas

EW vacuum Tadpoles: $\hat{T}_h = T_h + \delta T_h = 0;$ $\hat{T}_H = T_H + \delta T_H = 0$ Doublet vev: $v = \frac{2 m_W s_W}{e} \rightarrow \frac{\delta v}{v} = \frac{1}{2} \frac{\delta m_W^2}{m_W^2} + \frac{\delta s_W}{s_W} - \frac{\delta Z_e}{e}$ Singlet vev: $\phi_s + v_s \rightarrow Z_S^{1/2}(\phi_s + v_s + \delta \bar{v}_s)$ $\delta \bar{v}_s^{\text{div}} = 0$ Sperling, Stöckinger, Voigt ['13] $\delta \bar{v}_s^{\text{fin}} \equiv 0 \Rightarrow \tan \beta \equiv \tan \beta \right|^{\text{phys}}$

EW vacuum A Tadpoles: $\hat{T}_h = T_h + \delta T_h = 0;$ $\hat{T}_H = T_H + \delta T_H = 0$ **A** Doublet vev: $v = \frac{2 m_W s_W}{e} \rightarrow \frac{\delta v}{v} = \frac{1}{2} \frac{\delta m_W^2}{m_W^2} + \frac{\delta s_W}{s_W} - \frac{\delta Z_e}{e}$ **A** Singlet vev: $\phi_s + v_s \rightarrow Z_S^{1/2}(\phi_s + v_s + \delta \bar{v}_s)$ • $\delta \bar{v}_s^{\text{div}} = 0$ Sperling, Stöckinger, Voigt ['13] • $\delta \bar{v}_s^{\text{fin}} \equiv 0 \Rightarrow \tan \beta \equiv \tan \beta \Big|^{\text{phys}}$

Higgs masses

OS physical masses

$$\mathrm{Re}\hat{\Sigma}_{\phi}(m_{\phi}^2) = 0 \qquad \mathrm{Re}\hat{\Sigma}_{\phi}(p^2) = \mathrm{Re}\,\Sigma_{\phi}(p^2) + \delta Z_{\phi}(p^2 - m_{\phi}^2) - \delta m_{\phi}^2, \qquad [\phi = h, H]$$

EW vacuum ***** Tadpoles: $\hat{T}_h = T_h + \delta T_h = 0$; $\hat{T}_H = T_H + \delta T_H = 0$ ***** Doublet vev: $v = \frac{2 m_W s_W}{e} \rightarrow \frac{\delta v}{v} = \frac{1}{2} \frac{\delta m_W^2}{m_W^2} + \frac{\delta s_W}{s_W} - \frac{\delta Z_e}{e}$ ***** Singlet vev: $\phi_s + v_s \rightarrow Z_S^{1/2}(\phi_s + v_s + \delta \bar{v}_s)$ • $\delta \bar{v}_s^{\text{div}} = 0$ Sperling, Stöckinger, Voigt ['13] • $\delta \bar{v}_s^{\text{fin}} \equiv 0 \Rightarrow \tan \beta \equiv \tan \beta \Big|^{\text{phys}}$

Higgs masses

OS physical masses

$$\operatorname{Re}\hat{\Sigma}_{\phi}(m_{\phi}^2) = 0 \qquad \operatorname{Re}\hat{\Sigma}_{\phi}(p^2) = \operatorname{Re}\Sigma_{\phi}(p^2) + \delta Z_{\phi}(p^2 - m_{\phi}^2) - \delta m_{\phi}^2, \qquad [\phi = h, H]$$

... But loops are there! ⇒

$$\mathsf{Re}\hat{\Sigma}_{hH}(p^2) = \mathsf{Re}\,\Sigma_{hH}(p^2) + \frac{1}{2}\delta Z_{hH}(p^2 - m_h^2) + \frac{1}{2}\delta Z_{Hh}(p^2 - m_H^2) - \delta m_{hH}^2$$

Higgs fields

All-order mixing angle

$$\begin{pmatrix} h \\ H \end{pmatrix}^0 = U(\alpha) \begin{pmatrix} \phi_h \\ \phi_s \end{pmatrix}^0 \quad \Rightarrow \quad \begin{pmatrix} h \\ H \end{pmatrix} = U(\alpha) \begin{pmatrix} \phi_h \\ \phi_s \end{pmatrix}.$$

Higgs wave-function renormalization

$$\begin{pmatrix} h \\ H \end{pmatrix}^{0} \rightarrow \begin{pmatrix} 1 + \frac{1}{2}\delta Z_{h} & \frac{1}{2}\delta Z_{hH} \\ \frac{1}{2}\delta Z_{Hh} & 1 + \frac{1}{2}\delta Z_{H} \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix} + \mathcal{O}(\alpha_{ew}^{2})$$

Diagonal parts:

$$\mathrm{Re}\hat{\Sigma}_{\phi\phi}'(m_{\phi}^2) = 0 \qquad \Rightarrow \qquad \delta Z_{\phi\phi} = -\mathrm{Re}\Sigma_{\phi}'(m_{\phi\phi}^2) \qquad [\phi = h, H]$$

Higgs fields

All-order mixing angle

$$\begin{pmatrix} h \\ H \end{pmatrix}^0 = U(\alpha) \begin{pmatrix} \phi_h \\ \phi_s \end{pmatrix}^0 \quad \Rightarrow \quad \begin{pmatrix} h \\ H \end{pmatrix} = U(\alpha) \begin{pmatrix} \phi_h \\ \phi_s \end{pmatrix}.$$

Higgs wave-function renormalization

$$\begin{pmatrix} h \\ H \end{pmatrix}^0 \rightarrow \begin{pmatrix} 1 + \frac{1}{2}\delta Z_h & \frac{1}{2}\delta Z_{hH} \\ \frac{1}{2}\delta Z_{Hh} & 1 + \frac{1}{2}\delta Z_H \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix} + \mathcal{O}(\alpha_{ew}^2)$$

Diagonal parts:

$$\mathrm{Re}\hat{\Sigma}_{\phi\phi}'(m_{\phi}^2) = 0 \quad \Rightarrow \quad \delta Z_{\phi\phi} = -\mathrm{Re}\Sigma_{\phi}'(m_{\phi\phi}^2) \qquad [\phi = h, H]$$

Summarizing ...

- tadpoles: $\delta T_h, \delta T_H$
- vev: $\delta v, \delta v_s$ • mixing: δm_{hH}^2 • Higgs masses: δm_h^2 , δm_H^2 • fields: δZ_h , δZ_H , δZ_{hH} , δZ_{Hh}

Mixing

	$\delta Z_{hH,Hh}$	δm_{hH}^2
Minimal field	$\begin{split} \delta Z_{hH} &= \frac{1}{2} s_{2\alpha} \left[\delta Z_h + \delta Z_H \right] \\ \delta Z_{Hh} &= \delta Z_{hH} \end{split}$	$\operatorname{Re}\Sigma_{hH}(\mu_R^2) + \left[\mu_R^2 - \frac{m_h^2 + m_H^2}{2}\right]$
os	$\begin{split} \delta Z_{hH} &= \frac{\operatorname{Re} \Sigma_{hH}(m_{H}^{2}) - \operatorname{Re} \Sigma_{hH}(m_{h}^{2})}{m_{h}^{2} - m_{H}^{2}} \\ \delta Z_{Hh} &= \delta Z_{hH} \end{split}$	$\frac{\operatorname{Re}\Sigma_{hH}(m_h^2)+\operatorname{Re}\Sigma_{hH}(m_H^2)}{2}$
Mixed \overline{MS} /OS	$\begin{split} \delta \boldsymbol{Z}_{hH} &= \frac{2}{m_h^2 - m_H^2} \begin{bmatrix} \operatorname{Re} \boldsymbol{\Sigma}_{hH}(m_H^2) - \delta m_{hH}^2 \end{bmatrix} \\ \delta \boldsymbol{Z}_{Hh} &= \frac{2}{m_H^2 - m_h^2} \begin{bmatrix} \operatorname{Re} \boldsymbol{\Sigma}_{hH}(m_h^2) - \delta m_{hH}^2 \end{bmatrix} \end{split}$	$\mathrm{through}\; \delta\lambda_2^{\overline{MS}} = \frac{-1}{16\pi^2} \left[\lambda_3^2 + 9\lambda_2^2\right] \Delta_\epsilon$
Improved OS	$\begin{split} \delta Z_{hH} &= \frac{2}{m_h^2 - m_H^2} \begin{bmatrix} \mathrm{Re} \Sigma_{hH}(m_H^2) - \delta m_{hH}^2 \end{bmatrix} \\ \delta Z_{Hh} &= \frac{2}{m_H^2 - m_h^2} \begin{bmatrix} \mathrm{Re} \Sigma_{hH}(m_h^2) - \delta m_{hH}^2 \end{bmatrix} \end{split}$	${\rm Re} \Sigma_{hH}(p_*^2), \ p_*^2 = \frac{m_h^2 + m_H^2}{2}$

Mixing

		- 1
	$\delta Z_{hH,Hh}$	δm_{hH}^{2}
Minimal field	$\begin{split} \delta Z_{hH} &= \frac{1}{2} s_{2\alpha} \left[\delta Z_h + \delta Z_H \right] \\ \delta Z_{Hh} &= \delta Z_{hH} \end{split}$	$\operatorname{Re}\Sigma_{hH}(\mu_R^2) + \left[\mu_R^2 - \frac{m_h^2 + m_H^2}{2}\right]$
OS	$\begin{split} \delta Z_{hH} &= \frac{\operatorname{Re} \Sigma_{hH}(m_{H}^{2}) - \operatorname{Re} \Sigma_{hH}(m_{h}^{2})}{m_{h}^{2} - m_{H}^{2}} \\ \delta Z_{Hh} &= \delta Z_{hH} \end{split}$	$\frac{\operatorname{Re}\Sigma_{hH}(m_h^2)+\operatorname{Re}\Sigma_{hH}(m_H^2)}{2}$
Mixed \overline{MS} /OS	$\begin{split} \delta Z_{hH} &= \frac{2}{m_h^2 - m_H^2} \begin{bmatrix} \operatorname{Re} \Sigma_{hH}(m_H^2) - \delta m_{hH}^2 \end{bmatrix} \\ \delta Z_{Hh} &= \frac{2}{m_H^2 - m_h^2} \begin{bmatrix} \operatorname{Re} \Sigma_{hH}(m_h^2) - \delta m_{hH}^2 \end{bmatrix} \end{split}$	$\mathrm{through}\;\delta\lambda_2^{\overline{MS}}=\frac{-1}{16\pi^2}\left[\lambda_3^2+9\lambda_2^2\right]\Delta_\epsilon$
Improved OS	$\begin{split} \delta Z_{hH} &= \frac{2}{m_h^2 - m_H^2} \begin{bmatrix} \operatorname{Re} \Sigma_{hH}(m_H^2) - \delta m_{hH}^2 \end{bmatrix} \\ \delta Z_{Hh} &= \frac{2}{m_H^2 - m_h^2} \begin{bmatrix} \operatorname{Re} \Sigma_{hH}(m_h^2) - \delta m_{hH}^2 \end{bmatrix} \end{split}$	${\rm Re} \Sigma_{hH}(p_*^2), \ p_*^2 = \frac{m_h^2 + m_H^2}{2}$

A hidden threat

Gauge parameter independence

Outline

About the model

 $\fbox{3}$ Electroweak precision: Δr and m_W

Renormalization

6 Heavy-to-light Higgs decays

Take-home ideas

$H \rightarrow hh$: leading-order features

$$\Gamma^{\rm LO}_{H \rightarrow hh} = \frac{\lambda^2_{Hhh}}{32\,\pi\,m_H}\,\sqrt{1-\frac{4m_h^2}{m_H^2}}$$

$H \rightarrow hh$: leading-order features

$$\Gamma^{\rm LO}_{H \rightarrow hh} = \frac{\lambda^2_{Hhh}}{32 \, \pi \, m_H} \sqrt{1 - \frac{4 m_h^2}{m_H^2}}$$

$$\lambda_{Hhh} \,=\, -\frac{is_{2\alpha}}{v} \left[m_h^2 + \frac{m_H^2}{2} \right] \, (c_\alpha + s_\alpha \, t_\beta^{-1}) \; . \label{eq:lambda_hh}$$

$H \rightarrow hh$: Electroweak corrections

$$\Gamma^{\rm NLO}_{H\to hh} = \frac{1}{32\pi \, m_H} \sqrt{1 - \frac{4m_h^2}{m_H^2}} \left[\lambda_{Hhh}^2 + 2 \, {\rm Re} \, \lambda_{Hhh} \, \left(\delta \Gamma^{\bigtriangleup}_{Hhh} + \delta \Gamma^{\rm WF}_{Hhh} + \delta \lambda_{Hhh} \right) \right] \label{eq:Gamma-lambda}$$

$H \rightarrow hh$: Electroweak corrections

$$\Gamma^{\rm NLO}_{H\to hh} = \frac{1}{32\pi \, m_H} \sqrt{1 - \frac{4m_h^2}{m_H^2}} \left[\lambda_{Hhh}^2 + 2 \, {\rm Re} \, \lambda_{Hhh} \, \left(\delta \Gamma^{\bigtriangleup}_{Hhh} + \delta \Gamma^{\rm WF}_{Hhh} + \delta \lambda_{Hhh} \right) \right] \label{eq:Gamma-lambda}$$

$$\delta_{\alpha} \equiv \frac{\Delta \Gamma_{\alpha}^{\text{1-loop}}}{\Gamma_{\alpha}^{\text{LO}}} = \frac{\Gamma_{\alpha}^{\text{NLO}} - \Gamma_{\alpha}^{\text{LO}}}{\Gamma_{\alpha}^{\text{LO}}}$$

$H \rightarrow hh$ @ NLO

David López-Val - CP3 Université catholique de Louvain

EW corrections in the Singlet Extension of the SM

About the model

 $\fbox{3}$ Electroweak precision: Δr and m_W

4 Renormalization

5 Heavy-to-light Higgs decays

Take-home ideas

To take home

- $\Delta r \& m_W$ available to 1(resp. 2) loop accuracy in the BSM(SM).
- Shifts up to $\Delta r \sim \mathcal{O}(10\%)$ & $m_W \sim \mathcal{O}(50)$ MeV yield leading constraints in some regions
- Complete Renormalization of the singlet-extended Higgs sector, including scheme comparisons and gauge-parameter independence
- Applied to $H \rightarrow hh$ @ NLO EW

• EFT as a tool for BSM Higgs physics including quantum effects and precision observables:

- Robust for weakly-coupled theories & well-separated scales
- Challenged by strong BSM-Higgs couplings & mass splittings
- Improved by alternatives to default matching

To take home

- $\Delta r \& m_W$ available to 1(resp. 2) loop accuracy in the BSM(SM).
- Shifts up to $\Delta r \sim \mathcal{O}(10\%)$ & $m_W \sim \mathcal{O}(50)$ MeV yield leading constraints in some regions
- Complete Renormalization of the singlet-extended Higgs sector, including scheme comparisons and gauge-parameter independence
- Applied to H → hh @ NLO EW

EFT as a tool for BSM Higgs physics including quantum effects and precision observables:

- Robust for weakly-coupled theories & well-separated scales
- Challenged by strong BSM-Higgs couplings & mass splittings
- Improved by alternatives to default matching

To take home

- $\Delta r \& m_W$ available to 1(resp. 2) loop accuracy in the BSM(SM).
- Shifts up to $\Delta r \sim \mathcal{O}(10\%)$ & $m_W \sim \mathcal{O}(50)$ MeV yield leading constraints in some regions
- Complete Renormalization of the singlet-extended Higgs sector, including scheme comparisons and gauge-parameter independence
- Applied to H → hh @ NLO EW

• EFT as a tool for BSM Higgs physics including quantum effects and precision observables:

Robust for weakly-coupled theories & well-separated scales

Challenged by strong BSM-Higgs couplings & mass splittings

Improved by alternatives to default matching

To take home

- $\Delta r \& m_W$ available to 1 (resp. 2) loop accuracy in the BSM(SM).
- Shifts up to $\Delta r \sim \mathcal{O}(10\%)$ & $m_W \sim \mathcal{O}(50)$ MeV yield leading constraints in some regions
- Complete Renormalization of the singlet-extended Higgs sector, including scheme comparisons and gauge-parameter independence
- Applied to H → hh @ NLO EW

- EFT as a tool for BSM Higgs physics including quantum effects and precision observables:
 - Robust for weakly-coupled theories & well-separated scales
 - Challenged by strong BSM-Higgs couplings & mass splittings
 - Improved by alternatives to default matching

BACKUP SLIDES

$H \rightarrow hh$: Maximal BR scenarios

A Maximal BR benchmarks

Robens, Stefaniak ['16]

high mass region						low mass region				
	m_H	$ \sin \alpha _{\max}$	$BR_{\sf max}$	$\tan\beta$	m_h	$ \sin \alpha _{\sf min}$	BR_{max}	$\tan\beta$		
BHM1	300	0.31	0.34	3.71	60	0.9997	0.26	0.29		
BHM3	500	0.24	0.27	2.17	40	0.9998	0.26	0.32		
BHM6	800	0.21	0.23	4.00	10	0.9998	0.26	0.30		

$H \rightarrow hh$: Maximal BR scenarios

A Maximal BR benchmarks

Robens, Stefaniak ['16]

high mass region						low mass region				
	m_H	$ \sin \alpha _{\max}$	BR_{max}	$\tan\beta$	m_h	$ \sin \alpha _{\sf min}$	BR_{max}	$\tan\beta$		
BHM1	300	0.31	0.34	3.71	60	0.9997	0.26	0.29		
BHM3	500	0.24	0.27	2.17	40	0.9998	0.26	0.32		
BHM6	800	0.21	0.23	4.00	10	0.9998	0.26	0.30		

	🐥 High ma	ss region							
	$\Gamma^{LO}_{H \rightarrow hh}$	$\Gamma_{H \rightarrow hh}^{\text{NLO}}$	$\delta_{lpha} \left[\% ight]$	$b\overline{b}$	$t\bar{t}$	WW	ZZ	gg	hh
BM1	0.399	0.413	3.411	0.04	< 0.01	46.35	20.56	0.04	33.02
BM3	1.383	1.463	5.803	0.01	14.19	40.36	19.29	0.04	26.09
BM6	3.798	3.867	1.826	< 0.01	8.57	46.29	23.07	0.02	22.07

A Maximal BR benchmarks

Robens, Stefaniak ['16]

high mass region						low mass region				
	m_H	$ \sin \alpha _{\max}$	BR_{max}	$\tan \beta$	m_h	$ \sin \alpha _{min}$	BR_{max}	$\tan\beta$		
BHM1	300	0.31	0.34	3.71	60	0.9997	0.26	0.29		
BHM3	500	0.24	0.27	2.17	40	0.9998	0.26	0.32		
BHM6	800	0.21	0.23	4.00	10	0.9998	0.26	0.30		

	🐥 High ma	ss region							
	$\Gamma^{LO}_{H \rightarrow hh}$	$\Gamma_{H \rightarrow hh}^{\text{NLO}}$	$\delta_{lpha} \left[\% ight]$	$b\bar{b}$	$t\bar{t}$	WW	ZZ	gg	hh
BM1	0.399	0.413	3.411	0.04	< 0.01	46.35	20.56	0.04	33.02
BM3	1.383	1.463	5.803	0.01	14.19	40.36	19.29	0.04	26.09
BM6	3.798	3.867	1.826	< 0.01	8.57	46.29	23.07	0.02	22.07

	🐥 Low mas	ss region							
	$\Gamma_{H \rightarrow hh}^{LO}$	$\Gamma_{H \rightarrow hh}^{NLO}$	δ_{α} [%]	$b\overline{b}$	$\gamma\gamma$	WW	ZZ	gg	hh
BM1	1.426	1.536	7.765	42.65	0.17	16.04	1.97	6.34	25.90
BM3	1.423	1.432	0.586	42.67	0.17	16.05	1.97	6.35	25.86
BM6	1.427	1.421	-0.438	42.64	0.17	16.04	1.97	6.34	25.91

$H \rightarrow hh$ @ NLO - High mass region

High mass region $m_H > m_h - h(125)$

David López-Val - CP3 Université catholique de Louvain

EW corrections in the Singlet Extension of the SM

$H \rightarrow hh$ @ NLO - Low mass region

Low mass region $m_h < m_H - H(125)$

David López-Val - CP3 Université catholique de Louvain

EW corrections in the Singlet Extension of the SM