Overview of recent ATLAS Higgs Physics Results

Patricia Conde Muíño (LIP) Workshop on Multi-Higgs Models (5-9 Sept 2016)

Summary of Run 1 results

Phys. Rev. D90 (2014) 112015

Phys. Rev. D91 (2015) 012006

 Best ATLAS+CMS fit for the ratio of production modes and BR Cancellation of inclusive production theoretical uncertainties Reference channel: smallest systematics and overall uncertainty: H → ZZ

Run 1: Spin, Parity and mass

> J^P SM assignment tested versus alternative hypothesis combining angular observables from H $\rightarrow\gamma\gamma$, H \rightarrow WW, H \rightarrow ZZ channels

Alternative hypothesis rejected at 99% CLs limit in favour of SM one

Tested Hypothesis	$p_{\exp,\mu=1}^{\text{alt}}$	$p_{\exp,\mu=\hat{\mu}}^{\mathrm{alt}}$	$p_{\rm obs}^{\rm SM}$	$p_{ m obs}^{ m alt}$	Obs. CL _s (%)
0_{h}^{+}	$2.5 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$	0.85	$7.1 \cdot 10^{-5}$	$4.7 \cdot 10^{-2}$
0-	$1.8 \cdot 10^{-3}$	$1.3 \cdot 10^{-4}$	0.88	$< 3.1 \cdot 10^{-5}$	$< 2.6 \cdot 10^{-2}$
$2^+(\kappa_q = \kappa_g)$	$4.3 \cdot 10^{-3}$	$2.9 \cdot 10^{-4}$	0.61	$4.3 \cdot 10^{-5}$	$1.1 \cdot 10^{-2}$
$2^+(\kappa_q = 0; p_{\rm T} < 300 {\rm GeV})$	$< 3.1 \cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.52	$< 3.1 \cdot 10^{-5}$	$< 6.5 \cdot 10^{-3}$
$2^+(\kappa_q = 0; p_T < 125 \text{ GeV})$	$3.4 \cdot 10^{-3}$	$3.9 \cdot 10^{-4}$	0.71	$4.3 \cdot 10^{-5}$	$1.5 \cdot 10^{-2}$
$2^+(\kappa_q = 2\kappa_g; p_{\rm T} < 300 {\rm GeV})$	$< 3.1 \cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.28	$< 3.1 \cdot 10^{-5}$	$< 4.3 \cdot 10^{-3}$
$2^+(\kappa_q = 2\kappa_g; p_{\rm T} < 125 {\rm ~GeV})$	$7.8 \cdot 10^{-3}$	$1.2 \cdot 10^{-3}$	0.80	$7.3 \cdot 10^{-5}$	$3.7 \cdot 10^{-2}$

P. Conde Muíño

The LHC at 13 TeV

Spectacular performance of the LHC this year

ATLAS pp 25ns run: April-July 2016

Inne	r Trac	ker	Calorin	neters	Muon Spectrometer		eter	Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
98.9	99.9	100	99.8	100	99.6	99.8	99.8	99.8	99.7	93.5

Good for physics: 91-98% (10.1-10.7 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at $\sqrt{s}=13$ TeV between 28th April and 10th July 2016, corresponding to an integrated luminosity of 11.0 fb⁻¹. The toroid magnet was off for some runs, leading to a loss of 0.7 fb⁻¹. Analyses that don't require the toroid magnet can use that data.

27.7 fb⁻¹ delivered luminosity

25.6 fb⁻¹ recorded at ATLAS

Newest results use at most 13 fb⁻¹

91-98% of the collected data with good quality for physics analysis

ATLAS Run 2 Performance highlights

- Strong effort to understand the detector performance
- Some examples:
 - Electron/muon reconstruction, trigger and identification efficiencies studied with data

Improved b-tagging efficiency

For 70% eff: ~400(10) rejection on light (c) jets

Higgs re-discovery at 13 TeV

ATLAS-CONF-2016-079

 \succ H \rightarrow ZZ \rightarrow 4 ℓ

$$\sigma_{\text{tot,SM}} = 55.5^{+3.8}_{-4.4} \text{ pb.}$$

 $\sigma_{\text{tot}} = 81^{+18}_{-16} \text{ pb}$

 \succ H \rightarrow yy

13.3 fb⁻¹ pp collisions @ 13 TeV

ATLAS-CONF-2016-067

 $\sigma_{\rm fid} = 47.0 \pm 13.9 \,({\rm stat.}) \pm 5.4 \,({\rm syst.}) \,{\rm fb}$ SM prediction $62.8 \,{}^{+3.4}_{-4.4} \,{\rm fb}$

Cross sections in $H \to \gamma\gamma \; \& \; H \to 4\ell$

ATLAS-CONF-2016-081

 Cross section as a function of the pp center of mass energy

	Measurement at 13 TeV	SM prediction at 13 TeV
σ (pb)	59.0 ^{+9.7} -9.2(stat) ^{+4.4} -3.5(syst)	55.5 ^{+2.4} -3.4
μ	1.13 ^{+0.18} -0.17	1

ATLAS-CONF-2016-067

> $H \rightarrow \gamma \gamma$ differential cross section as a funtion of $p_{\tau}^{\gamma \gamma}$

Agreement with theory

Slightly harder pT in data

P. Conde Muíño

$H \rightarrow bb$ searches

Η

pp → H (NNLO+NNLL QCD + NLO E

→ qqH (NNLO QCD + NLO EW

pp → WH (NNLO QCD + NLO EW pp → ZH (NNLO QCD + NLO

)p → ttH (NLO QCD)

9

10

11

12

8

VBF+y: $\sigma = 65.98$ fb

- Explore non-dominant production modes
- Vector boson fusion + photon (VBF search)
 - Use photon to trigger
 - bbyjj non-resonant bckg. suppressed by ~10×
- > Previous inclusive VBF ($H \rightarrow bb$) limits:

ATLAS: obs/expect. upper limit : 4.4/5.4 × SM CMS Run 1 obs/expect. upper limit: 5.5/2.5 × SM CMS Run 2 (2015)

obs/expect. upper limit: 3.0/5.0 × SM

Associated production with W or Z

(VH search) Trigger on

e/µ from

W/Z decay

M_u = 125 GeV

13

MSTW2008

√s [TeV]

WH and ZH with $H \rightarrow bb$

10

10

10

10

10

10³ 10²

10

Pull (stat.)

ATLAS Preliminary

√s = 13 TeV (Ldt = 13.2 fb⁻¹

-2 -1.5-1 -0.5

🔶 Data

VH(bb) (µ=1.0)

Z+(bb,bc,cc,bl)

0.5 log (S/B)

Diboson

Single top W+(bb,bc,cc,bl)

Events / 0.5

- > 3 channels: 0, 1, 2 leptons
- 8 event categories

0/1/2 leptons, 2/3 (or ≥3) jets, $p_{T}^{V} > / < 150 \text{ GeV}$

- **BDT** discriminant \succ
- Profiled likelihood fit to measure signal strength Constraint main backgrounds

ATLAS-CONF-2016-091

> Combined signal strength with 13.2 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV

$$\mu_{VH,H\to bb} = 0.21^{+0.51}_{-0.50}$$

Systematic and statistical uncertainties of combination the same size

Dominant systematics from b-tagging and background normalization & modelling (W+jets, Z+jets, top)

 ≻ Fit cross checked with di-boson signal (WZ+ZZ with Z→bb)

Observed significance: 3.2σ

 $\mu_{VZ} = 0.91 \pm 0.17 (stat)^{+0.32}_{-0.23} (sys)$

P. Conde Muíño

Multi-Higgs workshop, 5-9

Search for $H \rightarrow bb$ in VBF+y production

Trigger:

L1 trigger: single photon ($p_{\tau} > 25 \text{ GeV}$)

High level trigger: 4 jets p_{T} > 35 GeV, m_{ii} > 700 GeV

Selection:

Tight ID photon, $p_T > 30 \text{ GeV}$

4 jets with p. > 40 GeV

2 central ($|\eta|$ <2.5) b-tagged jets

p_r(bb system) > 80 GeV

Non b-tagged jets: m_{ii}> 800 GeV

BDT discriminant

Built with variables uncorrelated to m_{bb} $\Delta R(jet, \gamma), m_{jj}, \Delta \eta_{jj}, H_T^{soft}$, jet width, γ centrality, $p_T^{balance}$ Define 3 regions with different S/B Fit m_{bb} in these 3 regions

$H \rightarrow bb \ VBF+\gamma \ results$

ATLAS-CONF-2016-063

- > Use a profile likelihood fit
- Non resonant background estimated with 2nd order polinomial fit in m_{bb} sideband
- Fit tested searching for Z→bb + γ production:

Expected 95% CL limit: $1.8^{+0.7}_{-0.5}$ Observed: 2.0

 > Observed signal strength in the Higgs search: μ_{H,VBF+γ}=-3.9^{+2.8}_{-2.7}
 > Expected 95% CL limit:

 $6.0^{+2.3}_{-1.7}$

 Observed 95% CL limit: 4×(σ×BR)SM

Result	$H(\to b\bar{b})+\gamma jj$	$Z(\to b\bar{b}) + \gamma jj$
Expected significance	0.4	1.3
Expected <i>p</i> -value	0.4	0.1
Observed <i>p</i> -value	0.9	0.4
Expected limit	$6.0 \begin{array}{c} +2.3 \\ -1.7 \end{array}$	$1.8 \begin{array}{c} +0.7 \\ -0.5 \end{array}$
Observed limit	4.0	2.0
Observed signal strength μ	-3.9 $^{+2.8}_{-2.7}$	0.3 ±0.8

 \succ

Low BDT score region:

High BDT score region

Search for Higgs boson in ttH production

Search for Higgs boson in ttH production

 Multi-leptons: cut and count in different event categories

> BDT discriminant in ttH (H→bb)

Multi-Higgs workshop, 5-

m_{rr} [GeV]

Results on ttH Higgs searches

> Combined signal strength: $\mu = 1.7^{+0.5}_{-0.5}(stat)^{+0.7}_{-0.6}(sys)$

Beyond the Standard Model Searches

- High mass resonances
- ➢ CP odd Higgs: A→Zh→ ℓℓbb
- > Charged Higgs: $H^{t} \rightarrow \tau v$, $H^{t} \rightarrow tb$

High mass neutral Higgs boson searches

High mass neutral Higgs boson searches

Limits on neutral high mass Higgs bosons

Limits defined for different production modes in most cases

Search for a CP-odd Higgs $A \rightarrow Zh$ with $h \rightarrow bb$

q

leeeee

Search for a CP-odd Higgs in gg fusion or bb production

Predicted by two Higgs doublet models 3.2 fb^{-1} of pp collisions at $\sqrt{s} = 13 \text{ TeV}$

- > Two channels:
 - 2 leptons: $A \rightarrow Zh \rightarrow \ell \ell bb$
 - 0 leptons: A→Zh→vvbb
- > h→bb reconstruction:

 p_{τ}^{Z} < 500 GeV: Two calorimeter jets R=0.4

 p_T^Z > 500 GeV: boosted regime

calorimeter jet R=1.0, trimmed b-tagging on track-jets R=0.2

- > Search for a resonance in the invariant mass
- Use dedicated control regions for background modelling

Α

Results of the search for $A \rightarrow Zh$ with $h \rightarrow bb$

- Profiled likelihood fit considering signal and control regions
- > Dominant systematic uncertainties:

calibration/resolution of small-R and large-R jets energy, large-R jets mass (high p_{τ}^{Z}), b-tagging efficiency and mistag rate

Charged Higgs search channels

10° Decay channels \succ 10 For m_> 200 GeV: tb final state dominate (_H)⁺)² For m_{μ} < 200 GeV: τv decay dominates Production modes \geq BR(H-> 10-3 ${\sf m}_{\sf h}^{\sf mod+}$ > m_{top} m_{H+} m_{H+} ≤ m_{top} $tan\beta = 10$ H^+ 10 g 00000 100 200 300 400 500 600 M_{u+} [GeV] 10 H^+ 10 \overline{h} (_H)88(H_) 00000 (b) Search channels $BR(H \rightarrow \tau v)$ \geq BR(H -> 4 V 10-3 m_hmod+ $H^{*} \rightarrow tb: 1 \text{ lepton}, \geq 4 \text{ jets} (\geq 2 \text{ b-tags})$ $\tan\beta = 50$ 10 $H^+ \rightarrow \tau v$: tau+ hadronic top decay 100 200 300 400 500 600 M_{H+} [GeV] 25P. Conde Muíño Multi-Higgs workshop, 5-9 Sept 16

> Discriminant: transverse mass

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}(1-\cos\Delta\phi_{\tau,\rm miss})}$$

Hadronic τ + hadronic top decay

> Observed 95% Cls limits on σ×BR:
 2. pb- 8 fb

 $H^+ \rightarrow \tau v$ Search

Exclusion in the hMSSM scenario
 Significant improvements over
 2015 results

 $H^+ \rightarrow bt$

- > Isolated lepton with p_⊤ > 25 GeV,
 ≥4 jets (≥2 b-tags)
- > 4 signal and 4 control regions
- > BDT discriminant
- Combined likelihood fit

Constraint the backgrounds

> Observed 95% Cls limits on σ×BR:
 1.1 pb- 0.18 pb

 $H^+ \rightarrow bt results$

Exclusion in the m^{mod-} MSSM benchmark model:

Start to constraint high tan β

Search for HH production

bbyy final state

Limits on HH production

- After the discovery of the Higgs boson in 2012, the ATLAS collaboration has focused on the study of its properties
 - The Run 1 data at 7 and 8 TeV provided the first measurements, mainly in bosonic channels
 - With around 13 fb⁻¹ of 13 TeV pp collisions we have
 - Re-discovered the Higgs boson in H \rightarrow gg and H \rightarrow ZZ \rightarrow 4l final states
 - Searched for the Higgs decaying to b-quark pairs
 - Searched for associated production with top quark pairs
 - Search for new Higgs boson in a large variety of channels
 - Reached sensitivity comparable/better than in Run 1
- Given the current performance of the LHC, we expect improved and new results in the future

Acknowledgements

> OE, FCT-Portugal, CERN/FIS-NUC/0005/2015

$A \rightarrow Zh$ with $h \rightarrow bb$

Search for $H/A \rightarrow tt$

Redone Run 1 analysis considering interference effects between signal and background

6 different analysis categories

Limits in 2HDM: for m_{a} =500 GeV, tan β <0.85 excluded

Search for H/Z decaying to J/ $\psi\,\gamma$

Production cross sections of several processes

Search for new phenomena in $H \rightarrow \gamma \gamma + E_{\tau}^{\text{miss}}$

ATLAS-CONF-2016-087

P. Conde Muíño

Search for a CP-odd Higgs boson A →Zh→Zbb with 3.2 fb⁻¹ of pp collisions at 13 TeV:

Di-photon resonance search

