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Mass Degeneracies in Extended Higgs Sectors

We would like to explore the possibility of mass-degenerate neutral scalars

and/or mass-degenerate charged Higgs pairs that can arise in extended Higgs

sectors. In each case, the critical questions to ask are:

• Is the origin of the mass degeneracy natural? (Yes, if due to a symmetry.

No, if accidental.)

• Can mass degenerate scalars be distinguished experimentally on an event by

event basis?

• Is the only experimental signal of the scalar mass degeneracy a measurable

multiplicity factor that arises when averaging over initial state degeneracies

and summing over final state degeneracies?



Natural scalar mass degeneracies in the 2HDM

Consider the 2HDM with two hypercharge-one, doublet scalar fields. It is

convenient to work in the Higgs basis in which the two Higgs doublet fields,

denoted by H1 and H2, satisfy 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0 (i.e., the vacuum

expectation value, v = 246 GeV, resides entirely in the neutral component of

the Higgs basis field H1.)

We can immediately identify the physical charged Higgs field, H+ ≡ H+
2 , and

the neutral and charged Goldstone fields, G0 =
√
2 ImH0

1 and G+ ≡ H+
1 . In

the Higgs basis, the scalar potential is given by:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[
Z6(H

†
1H1) + Z7(H

†
2H2)

]
H†

1H2 + h.c.
}
,

where Y1, Y2 and Z1,2,3,4 are real, whereas Y3, Z5,6,7 are potentially complex.

After minimizing the scalar potential, Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2.



Specializing to the Inert doublet model (IDM)

Suppose that the Higgs basis of the 2HDM exhibits an exact Z2 symmetry,

H1 → +H1 and H2 → −H2. This symmetry is also preserved by the vacuum.

It then follows that Y3 = Z6 = Z7 = 0. The one remaining complex parameter,

Z5 can be chosen real by rephasing the Higgs basis field H2. Thus, the IDM

scalar potential is CP-conserving.

The Higgs basis doublet fields are also mass eigenstate fields,

H1 =

(

G+

1√
2

[

v + h+ iG0
]

)

, H2 =

(

H+

1√
2

[

H + iA
]

)

,

where G± and G0 are the Goldstone bosons that provide the longitudinal

degrees of freedom of the massive W± and Z0 gauge bosons. The tree-level

properties of the scalar h are precisely those of the SM Higgs boson. The

physical scalar mass spectrum is,

m
2
h = Z1v

2
, m

2
H± = Y2 +

1
2Z3v

2
,

m2
A = m2

H± + 1
2(Z4 − Z5)v

2 , m2
H = m2

A + Z5v
2 .



Scalar/vector Couplings of the IDM

LV V H =

(

gmWW
+
µ W

µ−
+

g

2cW
mZZµZ

µ
)

h ,

LV V HH =

[

1
4g

2
W

+
µ W

µ−
+

g2

8c2
W

ZµZ
µ

]

(h
2
+H

2
+ A

2
)

+

[

1
2g

2W+
µ W

µ− + e2AµA
µ +

g2

c2W

(

1
2 − s2W

)2
ZµZ

µ +
2ge

cW

(

1
2 − s2W

)

AµZ
µ

]

H+H−

+

{

(

1
2egA

µ
W

+
µ −

g2s2W
2cW

Z
µ
W

+
µ

)

H
−
(H + iA) + h.c.

}

,

LV HH =
g

2cW
ZµA

↔
∂µ H − 1

2g

[

iW+
µ H

−↔
∂ µ (H + iA) + h.c.

]

+

[

ieA
µ
+

ig

cW

(

1
2 − s

2
W

)

Z
µ
]

H
+↔
∂µ H

−
,

where sW ≡ sin θW , cW ≡ cos θW .

The cubic and quartic Higgs self-interactions are governed by

L3h = −1
2v
[

Z1h
3
+ (Z3 + Z4)h(H

2
+A

2
) + Z5h(H

2 − A
2
)
]

− vZ3hH
+
H

−
.

L4h = −1
8

[

Z1h
4 + Z2(H

2 + A2)2 + 2(Z3 + Z4)h
2(H2 + A2) + 2Z5h

2(H2 − A2)
]

−1
2H

+H−[Z2(H
2 + A2 +H+H−) + Z3h

2].



A natural mass degeneracy of the IDM

mH = mA, due to Z5 = 0.

This mass degeneracy is due to an exact continuous U(1) symmetry, H1 → H1

and H2 → eiθH2, which is preserved by the vacuum. One can now define

eigenstates of U(1) charge (not to be confused with electric charge),

φ± =
1√
2

[
H ± iA

]
.

The physical scalar mass spectrum of the mass-degenerate IDM is,

m2
h = Z1v

2 ,

m2
H± = Y2 +

1
2Z3v

2 ,

m2
φ± = Y2 +

1
2(Z3 + Z4)v

2 .

Remark: If Z4 = 0, then the H± are degenerate in mass with the φ± at

tree-level. But, this mass-degeneracy is broken by radiative corrections (due to

the interactions with gauge bosons).



The relevant interaction terms of φ± are

Lint =

[

1
2g

2W+
µ W

µ− +
g2

4c2W
ZµZ

µ

]

φ+φ− +
ig

2cW
Zµφ−

↔
∂µ φ

+ − g√
2

[

iW+
µ H

−↔
∂ µ φ

+ + h.c.

]

+
eg√
2

(

AµW+
µ H

−φ+ + AµW−
µ H

+φ−
)

−
g2s2W√
2cW

(

ZµW+
µ H

−φ+ + ZµW−
µ H

+φ−
)

−v(Z3 + Z4)hφ
+
φ
− − 1

2

[

Z2(φ
+
φ
−
)
2
+ (Z3 + Z4)h

2
φ
+
φ
−]− Z2H

+
H

−
φ
+
φ
−
.

Although φ± are mass degenerate states, they can be physically distinguished

on an event by event basis.

For example, Drell-Yan production via a virtual s-channel W+ exchange can

produce H+ in association with φ−, whereas virtual s-channel W− exchange

can produce H− in association with φ+. Thus, the sign of the charged Higgs

boson reveals the U(1)-charge of the produced neutral scalar. The origin of

this correlation lies in the fact that, by construction, H+ and φ+ both reside

in H2, whereas H
− and φ− both reside in H†

2.



Mass degeneracies in the most general 2HDM

It is also possible to construct examples of accidental mass degeneracies in the

most general 2HDM. However, the only natural neutral scalar mass degeneracy

in the 2HDM is precisely the case of the IDM with Z5 = 0.

To reach this conclusion, note the following remarkable result in the 2HDM.

Denoting the three neutral scalar masses by m1, m2 and m3, and their

respective couplings to W+W− by e1, e2 and e3, then

Im(Z∗
5Z

2
6) =

2e1e2e3
v9

(m2
1 −m2

2)(m
2
1 −m2

3)(m
2
2 −m2

3) .

Thus, given any neutral scalar mass degeneracy, it is possible to find a Higgs

basis in which Z5 and Z6 are simultaneously real. In this basis, the neutral

scalar squared-mass matrix is block diagonal with a 2 × 2 block and a 1 × 1

block. The resulting expressions for the scalar masses then have simple analytic

forms, and all possible mass-degenerate cases are easily analyzed.



New features of mass degenerate scalars in the 3HDM

In the 3HDM, one can now consider mass-degenerate charged Higgs pairs, as

well as mass-degenerate neutral scalars. I will focus on two special 3HDMs

where mass degeneracies occur.

The replicated IDM (RIDM)

We begin with a replicated IDM, in which two inert doublets are mass-

degenerate. Consider the following 3HDM scalar potential in the Higgs basis,

VRIDM = Y1H
†
1H1 + Y2

(

H†
2H2 +H†

3H3

)

+ 1
2Z1(H

†
1H1)

2 + 1
2Z2(H

†
2H2 +H†

3H3)
2

+Z3(H
†
1H1)

(

H†
2H2 +H†

3H3

)

+ Z4

[

(H†
1H2)(H

†
2H1) + (H†

1H3)(H
†
3H1)

]

+1
2Z5

{

(H†
1H2)

2 + (H†
2H1)

2 + (H†
1H3)

2 + (H†
3H1)

2
}

.

Without loss of generality, we have chosen Z5 real, so that VRIDM is CP-

conserving. There is a continuous symmetry that is responsible for the

mass-degeneracy of the inert Higgs doublets H2 and H3.



Consider the U(2) family symmetry, where the neutral complex field H0
1 is a

singlet and the neutral complex fields H0
2 and H0

3 transform as,

(
H0

2

H0
3

)
−→ U

(
H0

2

H0
3

)
, with U ∈ U(2).

If Z5 = 0, then VRIDM depends only on the combination of neutral fields,

H0 †
2 H0

2 +H0 †
3 H0

3 , and hence is invariant under U(2).

If Z5 6= 0, then VRIDM also depends on the combination of neutral fields,

(H0
2)

2 + (H0 †
2 )2 + (H0

3)
2 + (H0 †

3 )2. Hence, VRIDM is invariant under an O(2)

subgroup of the U(2) transformations (corresponding to real unitary matrices).

The O(2) symmetry guarantees that the real and imaginary parts of H0
2 and

H0
3 are separately mass degenerate. In the case of Z5 = 0 (and the full U(2)

family symmetry), one has in addition a mass-degeneracy between the real and

imaginary parts of each inert neutral scalar.



There is another continuous symmetry at play here, which takes the form of a

generalized CP transformation (GCP),

(
H0

2

H0
3

)
−→ U

(
H0 †

2

H0 †
3

)
, with U ∈ U(2)GCP.

Again, if Z5 = 0, then VRIDM is invariant under the U(2)GCP. If Z5 6= 0, then

VRIDM is invariant under an O(2)GCP subgroup of U(2)GCP.

Including the kinetic energy terms (with gauge covariant derivatives), the

relevant global symmetry group associated with the mass-degenerate scalars is

a semi-direct product, O(2)⋊Z2 (which is enlarged to U(2)⋊Z2 if Z5 = 0).

Remark: The mass degeneracies of the inert charged Higgs scalars are governed

by the full U(2)⋊Z2 symmetry (since Z5 does not contribute to the inert charged

Higgs scalar masses).



In the replicated IDM, the Higgs basis doublet fields are mass eigenstate fields,

H1 =

(
G+

1√
2

[
v + hSM + iG0

]
)
, H2 =

(
H+

1√
2

[
H + iA

]
)
, H3 =

(
h+

1√
2

[
h+ ia

]
)
,

with a minor change of notation from the IDM. The corresponding masses are,

m2
H± =m2

h± = Y2 +
1
2Z3v

2 , m2
H = m2

h = Y2 +
1
2(Z3 + Z4 + Z5)v

2 ,

m
2
A =m

2
a = Y2 +

1
2(Z3 + Z4 − Z5)v

2
.

The corresponding couplings simply replicate the IDM couplings. For example,

LV V H =

(

gmWW
+
µ W

µ− +
g

2cW
mZZµZ

µ
)

hSM ,

LV HH =
g

2cW
Z
µ
(A

↔
∂µ H + a

↔
∂µ h) − 1

2g

[

iW
+
µ H

−↔
∂ µ (H + iA) + iW

+
µ h

−↔
∂ µ (h+ ia) + h.c.

]

+

[

ieA
µ
+
ig

cW

(

1
2 − s

2
W

)

Z
µ
]

(H
+↔
∂µ H

−
+ h

+↔
∂µ h

−
),

L3h = −1
2v
[

Z1h
3
SM + (Z3 + Z4)hSM(H

2
+ A

2
+ h

2
+ a

2
) + Z5hSM(H

2 − A
2
+ h

2 − a
2
)
]

−vZ3hSM(H
+
H

−
+ h

+
h
−
) .



It is convenient to introduce,

P ≡ H + ih√
2

, P † ≡ H − ih√
2

, Q ≡ A− ia√
2

, Q† ≡ A+ ia√
2

.

Then, we can rewrite the RIDM couplings in terms of the complex fields P , Q
(and their adjoints). For example,

LV HH =
g

2cW
Z
µ
(Q

↔
∂µ P +Q

†↔
∂µ P

†
) − g

2
√
2

[

(iW
+
µ H

− −W
−
µ h

+
)
↔
∂ µ (P + iQ)

−(iW−
µ H

+ −W+
µ h

−)
↔
∂ µ (P − iQ) + h.c.

]

+

[

ieA
µ
+
ig

cW

(

1
2 − s

2
W

)

Z
µ
]

(H
+↔
∂µ H

−
+ h

+↔
∂µ h

−
),

L3h = −v
[

1
2Z1h

3
SM + (Z3 + Z4)hSM(|P |2 + |Q|2) + Z5hSM(|P |2 − |Q|2)

]

− vZ3hSM(H
+
H

−
+ h

+
h
−
).

In the RIDM, there is no experimental measurement that can physically

distinguish the degenerate scalars, (H±, h±), (H, h) and (A, a). However, the

multiplicity factor will appear after summing over final mass-degenerate states,

e.g., Z → HA, ha (or equivalently, Z → PQ, P †Q†), doubles the rate into a

pair of neutral scalars.



The Ivanov-Silva Model

Ivanov and Silva (IS) introduced a particular 3HDM model with some curious

properties.∗ In the Higgs basis of the 3HDM, we are free to make an arbitrary

U(2) rotation to define the Higgs basis fields, H2 and H3. We have made use

of this freedom to make a minor alteration of the IS scalar potential,

VIS = VRIDM + Z′
3(H

†
2H2)(H

†
3H3) + Z′

4(H
†
2H3)(H

†
3H2)

+
[

Z8(H
†
2H3)

2
+ Z9(H

†
2H3)(H

†
2H2 −H

†
3H3) + h.c.

]

,

where VRIDM is the replicated IDM scalar potential, and Z8 and Z9 are

potentially complex.

The IS model still yields mass-degenerate inert doublets, since none of the extra

terms involve the Higgs basis field H1. Hence, these terms do not contribute

to the tree-level scalar squared-mass matrices.

∗I.P. Ivanov and J.P. Silva, Phys. Rev. D 93, 095014 (2016) [arXiv:1512.09276],



Symmetries governing the mass degeneracies of the IS model

Note that after the extra terms in the scalar potential are included, there is no

remaining unbroken continuous subgroup of the U(2) family symmetry or the

U(2)GCP generalized CP symmetry.

Case 1: Z8 and Z9 are real.

VIS is invariant under a discrete Z4 subgroup of the U(2) family symmetry

group. The elements of this subgroup are,

Z4 =
{

I,−I, Z,−Z
}

, where Z ≡
(

0 −1

1 0

)

.

where the 2× 2 matrices above act on the Higgs basis fields H2 and H3. Note

that Z2 = −I , where I is the 2× 2 identity matrix.

The fields H2 and H3 are odd under −I , which simply identifies the two inert

doublets. The elements Z (and −Z) act non-trivially on the inert doublets.



As before, we are free to combine mass-degenerate neutral fields and define,

P ≡ (H + ih)/
√
2 and Q ≡ (A− ia)/

√
2 ,

which are eigenstates of Z (and −Z). Indeed, P and Q† have eigenvalue i

under Z, and P † and Q have eigenvalue −i under Z. For example, this is

consistent with the couplings of neutral scalars to the Z, namely

LZHH =
g

2cW
Zµ(P

↔
∂µ Q+ P †↔

∂µ Q
†) .

Likewise, VIS is invariant under a discrete Z4 subgroup of the U(2)GCP

generalized CP symmetry, The element Z involved in the transformation,(
H2

H3

)
→
(
0 −1

1 0

)(
H†

2

H†
3

)
,

is called a CP4 transformation by Ivanov and Silva.† Due to the extra dagger,

P and Q have eigenvalue i and P † and Q† have eigenvalue −i under Z. This
is again consistent with the form of LZHH above since the Z is CP-even and

parity introduces an extra minus sign due to the space derivative.
†Note that (CP4)2 6= I and (CP4)4 = I. Hence the nomenclature.



Either discrete symmetry (family or GCP) can be invoked to explain the

observed mass degeneracies of the IS model with real Z8 and Z9. Moreover, the

conventional CP, called CP2 [since (CP2)2 = I], corresponding to Hi → H†
i ,

is a symmetry since all scalar potential parameters are real.

Case 2: Z8 and/or Z9 are complex.

In this case, the symmetry transformation,(
H2

H3

)
→
(
0 −1

1 0

)(
H2

H3

)
,

is no longer respected by VIS. The remaining unbroken family symmetry is

Z2 = {I,−I}, which protects the inertness of H2 and H3 but cannot enforce

the mass degeneracies of the IS model.

Nevertheless, the CP4 symmetry remains intact and is ultimately responsible

for the IS model mass degeneracies. Note that there is no CP2 symmetry in

this case, since there is no possible change of basis in which all scalar potential

parameters are real.



A physical distinction between the CP2 and CP4 symmetry

Ivanov and Silva asked: is there an experiment that can determine the order of

the CP symmetry of the IS scalar sector? The answer is affirmative. It relies

on the existence of a particular four scalar coupling of the IS model,

δL4h ∋ 1
2 ImZ8

[
(PQ− P †Q†)(P 2 −Q2 − P † 2 +Q† 2)

]

+1
2i ImZ9

[
(PQ− P †Q†)(P 2 +Q2 + P † 2 +Q† 2)

]
.

Self-interaction terms of this type are absent if Z8 and Z9 are both real. As

an example, consider the case where MQ ≪ mZ and MP ≫ mZ. In this case,

the four-scalar interactions above mediate the four body Z decay,

Z → QQQQ∗ , QQ∗Q∗Q∗ .

These two final states are experimentally indistinguishable, so we must sum

incoherently the squared amplitudes of both channels. Observation of such

decays would be consistent with the presence of a CP4 symmetry and would

force us to conclude that it is impossible to define CP as a CP2 symmetry.



Z

P

Q(k1)

Q(k2)

Q(k3)

Q∗(k4)

Z

P

Q(k1)

Q(k2)

Q(k3)

Q∗(k4)

Z P

Q(k1)

Q(k2)

Q(k3)

Q∗(k4)

Z P ∗

Q(k1)

Q(k2)

Q(k3)

Q∗(k4)

We have obtained (for MP ≫ mZ and MQ = 0),

Γ(Z → QQQQ∗, QQ∗Q∗Q∗)

Γ(Z → νν̄)
=

2
[
(ImZ8)

2 + (ImZ9)
2
]

3 · 5 · 29 π4

(
mZ

MP

)4

,

whee the factor of 2 accounts for the multiplicity of mass-degenerate states.



An invariant distinction between CP4 with and without CP2

The form of the IS scalar potential used so far is basis dependent, even

within the subclass of Higgs bases. But, there is a subset of Higgs bases, in

which the IS scalar potential is applicable. Within this subset of Higgs bases,

(ImZ8)
2+(ImZ9)

2 must be a physical quantity, which means that one cannot

find another basis within this subset such that both Z8 and Z9 are real.

Can we do better? Indeed, there exists a scalar basis invariant quantity that

reduces to (ImZ8)
2 + (ImZ9)

2 in the subset of Higgs bases where the scalar

potential is of the IS form.



Consider the 3HDM scalar potential in an arbitrary scalar field basis with a

U(1)EM preserving minimum,

V = Yab̄Φ
†
āΦb +

1
2Zab̄cd̄(Φ

†
āΦb)(Φ

†
c̄Φd) ,

where Zab̄cd̄ = Zcd̄ab̄, subject to the hermiticity conditions, Yab̄ = (Ybā)
∗

and Zab̄cd̄ = (Zbādc̄)
∗. The neutral Higgs vacuum expectation values are,

〈Φ0
a〉 = vv̂a/

√
2, where v = 246 GeV and v̂a is a vector of unit norm. It is

convenient to define the hermitian matrix

Vab̄ ≡ v̂a v̂
∗
b̄ .

Invariant quantities are constructed out of Y , Z and V such that all barred-

unbarred index pairs are summed over.



A list of invariants and their values in the IS basis

J1 ≡ Vac̄Vbd̄Zcādb̄, J2 ≡ Vab̄Zbācc̄, J3 ≡ Vab̄Zbc̄cā,

J4 ≡ Vab̄Zbd̄cēZdāec̄, J5 ≡ Vab̄Zbd̄cēZdf̄eḡZfāgc̄,

J6 ≡ Vab̄Zbd̄cēZdf̄eḡZfh̄gk̄Zhākc̄.

In the IS basis, these invariants are given by,

J1 = Z1, J2 = Z1 + 2Z3, J3 = Z1 + 2Z4,

J4 = Z2
1 + 2Z2

3 + 2Z2
4 + 2Z2

5 ,

J5 = Z3
1 + 4Z2

5Z1 + 2Z3
3 + 6Z3Z

2
4 + 2Z2Z

2
5 + 4Z2

5 ReZ8,

J6 = Z4
1 + 2Z4

3 + 2Z4
4 + 12Z2

3Z
2
4 + 4Z4

5 + 2Z2
5(3Z

2
1 + 2Z1Z2 + Z2

2)

+8Z2
5

[
|Z8|2 + (Z1 + Z2)ReZ8 + (ImZ9)

2].

Note that Z5 can be expressed in terms of an invariant quantity,

Z2
5 = −J2

1 + 1
2J1 (J2 + J3)− 1

4(J
2
2 + J2

3 ) +
1
2J4 .



Finally, we have discovered a remarkable invariant quantity,

N = 32Z2
5J6 − 16J2

5 + 8J5(3J21J
2
31 +K)− J4

31(9J
2
21 + 4Z2

5)− 6KJ21J
2
31

−24Z2
5J

2
21J

2
31 − J6

21 − 4Z2
5J

4
21 − 8J1(J

2
1 + 2Z2

5)J
3
21 − 16J6

1

−96Z2
5J

4
1 − 192Z4

5J
2
1 − 128Z6

5 ,

where Jij ≡ Ji − Jj and K ≡ 4J3
1 + 8Z2

5J1 + J3
21.

Plugging in the expressions for J1 , . . . , J6 given above, we find

N = 256Z4
5

[
(ImZ8)

2 + (ImZ9)
2
]
.

It follows that if Z5 6= 0 then there exists a ratio of invariant quantities, which

when evaluated in the IS-basis, is equal to (ImZ8)
2 + (ImZ9)

2.

If N 6= 0, then the CP4-conserving IS-potential does not respect a CP2

symmetry. If N = 0, then the CP2 symmetry is respected, and a real Higgs

basis exists (in which all the scalar potential parameters are real).



Special case of Z5 = 0

If Z5 = 0, then a real Higgs basis exists. How is this consistent with the

previous computation of the decay rate for Z → QQQQ∗, QQ∗Q∗Q∗? The

resolution of this apparent paradox is that when Z5 = 0, the masses of P and

Q (and their complex conjugates) become degenerate. Hence, the Z decays

into the Qs and Q∗s cannot be distinguished from similar decays where we

substitute P for Q, etc.

The observable in this case corresponds to the incoherent sum of squared

amplitudes for Z decay into four neutral scalars, summing over all possible

combinations of P , Q, P ∗ and Q∗ in the final state consistent with the

corresponding CP4 quantum numbers. These amplitudes involve four scalar

couplings that depend on other combinations of the scalar potential parameters.

The observable will thus be proportional to a more complicated combination

of scalar potential parameters than (ImZ8)
2 + (ImZ9)

2, and must also be an

invariant quantity (which is different from N ).



Proof of the existence of a real basis when Z5 = 0

The most general basis transformation that preserves the general class of Higgs

bases is given (in block diagonal form) by,

(
H̄1

H̄23

)
=

(
1 0

0 Ṽ

)(
H1

H23

)
,

where

H23 ≡
(
H2

H3

)
, H̄23 ≡

(
H̄2

H̄3

)
,

and Ṽ is the most general U(2) matrix,

Ṽ = eiψ/2

(
eiα cosφ −e−iβ sinφ
eiβ sinφ e−iα cosφ

)
,

where 0 ≤ φ < π, −π < ψ ≤ π, 0 ≤ α ≤ π and 0 ≤ β ≤ π. It is convenient

to define,

ξ ≡ α+ β , χ ≡ α− β .



In the new scalar basis, the form of the CP4 symmetry transformation is

modified. Written in terms of the barred scalar fields,

H̄i → X̄ijH̄
†
j , where X̄ = VWV T ,

where the 3× 3 matrices X̄, V and W in block form are given by

X̄ =

(
1 0

0 X̃

)
, V =

(
1 0

0 Ṽ

)
, W =

(
1 0

0 ǫ

)
,

and ǫ ≡
(
0 −1
1 0

)
. For Ṽ ∈ U(2) previously given, we have

X̃ = Ṽ ǫṼ T = eiψǫ ,

after taking the determinant and noting that det Ṽ = eiψ.



In terms of the barred fields, the form of the IS potential is almost the same as

before. The Z5 term is modified as follows,

VIS ∋ iZ̄ ′
5

[
eiψ(H̄†

3H̄1)(H̄
†
2H̄1)− e−iψ(H̄†

1H̄2)(H̄
†
1H̄3)

]
,

+

{
1
2Z̄5

[
eiψ(H̄†

2H̄1)
2 + e−iψ(H̄†

1H̄3)
2
]
+ h.c.

}
,

where‡

Z̄ ′
5 = Z5 sin 2φ sin ξ ,

Z̄5 = eiχZ5

(
eiξ cos2 φ+ e−iξ sin2 φ

)
.

Thus, if Z5 = 0 then the only potential complex coefficients in the new basis

(expressed in terms of the barred fields) are Z̄8 and Z̄9.

Note that if ξ = χ = 0, then the original form of the IS potential is retained.

We can use the remaining freedom to choose φ to obtain an IS basis in which

Z9 is real (and only Z8 is potentially complex).
‡Note that |Z̄5|2 + Z̄′ 2

5 = Z2
5 . The invariant quantity previously identified as Z2

5 in the IS basis is given by

|Z̄5|2 + Z̄′ 2
5 in a generic Higgs basis.



Thus without loss of generality, we can assume that Z9 is real and Z8 = |Z8|eiθ8
is complex in the IS basis. We then perform the U(2) basis transformation

given previously. In the new basis,

Im Z̄8 = fa cos 2χ− fb sin 2χ , Im Z̄9 = fc cosχ− fd sinχ ,

where

fa = |Z8| cos 2φ sin(2ξ + θ8) + Z9 sin 2φ sin ξ ,

fb =
1
4(Z

′
3 + Z

′
4) sin

2
2φ− |Z8|(1 − 1

2 sin
2
2φ) cos(2ξ + θ8) − Z9 sin 2φ cos 2φ cos ξ ,

fc = −|Z8| sin 2φ sin(2ξ + θ8) + Z9 cos 2φ sin ξ ,

fd =
1
2(Z

′
3 + Z

′
4) sin 2φ cos 2φ + |Z8| sin 2φ cos 2φ cos(2ξ + θ8) − Z9 cos 4φ cos ξ .

We now search for parameters of the U(2) basis transformation such that

Im Z̄8 = Im Z̄9 = 0. Assuming that fa 6= 0 and fc 6= 0, it would then follow

that

cotχ =
fd
fc
, cot 2χ =

fb
fa
.



Employing the trigonometric identity, cot 2χ = (cot2 χ − 1)/(2 cotχ), we

conclude that Im Z̄8 = Im Z̄9 = 0 if and only if,

G(φ, ξ) ≡ fa(f
2
d − f2c )− 2fbfcfd = 0 .

It is quite easy to check that G(0, ξ) = −G(12π, ξ) = Z2
9 ImZ8. Hence, for

any choice of ξ, there must exist a value of φ between 0 and 1
2π such that

G(φ, ξ) = 0.

Thus, we have proven that if Z5 = 0, then it is possible to find a new Higgs

basis in which Z8 and Z9 are real. That is, a real Higgs basis exists (in which

case CP2 is also a good symmetry of the model).

Remark: If Z5 6= 0, then it is still possible to find a new Higgs basis in which

Z̄8 and Z̄9 are real. But, in this case, the complex parameters will reside in

either iZ̄ ′
5e

±iψ and/or Z̄5e
±iψ. That is, starting from the IS-basis where either

Z8 and/or Z9 is complex, no real Higgs basis exists and CP2 is therefore not a

symmetry of the model.



Final comments

1. It is straightforward to show that for an N -Higgs doublet model, a CP4-

symmetric scalar potential and CP4-invariant vacuum implies the existence of

mass degenerate scalar states (similar to that of the IS model).

2. There is an observable distinction between CP4-invariant models that either

respect or violate the conventional CP (CP2) symmetry.

3. Do CP4 invariant scalar sectors that violate CP2 yield any observable

T-violating phenomena? (Ivanov says no!)

We had some hope that one could find evidence for T-violating form factors

arising in the ZZZ and ZW+W− vertex, that would be generated at two

loops due to the CP2-violating, CP4-conserving PQ3 and P 3Q interactions.

However, it seems that such contributions vanish exactly (due to the absence

of diagrams or diagrams canceling in pairs).



Backup slides



Flashback to 2012: Can Mass-degenerate scalars

explain the h → γγ anomaly?

After the initial discovery of the Higgs boson in 2012, it appeared that the

signal strength for h → γγ was significantly enhanced above Standard Model

(SM) expectations.

My collaborators and I proposed to explain this anomaly under the assumption

that the the observed Higgs state at 125 GeV was in fact a pair of mass

degenerate scalars.§

We considered the Type-I and Type-II two-Higgs doublet model (2HDM), and

explored various possibilities for mass degeneracy and their phenomenological

consequences.

§P.M. Ferreira, R. Santos, H.E. Haber and J.P. Silva, Phys. Rev. D 87, 055009 (2013) [arXiv:1211.3131].



An enhanced γγ signal due to mass-degenerate h0 and A0:
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Left panel: Rγγ as a function of tan β for h (blue), A (green), and the total observable rate (cyan), obtained by summing the rates

with intermediate h and A, for the unconstrained scenario (i.e., the effects of virtual charged Higgs exchange in B physics is neglected).

Right panel: Total rate for Rγγ as a function of tan β for the constrained (red) and unconstrained (green) scenarios.

Above, RHf =
σ(pp→H)2HDM×BR(H→f)2HDM

σ(pp→hSM)×BR(hSM→f)
, where f is the final state of interest, and H is one of the two 125 GeV

mass-degenerate scalars. The observed ratio of f production relative to the SM expectation is Rf ≡∑H RHf . In our analysis, we

assumed that RWW ≃ RZZ ≃ 1 ± 0.2.

The corresponding results in the Type-II 2HDM were similar. Other degenerate-mass scalar

pairs were also considered. By the end of Run I of the LHC, the γγ excess was gone, and the

Higgs data appears to be consistent with SM expectations.



A simple model of scalar mass degeneracy: H±

Any doublet extended Higgs model has a mass degenerate state—the charged

Higgs boson, H±. Indeed, H+ and H− are degenerate due to the U(1)EM

gauge symmetry. Moreover, the H+ and H− are distinguishable by their

electric charge, which we can probe using photons.

Suppose that this probe was unavailable (or equivalently, suppose one could

turn off electromagnetism). Can experiment reveal the existence of a mass-

degenerate scalar?

• Given a charged Higgs state, one could not physically distinguish between
the two degenerate states.

• However, there would in principle be observables that are sensitive to the
number of degenerate states present. Examples: H → H+H− (but not
Z → H+H− due to the off-diagonal nature of this coupling).



Mass degeneracies in the most general 2HDM

To analyze the most general 2HDM, we note a remarkable tree-level relation

Im(Z∗
5Z

2
6) =

2s13c
2
13s12c12
v6

(m2
2 −m2

1)(m
2
3 −m2

1)(m
2
3 −m2

2) ,

where the mi (i = 1, 2, 3) are the masses of the three neutral Higgs bosons

of the 2HDM, s12 ≡ sin θ12, c12 ≡ cos θ12, etc., and θ12 and θ13 are invariant

mixing angles that are associated with the diagonalization of the neutral Higgs

squared-mass matrix in the Higgs basis.

Thus, if any mass degeneracy is present, then one can find a Higgs basis in

which Y3, Z5 and Z6 are simultaneously real. Any CP-violating effects arise

due to a potentially complex Z7, which enters in the Higgs self-couplings but

not the diagonalization of the tree-level neutral scalar squared-mass matrix.

Hence, without loss of generality, we can simply take Z5 and Z6 real and

identify the neutral Higgs scalars as h, H and A. These are states of definite

CP in their interactions with gauge bosons (and fermions).



The resulting Higgs mass relations are then,

m
2
H± = Y2 +

1
2Z3v

2
, m

2
A = m

2
H± + 1

2(Z4 − Z5)v
2
,

m
2
H,h =

1

2

{

m
2
A + (Z1 + Z5)v

2 ±
√

[m2
A − (Z1 − Z5)v2]2 + 4Z2

6v
4

}

.

Mass degenerate states arise if one of the following two quantities is zero,

Z5(m
2
A − Z1v

2
) + Z

2
6v

2
= 0 or

[

m
2
A − (Z1 − Z5)v

2]2
+ 4Z

2
6v

4
= 0 .

Case 1: mh = mH

It follows that m2
A = (Z1−Z5)v

2 and Z6 = 0. Thus, we recover the IDM mass

spectrum for this degenerate case, although Z7 can be nonzero. Thus, the

IDM scalar self couplings are modified by the addition of the following terms,

δL3h = −1
4v
[

Z7(H + iA) + Z
∗
7(H − iA)

]

(HH + AA+ 2H
+
H

−
) ,

δL4h = −1
4

[

Z7(H + iA) + Z∗
7(H − iA)

]

(HH + AA + 2H+H−)h ,

which provide new sources of CP violation if ImZ7 6= 0. The mass degeneracy

is unnatural (moreover, Z6 = 0 is also unnatural when Z7 6= 0). Nevertheless,

the mass-degenerate Higgs bosons are distinguishable as in the IDM.



Cases 2 and 3: mh = mA or mH = mA

Both these possibilities arise when Z5(m
2
A − Z1v

2) + Z2
6v

2 = 0, which is an

unnatural condition (unless Z5 = Z6 = Z7 = 0). The physical distinction of the

mass degenerate states is due to the CP quantum numbers of the neutral scalar

states (which are preserved by the Higgs interactions with gauge bosons and

fermions). One can therefore distinguish between the corresponding production

mechanisms of the degenerate scalars that are mediated by gauge boson fusion

or Drell-Yan production via s-channel gauge boson exchange.

Case 4: mh = mH = mA

This requires Z5 = Z6 = 0 and m2
A = Z1v

2. This leaves Z7 as the only

potentially complex parameter of the scalar potential in the Higgs basis, which

can be chosen real by rephasing the Higgs basis field H2. Hence, the Higgs

scalar potential and vacuum must be CP-conserving. However, as long as

Z7 6= 0, the triply mass-degenerate case is unnatural, since the Z2 symmetry

of the IDM is not present.


