Z₂ breaking effects in 2-loop RG evolution of 2HDM

Joel Oredsson¹ in collaboration with Johan Rathsman

Department of Astronomy and Theoretical Physics, Lund University, Sweden

4 September 2018

[Based on work soon to be on the arXiv...]

¹joel.oredsson@thep.lu.se

Renormalization group equation(RGE) analysis of 2HDM

- → Useful when investigating parameter space of model. Can look for finetuning; instabilities; violation of perturbativity and unitarity; etc.
- → There exist plenty of work employing 1-loop RGE equations for scalar or Yukawa sector.
 Ex. of recent ones [1001.2561, 1111.5760, 1408.3405, 1505.04001, 1703.05873, 1710.10410, 1803.08521, etc.]
- → More recently, even (Z₂ symmetric) 2-loop RGEs derived with PyR@TE and SARAH. Chowdhury, Eberhardt [1503.08216] M.Krauss et.al. [1711.08460, 1807.07581]
- → We have derived the general set of 2-loop RGEs for any, potentially complex, 2HDM and implemented them in, to be publicly available, C++ code. RGEs were derived using framework in [Machacek & Vaughn 83-84, Luo, Wang, Xiao 02]

→ This talk: comparing parameter space of 2HDM with different choices of Z₂ symmetries imposed on scalar/Yukawa sector.

Notation for 2HDM

 \rightarrow Generic basis:

$$-\mathcal{L}_{V} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{1}{2} \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{1}{2} \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} \\ + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) \\ + \left\{ \frac{1}{2} \lambda_{5} \left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{6} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{1}^{\dagger} \Phi_{2} \right) + \lambda_{7} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \left(\Phi_{1}^{\dagger} \Phi_{2} \right) + h.c. \right\}$$

$$-\mathcal{L}_Y = \bar{Q}_L^0 \cdot \tilde{\Phi}_a \eta_a^{U,0} U_R^0 + \bar{Q}_L^0 \cdot \Phi_a \eta_a^{D,0} D_R^0 + \bar{L}_L^0 \cdot \Phi_a \eta_a^{L,0} E_R^0 + \text{h.c.} .$$

- → For simplicitly, assume CP conservation, i.e. *real basis*.
- ightarrow Softly Z₂ breaking parameter: m_{12}^2
- \rightarrow Hard Z₂ breaking parameters: λ_6 , λ_7

Notation for 2HDM

 \rightarrow Scalar potential in Higgs basis:

$$-\mathcal{L}_{V} = Y_{1}H_{1}^{\dagger}H_{1} + Y_{2}H_{2}^{\dagger}H_{2} + \left(Y_{3}H_{1}^{\dagger}H_{2} + h.c.\right) + \frac{1}{2}Z_{1}(H_{1}^{\dagger}H_{1})^{2} + \frac{1}{2}Z_{2}(H_{2}^{\dagger}H_{2})^{2} \\ + \frac{1}{2}Z_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \frac{1}{2}Z_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1}) \\ + \left\{\frac{1}{2}Z_{5}(H_{1}^{\dagger}H_{2})^{2} + \left[Z_{6}(H_{1}^{\dagger}H_{1}) + Z_{7}(H_{2}^{\dagger}H_{2})\right]H_{1}^{\dagger}H_{2} + h.c.\right\}.$$

 \rightarrow Yukawa sector in fermion mass basis:

$$-\mathcal{L}_Y = \bar{Q}_L \tilde{H}_1 \kappa^U U_R + \bar{Q}_L H_1 \kappa^D D_R + \bar{L}_L H_1 \kappa^L E_R + \bar{Q}_L \tilde{H}_2 \rho^U U_R + \bar{Q}_L H_2 \rho^D D_R + \bar{L}_L H_2 \rho^L E_R + \text{h.c.},$$

→ κ^F_F diagonal mass matrices. ρ^F_F arbitrary complex matrices.

$$ightarrow$$
 If Z₂ symmetric: $ho^F \propto \kappa^F$

Z₂ symmetry scenarios

 \rightarrow Four CP conserving scenarios:

 \rightarrow I) Exact Z₂ symmetry.

 \rightarrow II) Softly broken Z₂ symmetry:

 $0 \neq m_{12}^2 \in \mathbb{R}$

 \rightarrow III) Hard broken Z₂ in scalar sector:

 $0 \neq \lambda_6, \lambda_7 \in \mathbb{R}$

→ IV) Hard broken Z₂ in Yukawa sector by a disalignment ansatz:

$$\rho^F = a^F \kappa^F, \ a^F \in \mathbb{R}$$

2-loop RGEs of 2HDM

→ At 1-loop, Yukawa evolves independently from scalar sector. But, Yukawa couplings enter in quartics beta functions through:

$$\bigcup \qquad \Rightarrow \beta_{\lambda} \supset \operatorname{tr}(\eta^4) \qquad \qquad \bigcup \qquad \Rightarrow \beta_{\lambda} \supset \lambda \operatorname{tr}(\eta^2)$$

 \rightarrow At 2-loop, Yukawa sector get contributions from quartics:

$$\begin{array}{c} & & \\ & &$$

→ A small breaking of Z₂ at one scale will spread in the RG evolution and induce additional Z₂ breaking parameters.

RG evolution algorithm

→ Start at top mass scale. Generate a tree-lvl stable, unitary and perturbative parameter point with 125 GeV Higgs boson.

1-loop corrected mass using [Spheno]

- → Solve the coupled ODE system for the 129 real parameters in the generic basis. Using libraries [GSL, Eigen]
 - → The VEVs evolve according to the anomalous dimensions. This means that β runs.
- → The transformation to the Higgs basis and diagonalization of the Yukawa sector is performed at each step in the evolution.
- → The breakdown energy A refers to lowest energy where either perturbativity, unitarity or stability is violated.

Scenario I: Exact Z₂ symmetry

Exact Z₂ symmetry (type-I Yukawa)

Joel Oredsson, Lund university

Exact Z₂ symmetry (type-I Yukawa)

 \rightarrow Large loop corrections for scalar masses.

See also [1711.08460, 1807.07581]

- → Large quartic couplings responsible, i.e. points break down fast in RG evolution.
- \rightarrow Higher order quantum corrections vital in these regions.

Scenario II: Softly broken Z₂ symmetry

Softly broken Z₂ symmetry

→ Soft Z₂ breaking opens up parameter space that is stable all the way to the Planck scale.

Softly broken Z₂

Scenario III: Hard broken Z₂ symmetry in scalar sector

Hard broken Z₂ symmetry

 \rightarrow Breaking the Z₂ symmetry hard by having non-zero $\bar{\lambda}_6, \lambda_7$ makes it much harder to get "good" parameter points.

 \rightarrow The symmetry of the Yukawa sector is lost in the RG evolution and non-diagonal FCNC are induced.

0.8

0.0

Joel Oredsson, Lund university

 10^{11}

 -10^{10}

⊢ 10⁹

 10^{8}

Scenario IV: Disalignment of Z₂ symmetry in Yukawa sector

Yukawa breaking of Z₂ symmetry

→ To measure Z₂ breaking in Yukawa sector. We set at top mass scale an (dis)alignment ansatz with real coefficients:

$$o^F = a^F \kappa^F$$

 \rightarrow Starting from a softly broken Z₂ parameter point that is valid all the way to the Planck scale, we vary each a^F independently.

Yukawa breaking of Z₂ symmetry

\rightarrow Down sector:

Yukawa breaking of Z₂ symmetry

→ Lepton sector:

Conclusions

- \rightarrow Derived and implemented 2-loop RGEs for the general, potentially complex, 2HDM.
- → Investigated the parameter space of a CP conserving 2HDM with different levels of Z₂ breaking in the scalar sector.
 - \rightarrow The scenario of an exact Z₂ is very constrained.
 - → Breaking the Z₂ symmetry softly opens up parameter space that is valid to higher energies, even all the way to the Planck scale.
 - → Hard breaking in the scalar sector spreads fast unless some sort of fine-tuning is present.
 - → Even though the non-zero λ_6, λ_7 induces non-diagonal FCNCs in RG running, the problems in the scalar sector are more urgent.
- \rightarrow A Z₂ breaking Yukawa sector generates non-zero λ_6, λ_7 already at 1-loop order.
 - → The up sector is sensitive and generates non-trivial λ_6, λ_7 that decreases the energy range of parameter points substantially.
 - → One could allow for some misalignment in the down/lepton sector, in that one could still have a "good" scalar potential at all energies, but one generates non-trivial FCNCs.

Thank you for your attention!

Backup: Example parameter point

 \rightarrow RG evolution of example parameter point used in Yukawa (dis)alignment scan.

Backup: Higgs basis, exact Z₂ symmetry

Joel Oredsson, Lund university

Backup: Higgs basis, softly broken Z₂

Joel Oredsson, Lund university

Backup: Higgs basis, hard broken Z₂

Joel Oredsson, Lund university