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In the two-Higgs-doublet model (2HDM) one may

subsume the four quadratic forms φ†iφj (i, j = 1, 2) in

K0 = φ
†
1φ1 + φ

†
2φ2, (1)

K =









φ
†
1φ2 + φ

†
2φ1

−i φ†1φ2 + i φ
†
2φ1

φ
†
1φ1 − φ

†
2φ2









. (2)

Under an SU(2) change of basis of (φ1, φ2), K0 is

invariant while K behaves as an SO(3) vector. The

quartic part of the scalar potential may be written

V4 = η00 (K0)
2
+ 2K0 η

TK +KTEK, (3)

where η00 is invariant, η is an SO(3) vector (a 3× 1

matrix), and E is an SO(3) symmetric tensor (a 3× 3

matrix) containing the ten parameters of V4.

The bounded from below (BFB) (or stability) conditions

on V4 guarantee that V4 > 0 for any configuration of φ1

and φ2. The BFB conditions are analytic; they are

invariant under a basis transformation of (φ1, φ2).
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The unitarity bounds prescribe that the eigenvalues of

the matrices of the scattering amplitudes following from

V4 (in the point-interaction regime) must be smaller in

modulus than 4π. The unitarity bounds for a general V4

(i.e. for a 2HDM without non-gauge symmetries) were

first derived by Ginzburg & Ivanov (GI). They have also

demonstrated that those bounds are invariant under a

basis transformation of (φ1, φ2). For instance, some of

the quantities that must be smaller (in modulus) than

4π are I = 2η00 − 2 trE, and the eigenvalues of the 4× 4

matrices

M1 =





4η00 − I 4ηT

4η 4E + I × 13×3



 , (4)

M2 =





12η00 − I 12ηT

12η 12E + I × 13×3



 . (5)

One may use the unitarity bounds in any basis for

(φ1, φ2) that one wishes—they always have the form

derived by GI.

We have used the unitarity bounds in the Higgs

basis—the one where only φ1 has vacuum expectation

value (VEV) and that VEV is real and positive.
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The Higgs basis is fully general—it encompasses all the

2HDMs. Therefore, our results apply to any 2HDM.

(We work in the 2HDM without fermions, viz. without

Yukawa couplings.)

Our assumptions were:

• The analytical BFB bounds.

• The analytical unitarity bounds.

• φ1 with real VEV v = 174GeV, φ2 without VEV.

• The mass matrix of the neutral scalars has one

eigenvalue (125GeV)
2
.

• The neutral scalar h1 with mass 125GeV has

component cosϑ1 along the real, neutral component

of φ1 larger than 0.9.

• The oblique parameter T (given by its contribution

from only the extra scalars) is within its 1σ range

−0.04 < T < 0.20.
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The values of the parameters of V4 in the Higgs basis

directly lead to the masses and the couplings of the

physical scalars. We have investigated the ranges in the

2HDM of the couplings g3, g4, and g1CC defined by

L = · · · − g3 (h1)
3 − g4 (h1)

4 − g1CCh1C
+C−, (6)

where C± are the charged scalars of the 2HDM.

We have studied other models, in particular an

extension of the 2HDM through one real scalar field S

that is invariant under the gauge symmetry but carries

the symmetry S → −S. (This symmetry prevents cubic

couplings in the potential that would affect g3 and

g1CC .) We have assumed the scalar field S to have VEV

w. The quartic part of the potential is

V4 = η00 (K0)
2
+ 2K0 η

TK +KTEK

+
ψ

2
S4 + S2

(

ξ0K0 + ξTK
)

, (7)

where ξ0 is invariant and ξ is an SO(3) vector (a 3× 1

matrix) under a change of basis of (φ1, φ2).

In this model the unitarity conditions have two

differences relative to those in the 2HDM:
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• The 4× 4 matrix M2 becomes the 5× 5 matrix

M′
2 =





6ψ 2
√
2ξ̄T

2
√
2ξ̄ M2



 , ξ̄ =





ξ0

ξ



 . (8)

• There are additional unitarity conditions
∣

∣

∣
ξ0 ±

√

ξT ξ
∣

∣

∣
< 2π. (9)

The BFB conditions are much more awkward in the

2HDM+S. One needs the BFB conditions for the

2HDM and ψ > 0, but that does not suffice. For each

set of V4 parameters, we have numerically found the

minimum of V4 in order to find out whether V4 is always

positive or not.

We have also considered another model: the SM with

the addition of two real scalar singlets S1 and S2:

V4 =
λ

2

(

φ†φ
)2

+
ψ1

2
S4
1 +

ψ2

2
S4
2 + ψ3S

2
1S

2
2

+φ†φ
(

ξ1S
2
1 + ξ2S

2
2

)

(10)

=
1

2
V T









λ ξ1 ξ2

ξ1 ψ1 ψ3

ξ2 ψ3 ψ2









V, (11)
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where V T =
(

φ†φ S2
1 S2

2

)

. Since the quantities in

V are positive definite, the BFB conditions in this case

are analytical:

λ > 0, (12)

ψ1 > 0, (13)

ψ2 > 0, (14)

a1 ≡ ξ1 +
√

λψ1 > 0, (15)

a2 ≡ ξ2 +
√

λψ2 > 0, (16)

a3 ≡ ψ3 +
√

ψ1ψ2 > 0, (17)
√

λψ1ψ2 + ξ1
√

ψ2 + ξ2
√

ψ1 + ψ3

√
λ

+
√
2a1a2a3 > 0. (18)

As for unitarity, the quantities that must be smaller in

modulus than 4π are λ, 2ξ1, 2ξ2, 4ψ3, and the

eigenvalues of









6ψ1 2ψ3 2ξ1

2ψ3 6ψ2 2ξ2

2ξ1 2ξ2 3λ









. (19)
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In figure 1 we depict the predictions of the three models

for g3 and g4, as compared to their SM values.

Figure 1: Scatter plot of g4
/

gSM4 and g3
/

gSM3 .

The models with singlets allow for g4 up to fifteen times

larger than in the SM. The cubic coupling g3 may also

be one order of magnitude larger than in the SM in the

2HDM+S.
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In figure 2 we plot the masses of the three new scalars

of the 2HDM against cosϑ1.

Figure 2: The masses of the new scalars of the 2HDM

versus cosϑ1.

One sees that, except when cosϑ1 is really very close to

1, the new scalars must be rather light, viz. lighter than

700GeV or even less.
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However, this nice result gets spoiled in the 2HDM+S,

as one sees in figure 3.

Figure 3: The mass of the lightest non-SM neutral scalar

versus cosϑ1 in the 2HDM+S.

In the 2HDM+S all the scalars may be heavier than

1TeV even for cosϑ1 ≈ 0.92.
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Conclusion

• We have implemented both the unitarity conditions

and the BFB conditions in the Higgs basis of the

2HDM. This has allowed us to extract bounds on

the masses and couplings of the scalar particles of

the general 2HDM. The bounds are independent of

any symmetry that a particular 2HDM may possess.

• We have used the same procedure in the 2HDM

with the addition of one real singlet, and in the SM

in the addition of two real singlets, in both cases

with reflection symmetries acting on each of the

singlets.

• It may be difficult to generalize our work to more

complicated models, both because they might

contain too many parameters and because

analytical BFB conditions are in general unknown.

THANK YOU!
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