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Outline of talk

› Traditional parametrization of 2HDM

› VEVs and basis changes

› Counting of parameters

› Choosing the Higgs basis

› Inpendent couplings, and the

introduction of the physical parameter 

set

› Translation from standard parameters to 

the parameter set

Applications:

› Scalar couplings of the 2HDM

› CP violation

› Spontaneous CP violation

› Alignment

› Z2 -symmetric potential

› Unitarity at tree level

› Oblique parameters

More to do and Summary



Second form useful in the study of invariants.

Traditional parametrization(s) of the 2HDM potential
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› Initial expression of potential is defined 
with respect to doublets         and         .

› We may rotate to a new basis by

where U is any U(2) matrix.

› Potential parameters change under 
change of basis.

› Physics is the same regardless of our 
choice of basis.

› Observables (constructed from masses 
and couplings) cannot depend on 
choice of basis – they are invariant
under a change of basis.

Vacuum expectation values (VEVs) and choice of basis
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Most general form that conserves electric charge:

› We demand that the VEVs should represent a 
minimum of the potential

› Electroweak Symmetry Breaking:
Work out stationary-point equations by 
differentiating the potential with respect to the 
fields and put these to zero. 
[Ref: Grzadkowski, Ogreid, Osland,
JHEP11 (2014) 084]. 

› Minimum enforced by demanding all physical 
scalars have positive squared masses (later).



› Potential has initially 14 parameters

› Exploit the freedom to change basis and 

reduce to 11 independent parameters.

› Traditional approach: 

Work out masses and couplings

expressed in terms of the initial 

parameters of the potential.

› Our approach:

Work the other way around. Pick a set

of 11 independent physical masses and 

couplings (all invariants) and express

the initial parameters in terms of these.

› In the Higgs-basis only one doublet has 

non-zero VEV.

› Not unique, as one may still perform a 

U(1) transform on        without giving

a non-zero VEV.

› Algebra much simpler in the Higgs-basis 

than in a general basis.

› Stationary-point equations:

Counting parameters and choosing the Higgs basis
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› With the neutral sector mass matrix

› Is diagonalied by an orthogonal 3x3-

matrix R

as

› Physical neutral fields are now given as

› Doublets are parametrized as:

We work out the mass of the charged 

scalars:

Neutral sector mass terms given by

Parametrization of the doublets and 

the physical masses in the Higgs basis
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Some tree-level scalar couplings

› Some important scalar couplings 
expressed in the Higgs-basis

› If calculated in a general basis, we can 
explicitly verify that these couplings are 
basis invariant, hence observables. 
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Some tree-level gauge couplings

› Gauge couplings from the Lagrangian

where

› Satisfies

› In a general basis we can show that     

is invariant under a change of basis, 

hence an observable, whereas       is a 

pseudo-observable (it’s absolute value 

is invariant).

› Simpler form in the Higgs-basis:
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› We now choose our set of 11 

independent parameters to consist 

of

- Four squared masses

- Three tree-level gauge couplings

- Four tree-level scalar couplings

› All observables (invariants) 

expressible through these.

The physical parameter set 
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We need an algorithm to translate 

from the traditional parameters to 

our new parameter set 

All 14 parameters of the traditional 

parametrization of the potential 

shall be expressed through 

(and the auxiliary quantities     .)

In observables, the      will cancel in 

a way such that they are 

expressible through the      .



› Treat 

as 11 independent equations, and invert

them.

Also using the stationary-point

equations,

Expressing the parameters of the potential in terms of 

› In the Higgs-basis we obtain
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Expressing non-zero scalar couplings in terms of 

[Ref: Grzadkowski, Haber, Ogreid, Osland, arXiv:1808.01472] 11



› Put Im J1 = Im J2 = Im J3 = 0 and solve

6 cases of CP-conservation:

› Case 1: M1=M2=M3. Case 4: e1=0 and q1=0

› Case 2: M1=M2 and e1q2 = e2q1 Case 5: e2=0 and q2=0

› Case 3: M2=M3 and e2q3 = e3q2 Case 6: e3=0 and q3=0

Application: CP-violation

› CP-properties determined by three CP-
odd invariants, first discovered by Lavoura
and Silva. Re-expressed by Gunion and 
Haber as:

› Here, 

› In Higgs-basis: 

› We translate these to      to find

[Ref: Grzadkowski, Ogreid, Osland, JHEP11 (2014) 084]
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Processes containing Im J2:

ZZZ vertex and                 ZWW vertex

› Summing over all possible combinations of i,j,k, we find

[Ref: Grzadkowski, Ogreid, Osland, JHEP05 (2016) 025]



Processes containing 

Im J1 and Im J3 :

Z→VVH+H- or              Z→H+H-

Summing over all possible combinations of i,j,k, we find



Application: Spontaneous CP-violation

› Nature of CP-violation determined by 

four invariants presented by Gunion and 

Haber:

› We translate all these to     , demand 

that they should all vanish, and obtain:

[Ref: Grzadkowski, Ogreid, Osland, Phys. Rev. D 94, 115002 (2016) ]
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CPV in AL:

SCPV in AL:

Non-zero scalar couplings in AL:

Application: Alignment Limit (AL)

› 2HDM is aligned if H1 couples to the 

gauge-bosons in the same way as the 

Higgs of the Standard Model.

› Alignment expressed in terms of 

simply become

› Also possible to study “near-alignment” 

by expanding in the small parameters

and        .
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Full mass degeneracy:

Two distinct cases that gives Z2 –symmetric 

potential.

Case 1:

Case 2:

( implies                       )

Application: Z2 -symmetric potential

› Potential Z2 -symmetric if the three 
commutators of Davidson and Haber 
vanish

› Expressing these commutators in terms 
of       and find six different cases of 
Z2 –symmetric potential.

› Note: CP-conservation necessary, but 
not sufficient for Z2 –symmetric potential, 
(thus we continue from the six cases of 
CP-conservation).

[Ref: Davidson and Haber, Phys.Rev.D72:035004 (2005) 17



No mass degeneracy:

Two distinct cases that gives Z2 –symmetric 

potential.

Case 1:

Case 2:

Application: Z2 -symmetric potential

Partial mass degeneracy:

Two distinct cases that gives Z2 –symmetric 

potential.

Case 1:

Case 2:
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All eigenvalues must 

satisfy

Eigenvalues determined 

from characteristic 

equation for each matrix.

Each coefficient in the 

characteristic equation is 

an invariant, translatable 

to       .

Application: Unitarity at tree-level

Determined from four matrices given by Ginzburg and Ivanov:

[Ref: Ginzburg, Ivanov, Phys.Rev. D72 (2005) 115010] 19



Application: Unitarity at tree-level

Alignment limit:
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Application: Unitarity at tree-level

› For                       , the characteristic equation becomes cubic.

› Coefficients given by

Abbreviations:
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Possible to  express

eigenvalues, hence unitarity

constrains in terms of       , 

unfortunately not very

transparent.



Application: Oblique parameters

where
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Application: Oblique parameters

where
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To do list + Summary

To-do list:

› Soft breaking of Z2 in terms of 

› PQ-symmetry in terms of 

› Dark Matter in tems of 

› Positivity in terms of 

› Summary:

› All couplings of the 2HDM expressible in 

terms of a subset of masses/tree-level

couplings.

› Observables from the scalar sector

always expressible in terms of 

couplings/masses of      .

› Couplings/masses provide direct

connection to experiments and tells us

what measurements to make in order to 

test properties and predictions of the

2HDM.
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