Global fits of the Two-Higgs-Doublet models with a softly broken \mathbb{Z}_2 symmetry

Multi-Higgs Workshop

Lisbon, 4th September 2018

Otto Eberhardt (Instituto de Física Corpuscular, València) in collaboration with D. Chowdhury based on *JHEP 1805 (2018) 161*

Motivation

HEPfit – overview

Output:

HEPfit – overview

Output: Parameter and observable posterior distributions

HEPfit – overview

Output: Parameter and observable posterior distributions
Parameter correlations

HEPfit - overview

Output: Parameter and observable posterior distributions
Parameter correlations
Comparison of prior and posterior

HEPfit - overview

Output: Parameter and observable posterior distributions
Parameter correlations
Comparison of prior and posterior
Global mode and normalisation, (D)IC values

Standard Model with full flexibility [1512.07157,1608.01509]

Various effective models [1608.01509,1803.00939]

2HDM with and without \mathbb{Z}_2 symmetry [1609.01290,1711.02095]

Manohar-Wise model (+2HDM) [1808.05824]

Georgi-Machacek model [1807.10660]

Complex MSSM (work in progress)

Left-Right symmetric model (work in progress)

Standard Model with full flexibility

Various effective models

2HDM with and without \mathbb{Z}_2 symmetry

Manohar-Wise model (+2HDM)

Georgi-Machacek model

Complex MSSM

Left-Right symmetric model

[CKMfitter '15]

 $\mathcal{O}(\mathsf{days})$

[UTfit '14]

 $\mathcal{O}(\mathsf{days})$

[HEPfit '17]

 $\mathcal{O}(\mathsf{hour})$

Standard Model with full flexibility

Various effective models

2HDM with and without \mathbb{Z}_2 symmetry

Manohar-Wise model (+2HDM)

Georgi-Machacek model

Complex MSSM (work in progress)

Left-Right symmetric model (work in progress)

Additional scalars!

Standard Model with full flexibility

Various effective models

2HDM with and without \mathbb{Z}_2 symmetry

Manohar-Wise model (+2HDM)

Georgi-Machacek model

Complex MSSM (work in progress)

Left-Right symmetric model (work in progress)

The general 2-Higgs-Doublet model

$$\begin{split} V_{H}^{\text{G2HDM}} &= \textit{m}_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + \textit{m}_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \left[\textit{m}_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{H.c.} \right] \\ &+ \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) \\ &+ \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \left[\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{H.c.} \right] \\ &+ \frac{1}{2} \left[\lambda_{6} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{1}^{\dagger} \Phi_{1}) + \lambda_{7} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{2}) + \text{H.c.} \right] \\ \mathcal{L}_{Y}^{\text{G2HDM}} &= - \sum_{i=1}^{2} \left[Y_{j}^{u} \bar{Q}_{L} \tilde{\Phi}_{j} u_{R} + Y_{j}^{d} \bar{Q}_{L} \Phi_{j} d_{R} + Y_{j}^{e} \bar{L}_{L} \Phi_{j} \ell_{R} \right] + \text{H.c.} \end{split}$$

SM + 11 new parameters in V_H^{G2HDM}

The general 2-Higgs-Doublet model

$$\begin{split} V_{H}^{\text{G2HDM}} &= \textit{m}_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + \textit{m}_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \left[\textit{m}_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{H.c.} \right] \\ &+ \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) \\ &+ \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \left[\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{H.c.} \right] \\ &+ \frac{1}{2} \left[\lambda_{6} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{1}^{\dagger} \Phi_{1}) + \lambda_{7} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{2}) + \text{H.c.} \right] \\ \mathcal{L}_{Y}^{\text{G2HDM}} &= - \sum_{i}^{2} \left[Y_{j}^{u} \bar{Q}_{L} \tilde{\Phi}_{j} u_{R} + Y_{j}^{d} \bar{Q}_{L} \Phi_{j} d_{R} + Y_{j}^{e} \bar{L}_{L} \Phi_{j} \ell_{R} \right] + \text{H.c.} \end{split}$$

SM + 11 new parameters in V_{μ}^{G2HDM}

→ see Ana Peñuela's talk later today

The 2-Higgs-Doublet model with a softly broken \mathbb{Z}_2

$$\begin{split} V_{H}^{\text{2HDM}} &= \textit{m}_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + \textit{m}_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \textit{m}_{12}^{2} \left[\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right] \\ &+ \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) \\ &+ \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \lambda_{5} \left[(\Phi_{1}^{\dagger} \Phi_{2})^{2} + (\Phi_{2}^{\dagger} \Phi_{1})^{2} \right] \end{split}$$

$$\mathcal{L}_{Y}^{2\mathsf{HDM}} = -Y_2^u \bar{Q}_L \tilde{\Phi}_2 u_R - \sum_{i=1}^2 \left[Y_j^d \bar{Q}_L \Phi_j d_R + Y_j^e \bar{L}_L \Phi_j \ell_R \right] + \mathsf{H.c.}$$

SM + 6 new parameters in $V_H^{2\text{HDM}}$

 m_{11}^2

 m_{22}^2

 m_{12}^2

 λ_1

 λ_2

 λ_3

 λ

 λ_5

ITIC INSTITUT DE FÍSICA COR PUSCULAR

Otto Eberhardt

Global fits of 2HDM's

$$\begin{array}{lllll} \textit{m}_{11}^{2} & \textit{Y}_{1} & \textit{V}_{1}^{2\text{HDM}} = \lambda_{1}^{\text{HH}} \left(\Phi_{1}^{\dagger} \Phi_{1} - \textit{V}_{1}^{2} \right)^{2} \\ \textit{m}_{22}^{2} & \textit{Y}_{2} & \textit{V}_{2} & + \lambda_{2}^{\text{HH}} \left(\Phi_{2}^{\dagger} \Phi_{2} - \textit{V}_{2}^{2} \right)^{2} \\ \textit{m}_{12}^{2} & \textit{Y}_{3} & \lambda_{1}^{\text{HH}} & + \lambda_{3}^{\text{HH}} \left(\Phi_{1}^{\dagger} \Phi_{1} - \textit{V}_{1}^{2} + \Phi_{2}^{\dagger} \Phi_{2} - \textit{V}_{2}^{2} \right)^{2} \\ \lambda_{1} & \textit{Z}_{1} & \lambda_{2}^{\text{HH}} & + \lambda_{3}^{\text{HH}} \left(\Phi_{1}^{\dagger} \Phi_{1} - \textit{V}_{1}^{2} + \Phi_{2}^{\dagger} \Phi_{2} - \textit{V}_{2}^{2} \right)^{2} \\ \lambda_{2} & \lambda_{2}^{\text{HH}} & + \lambda_{4}^{\text{HH}} \left[\left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) - \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) \right] \\ \lambda_{3} & \textit{Z}_{4} & \lambda_{5}^{\text{HH}} & + \lambda_{5}^{\text{HH}} \left[\text{Re} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) - \textit{V}_{1} \textit{V}_{2} \right]^{2} \\ \lambda_{4} & \textit{Z}_{5} & \lambda_{6}^{\text{HH}} & + \lambda_{6}^{\text{HH}} \left[\text{Im} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \right]^{2} \\ \lambda_{5} & \textit{Z}_{6} & \lambda_{6}^{\text{HH}} & \text{[Higgs Hunter's Guide]} \end{array}$$

INSTITUT DE FÍSICA COR PUSCULAR

Otto Eberhardt

Global fits of 2HDM's

6 / 12

6 / 12

m_{11}^{2}	Y_1	v_1	ξ0	V
m_{22}^{2}	Y_2	<i>V</i> ₂	ξ_1	m_h
m_{12}^{2}	<i>Y</i> ₃	$\lambda_1^{\rm HH}$	ξ3	m_{12}^{2}
λ_1	Z_1	$\lambda_2^{\rm HH}$	η_{00}	$\tan\beta$
λ_2	Z_2	$\lambda_3^{\rm HH}$	η_3	$\beta - \alpha$
λ_3	Z_3 Z_4	$\lambda_4^{\rm HH}$	E ₁₁	$m_{H}^{(2)}$
λ_{4}	Z_5	λ_5^{HH}	E_{22}	$m_A^{(2)}$
λ_5	Z_6	$\lambda_6^{\rm HH}$	E ₃₃	$m_{H^\pm}^{(2)}$
	<i>Z</i> ₇			

Otto Eberhardt

Global fits of 2HDM's

6 / 12

6 / 12

Positivity of V_H^{2HDM}

v as global minimum

Perturbative NLO unitarity

h signal strengths

Searches for H, A and H^{\pm}

Oblique parameters

Flavour observables

Theory constraints

Experimental constraints

Otto Eberhardt

Positivity of V_H^{2HDM}

$$\lambda_1 > 0, \qquad \lambda_2 > 0,$$

v as global minimum

$$\lambda_3 > -\sqrt{\lambda_1 \lambda_2}$$

Perturbative NLO unitarity

$$\lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}$$

Searches for H, A and H^{\pm}

Oblique parameters

Flavour observables

[Deshpande, Ma '78]

Positivity of V_H^{2HDM}

v as global minimum

Perturbative NLO unitarity

h signal strengths

Searches for H, A and H^{\pm}

Oblique parameters

Flavour observables

For example, if $m_{11} > m_{22}$ and $\lambda_1 = \lambda_2$:

[Barroso, Ferreira, Ivanov, Santos '13]

Positivity of V_H^{2HDM}

v as global minimum

h signal strengths

Searches for H, A and H^{\pm}

Oblique parameters

Flavour observables

$$P(\phi_i\phi_i \to \phi_k\phi_\ell) \le 1$$

[Grinstein, Murphy, Uttayarat '15] [Cacchio, Chowdhury, OE, Murphy '16]

Positivity of V_H^{2HDM}

v as global minimum

Perturbative NLO unitarity

h signal strengths

Searches for H, A and H^{\pm}

Oblique parameters

Flavour observables

+ run II data

[ATLAS, CMS '14-'17]

Positivity of $V_H^{2\text{HDM}}$

v as global minimum

Perturbative NLO unitarity

h signal strengths

Searches for H, A and H^{\pm}

Oblique parameters

Flavour observables

Positivity of V_H^{2HDM}

v as global minimum

Perturbative NLO unitarity

h signal strengths

Searches for H, A and H^{\pm}

Oblique parameters

Flavour observables

S. T. U are functions of

[Peskin, Takeuchi, '90, '91; Haber '92; HEPfit '16]

Positivity of V_H^{2HDM}

v as global minimum

Perturbative NLO unitarity

h signal strengths

Searches for H, A and H^{\pm}

Oblique parameters

Flavour observables

[Misiak et al. '15; HFLAV '17]

[Deschamps et al. '09; HFLAV '17]

Fit with *h* signal strengths only

Otto Eberhardt

Global fits of 2HDM's

Otto Eberhardt

Global fits of 2HDM's

Otto Eberhardt

Global fits of 2HDM's

Otto Eberhardt Globa

Mass differences, widths, \mathbb{Z}_2 breaking

Mass differences: Type I Type II $|m_H - m_A|$ < 200 GeV < 130 GeV $|m_H - m_{H^+}|$ < 160 GeV < 120 GeV $|m_A - m_{H^+}|$ < 180 GeV < 110 GeV

Decay widths:

$$\Gamma_{H_i}/m_{H_i}$$
 for $H_i = H, A, H^+$

 $\lesssim 7\%$

 $\lesssim 5\%$

 $> (280 \text{ GeV})^2$

 \mathbb{Z}_2 breaking:

$$m_{12}^2$$

Conclusions

Use HEPfit:

2HDM with a softly broken \mathbb{Z}_2 symmetry are strongly constrained:

$$|\beta - \alpha - \pi/2| < 0.03.$$

$$m_{H_i} > 700$$
 GeV in type II with $H_i = H, A, H^+$

Exotic decays $H_1 \rightarrow H_2H_3$ can be excluded.

For more information: JHEP 1805 (2018) 161

