Probing Two Higgs Doublet Models through production of multiple scalars at the Large Hadron Collider

William Klemm

Uppsala University

william.klemm@physics.uu.se

September 4, 2018

Joint work with Rikard Enberg, Stefano Moretti, and Shoaib Munir

Willie Klemm (Uppsala University)

Multiple scalars at the LHC

September 4, 2018 1 / 16

- The 2HDM and its couplings
- Higgs pair production from qq'
- Decays and three body multi-Higgs final states
- Possible sensitivity
- $W + 4\gamma$ in a fermiophobic 2HDM

3

- 4 回 ト - 4 回 ト

Two Higgs Doublet Model

$$\begin{split} \mathcal{V}_{2\text{HDM}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \left[\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\} . \\ \Phi_1 &= \frac{1}{\sqrt{2}} \left(\begin{array}{c} \sqrt{2} \left(G^+ \cos\beta - H^+ \sin\beta \right) \\ \nu_1 - h\sin\alpha + H\cos\alpha + i \left(G\cos\beta - A\sin\beta \right) \end{array} \right) \Phi_2 &= \frac{1}{\sqrt{2}} \left(\begin{array}{c} \sqrt{2} \left(G^+ \sin\beta + H^+ \cos\beta \right) \\ \nu_2 + h\cos\alpha + H\sin\alpha + i \left(G\sin\beta + A\cos\beta \right) \end{array} \right) \end{split}$$

Triple Higgs-Gauge couplings

Triple Higgs couplings -

more complicated expressions with λ_i 's

 $\begin{array}{c|c} \sin(\beta - \alpha) & \cos(\beta - \alpha) & \text{neither} \\ \hline HAZ & hAZ & - \\ HH^+W^- & hH^+W^- & AH^+W^- \\ hZZ & HZZ & - \\ hW^+W^- & HW^+W^- & - \\ \end{array}$

8 couplings in *CP*-conserving 2HDM hhh, hhH, hHH, HHH, hAA, HAA, hH⁺H⁻, HH⁺H⁻

イロト 不得下 イヨト イヨト

Higgs pair production

The LHC is great for high energy gluon fusion processes...

Hespel, Lopez-Val, Vryonidou 1407.0281

But qq'-initiated processes can provide important insight

hAA, HAA, Yukawa

 $HH^{\pm}H^{\mp}$, $HH^{\pm}W^{\mp}$, Yukawa

We need as many observations as possible to fully constrain couplings.

Parameter scan - Type I 2HDM

Constraints on scan (95% CL)

- Unitarity, perturbativity, vacuum stability [2HDMC]
- Electroweak precision observables
- LEP, Tevatron, LHC limits [HiggsBounds 5]
- B-physics observables
 [Superiso + derived bounds]
 (F. Mahmoudi 2016)
- Reproduce observed 125 GeV signal strengths [HiggsSignals]

Parameter	Scanned range
$m_h \; ({ m GeV})$	(150, 750)
$m_A \; ({ m GeV})$	(50, 750)
$m_{H^\pm}({ m GeV})$	(50, 750)
$\sin(eta-lpha)$	(-1, 1)
$m^2_{12} \; ({ m GeV^2})$	(0, $m_A^2 \sin \beta \cos \beta$)
aneta	(2, 25)

イロト 不得下 イヨト イヨト

Scanned ranges of the 2HDM-I parameters.

Calculate qq and gg/bb initiated cross sections for all Higgs pairs.

Charged final states

Willie Klemm (Uppsala University)

Multiple scalars at the LHC

September 4, 2018 6 / 16

Neutral final states

Most interesting pairs:

hh	hΗ	hA	hH^{\pm}
	ΗH	HA	HH^{\pm}
		AA	AH^{\pm}
			H^+H^-

___ ▶

7 / 16

Three body final states

What if we allow Higgs \rightarrow Higgs decays? All possible (on-shell) decays are potentially relevant, excepting $H \rightarrow H^+H^-$.

		Process 1			Process 2		
3BFS	σ	BR	$\sigma_{qq'}^{\max}$ [fb]	σ	BR	$\sigma_{qq'}^{\text{max}}$ [fb]	$\sigma_{gg/bb}^{max}$ [fb]
AAW	AH^{\pm}	$(H^{\pm} \rightarrow W^{\pm}A)$	322				-
AAA	HA	$(H \rightarrow AA)$	135				4
H [±] H [±] W	AH^{\pm}	$(A \rightarrow W^{\pm}H^{\mp})$	124	HH^{\pm}	$(H \rightarrow W^{\pm}H^{\mp})$	112	-
AAH^{\pm}	HH±	$(H \rightarrow AA)$	95				-
HAW	HH [±]	$(H^{\pm} \rightarrow W^{\pm}A)$	91	AH^{\pm}	$(H^{\pm} \rightarrow W^{\pm}H)$	10	
$AH^{\pm}W$	H^+H^-	$(H^{\pm} \rightarrow W^{\pm}A)$	58	HA	$(H \rightarrow W^{\pm}H^{\mp})$	30	14
нн± w	HA	$(A \rightarrow W^{\pm}H^{\mp})$	36	H^+H^-	$(H^{\pm} \rightarrow W^{\pm}H)$	3	3
AAZ	HA	$(H \rightarrow ZA)$	23				1
hH [±] Z	AH^{\pm}	$(A \rightarrow Zh)$	22				-
HHW	нн±	$(H^{\pm} \rightarrow W^{\pm}H)$	16				
hHW	нн±	$(H^{\pm} \rightarrow W^{\pm}h)$	16	hH±	$(H^{\pm} \rightarrow W^{\pm}H)$	1	
hAW	AH^{\pm}	$(H^{\pm} \rightarrow W^{\pm}h)$	15	hH±	$(H^{\pm} \rightarrow W^{\pm}A)$	6	-
АН [±] Z	нн±	$(H \rightarrow ZA)$	13				_
hHZ	HA	$(A \rightarrow Zh)$	13				5
HHZ	HA	$(A \rightarrow ZH)$	11				5
HH [±] Z	AH^{\pm}	$(A \rightarrow ZH)$	8				-
hhH±	HH^{\pm}	$(H \rightarrow hh)$	7				-
hH±₩	H^+H^-	$(H^{\pm} \rightarrow W^{\pm}h)$	6	hA	$(A \rightarrow W^{\pm}H^{\mp})$	3	9
hhA	HA	$(H \rightarrow hh)$	3				0.3
hhZ	hA	$(A \rightarrow Zh)$	2				4
hhW	hH±	$(H^{\pm} \rightarrow W^{\pm}h)$	2				-

Willie Klemm (Uppsala University)

September 4, 2018 8 / 16

- 3

(日) (周) (三) (三)

Charged 3BFS

Cross sections of qq'-initiated subprocesses for selected charged three body final states.

イロト イヨト イヨト イヨト

Neutral 3BFS

Comparison of qq'-initiated subprocesses with their gg/bb-initiated cross sections for selected neutral three body final states. The dashed line indicates where the cross sections are of equal magnitude.

(Possible) sensitivity to couplings

Coupling	2BFS	Decay	
hhh	hh		-
hhH	hh, hH	H ightarrow hh	Most couplings appear in
hHH	HH, hH		notontially interesting
HHH	HH		potentially interesting
hAA	AA, <mark>hA</mark>		channel
HAA	AA, HA	H ightarrow AA	
hH^+H^-	H^+H^- , hH^\pm	$H ightarrow H^+ H^-$	Production depends on
HH^+H^-	H^+H^- , HH^{\pm}		several couplings
hAZ	hA	A ightarrow Zh	
hH^+W^-	hH [±]	$H^{\pm} ightarrow W^{\pm} h$	Decays require knowledge
HAZ	HA	$H \rightarrow ZA, A \rightarrow ZH$	of width/competing decays
HH^+W^-	HH [±]	$H \rightarrow W^{\pm}H^{\mp}, H^{\pm} \rightarrow W^{\pm}H$, ,
AH^+W^-	AH [±]	$A ightarrow W^{\pm}H^{\mp}, \ H^{\pm} ightarrow W^{\pm}A$	

For all processes, sensitivity will depend on Higgs decays and corresponding backgrounds.

A specific example - W + 4 γ in the 2HDM-I

A. Arhrib, R. Benbrik, R. Enberg, WK, S. Moretti, and S. Munir [arXiv:1706.01964]

Constraints on scan (95% CL)

- Unitarity, perturbativity, vacuum stability [2HDMC]
- Electroweak precision observables
- LEP, Tevatron, LHC limits [HiggsBounds 5]
- B-physics observables [Superiso]
- Reproduce observed 125 GeV signal strengths [HiggsSignals]

Parameter	Scanned range
$m_h \; ({ m GeV})$	(10, 120)
$m_H ~({ m GeV})$	125
$m_A \ ({ m GeV})$	(10, 500)
$m_{H^\pm}({ m GeV})$	(80, 170)
$\sin(eta-lpha)$	(-1, 1)
$m_{12}^2 \; ({ m GeV}^2)$	(0, $m_A^2 \sin \beta \cos \beta$)
aneta	(2, 25)

イロト 不得下 イヨト イヨト

Scanned ranges of the 2HDM-I parameters.

Considered possible production mechanisms and decays – several points with large $pp \rightarrow H^{\pm}h \rightarrow W^{\pm(*)}hh \rightarrow W^{\pm(*)} + 4\gamma$.

September 4, 2018 1

- 3

12 / 16

$pp \rightarrow H^{\pm}h \rightarrow W^{\pm} + 4\gamma$ in a near fermiophobic 2HDM-I

small $hH^+W^- \propto \cos(\beta - \alpha) \approx 1$ • $pp \rightarrow W^{\pm *} \rightarrow H^{\pm}h$ maximized, can exceed tbH^{\pm} at large $\tan \beta$ • $BR(H^{\pm} \rightarrow W^{\pm}h)$ also enhanced $hf\bar{f} \propto \cos \alpha / \sin \beta \approx 0$ • $BR(h \rightarrow \gamma \gamma) \rightarrow 1$ in

fermiophobic limit

Willie Klemm (Uppsala University)

September 4, 2018 13 / 16

 $pp \rightarrow H^{\pm}h \rightarrow W^{\pm} + 4\gamma$

BP	$ H^{\pm} \rightarrow W^{\pm}h$	$h \rightarrow \gamma \gamma$	$A ightarrow b ar{b}$				
1	1.00	0.94	$4.6 imes10^{-3}$				
2	1.00	0.97	$7.4 imes10^{-3}$				
3	1.00	0.70	0.031				
4	0.90	0.22	0.18				
5	1.00	0.71	0.017				
Branching Ratios ↑							

ΒP	m_h	$m_{H^{\pm}}$	m_A	$s_{\beta-lpha}$	m_{12}^2	aneta	$\cos lpha / \sin eta$	$\sigma(W^{\pm}$ 4 $\gamma)$
1	24.2	152.2	111.1	-0.048	19.0	20.9	$1.1 imes10^{-4}$	359
2	28.3	83.7	109.1	-0.050	31.3	20.2	$-5.9 imes10^{-5}$	2740
3	44.5	123.1	119.9	-0.090	30.8	10.9	$6.8 imes10^{-4}$	285
4	56.9	97.0	120.3	-0.174	243.9	5.9	$-6.5 imes10^{-3}$	39
5	63.3	148.0	129.2	-0.049	173.1	20.7	$-4.2 imes10^{-4}$	141

(masses in GeV, cross sections in fb)

Willie Klemm (Uppsala University)

Discovery potential at 13 TeV LHC

Nearly background free, but objects tend to be soft: multi-object trigger?

			*		-				
$n_{H^+} \setminus m_h$	20	30	40	50	60	70	80	90	100
80	0.04	0.08	0.10	0.08	0.05		77	\mathbf{X}	$\overline{77}$
90	0.05	0.10	0.13	0.13	0.10	0.06		V / I	$\overline{7}$
100	0.05	0.14	0.16	0.16	0.13	0.11	0.06		$\overline{77}$
110	0.06	0.13	0.18	0.19	0.17	0.16	0.13	0.07	
120	0.07	0.14	0.20	0.22	0.24	0.22	0.17	0.13	0.06
130	0.10	0.16	0.23	0.25	0.28	0.25	0.24	0.20	0.15
140	0.10	0.18	0.23	0.27	0.28	0.31	0.28	0.27	0.21
150	0.11	0.19	0.26	0.31	0.31	0.33	0.32	0.29	0.27
160	0.12	0.21	0.26	0.29	0.34	0.34	0.34	0.30	0.32

 $p_T^{\gamma} > 10 \text{ GeV}, p_T^{\ell} > 20 \text{ GeV}$

 $p_T^{\,\gamma}\!>\!\!20$ GeV, $p_T^{\,\ell}\!>\!\!10$ GeV

$n_{H^+} \setminus m_h$	20	30	40	50	60	70	80	90	100
80		0.03	0.05	0.06	0.07	0.03	///	$\overline{7}$	
90	0.01	0.03	0.06	0.08	0.09	0.09	0.04		
100		0.04	0.07	0.10	0.11	0.12	0.11	0.05	
110		0.03	0.07	0.11	0.13	0.16	0.17	0.15	0.05
120		0.03	0.07	0.12	0.17	0.19	0.21	0.20	0.14
130	0.02	0.04	0.07	0.12	0.16	0.21	0.24	0.25	0.22
140	0.02	0.05	0.08	0.12	0.17	0.23	0.24	0.29	0.26
150		0.06	0.10	0.15	0.18	0.25	0.27	0.29	0.30
160	0.03	0.08	0.11	0.15	0.19	0.23	0.28	0.29	0.34

Efficiencies, $\epsilon = \sigma(\text{cuts})/\sigma(\text{no cuts}) \uparrow \downarrow \text{Cross sections after cuts}$

Willie Klemm (Uppsala University)

Multiple scalars at the LHC

September 4, 2018 15 / 16

- Many *qq*-initiated multi-Higgs processes can have large cross sections at the LHC, often exceeding gluon fusion
- Most triple multi-Higgs couplings contribute to some of these processes
- Need decays of Higgses for true sensitivity
- For a light mass spectrum, a spectacular $W+4\gamma$ signal could be seen at the LHC.

- 31

- 4 同 6 4 日 6 4 日 6

Backup

3

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Fermiophobic h in the 2HDM-I

h couplings: $hf\bar{f} \propto \cos \alpha / \sin \beta$ $hVV \propto \sin(\beta - \alpha) \approx 0$ (SM-like *H*) $hH^+H^- \sim$ potential parameters

$$\cos lpha = \sin eta \sin(eta - lpha) + \cos eta \cos(eta - lpha)$$

- If $\cos \alpha$ vanishes, $h \to \gamma \gamma$ can be large, dominated by H^+ loop
- $h \to f \bar{f}/gg$ suppressed by $\cos \alpha$
- $h \rightarrow VV$ suppressed by $\sin(\beta \alpha)$ and kinematics

Large $BR(h \rightarrow \gamma \gamma)$

Constraints on Fermiophobic Models

DELPHI hA + Zh combination excludes most (m_h, m_A) accessible at LEP-II energies for exactly fermiophobic models [hep-ex/0406012].

• We model their results and extrapolate to constrain our points.

Discovery potential at 13 TeV LHC

- Nearly background free $\sigma(\ell^{\pm} + 4\gamma) < 10^{-6} pb$ for $p_T > 10$ GeV
- Challenge \rightarrow objects are very soft

Likely require multi-object trigger
 e.g. p_T(1γ) > 120 GeV, p_T(2γ) > 22 GeV.

Willie Klemm (Uppsala University)

DELPHI $e^+e^- \rightarrow hA$ limit

• Search for fermiophobic $e^+e^- \rightarrow hA$, with $h \rightarrow \gamma\gamma$, $A \rightarrow b\bar{b}$ or $A \rightarrow Zh \rightarrow Z\gamma\gamma$ when kinematically allowed [hep-ex/0406012] • No general limits on (m_h, m_A)

Willie Klemm (Uppsala University)

Multiple scalars at the LHC