

COMPOSITENESS VS SUPERSYMMETRY

(2HDMs tell the story)

Stefano Moretti, NExT Institute (Soton & RAL)

S. De Curtis, L. Delle Rose, SM, K.Yagyu, arXiv:1803.01865 S. De Curtis, L. Delle Rose, SM, A. Tesi, K. Yagyu, arXiv:1809.xxxxx

INTRODUCTION

Mainly motivated by the hierarchy problem we consider

SUSY

COMPOSITENESS

Their phenomenology is very rich and interesting: altered SM-like Higgs couplings, extended scalar sector, new resonances

we consider a Composite 2HDM and the MSSM as minimal realisations of EWSB based on a 2HDM structure *a composite 2HDM is the simplest natural 2HDM alternative to SUSY*

What do we know about the

- MSSM? it provides 2 Higgs doublets and ... you already know everything
- C2HDM? it provides 2 Higgs doublets and ... I am going to tell you something

C2HDM VS MSSM

Su	per	ʻsy	m	me	try
	_	_		_	

(Weak dynamics)

Compositeness (Strong dynamics)

Nature of Higgs

Quadratic div.

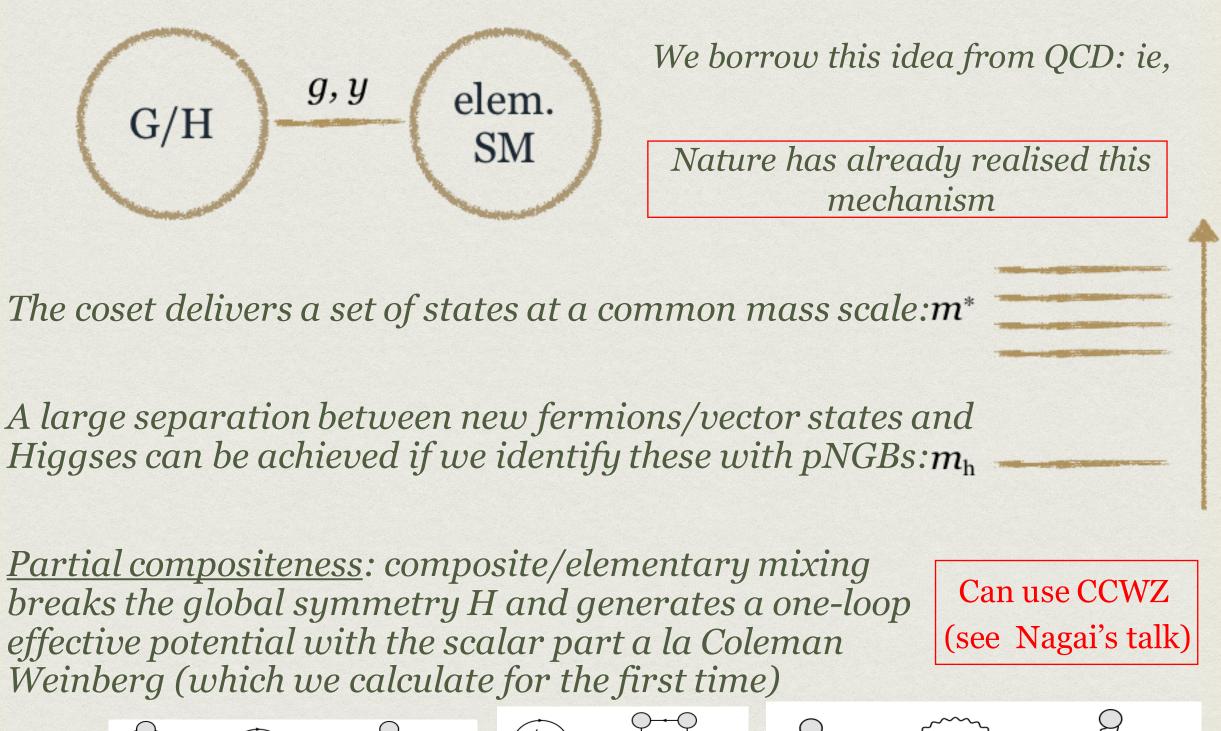
Light Higgs

Higgs structure

Elementary scalar Φ

Chiral symmetry $m_h \sim m_z$

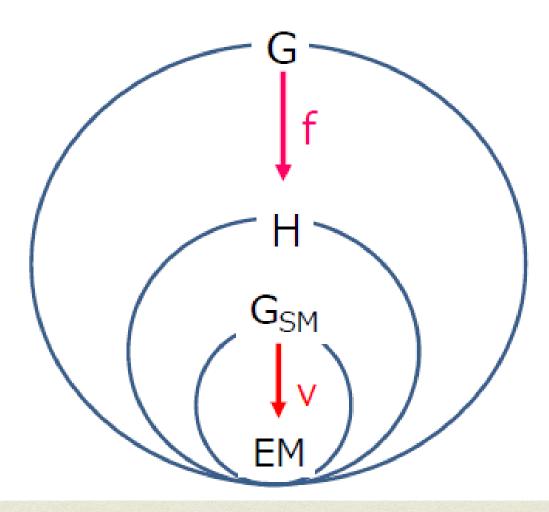
2HDM (aka MSSM) required for m_{u.d} Bound state <<u>ψ</u>ψ>~Φ


No elementary Higgs Pseudo Nambu-Goldstone (pNGBs)

2HDM depending on a <u>global symmetry</u>

Can you distinguish the two paradigms by looking at 2HDM dynamics?

Nothing new?


Two sites structure:

E

Basic rules for a Composite Higgs Model with NGBs

- Suppose there is a global symmetry G at scale above f (~TeV) which is spontaneously broken down into a subgroup H
- □ The structure of the Higgs sector is determined by the coset G/H
- H should contain the custodial $SO(4) \simeq SU(2)_L \times SU(2)_R$ symmetry
- The number of NGBs (dimG-dimH) must be 4 or larger

In essence:

	Pion Physics	Composite pNGB Higgs	
Fundamental Theory	QCD	QCD-like theory	
Spontaneous sym. breaking	$SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$	$G \rightarrow H$ (spontaneous at compositeness scale f)	
pNGB modes	(п⁰, п±) ~ 135 MeV	h ~ 125 GeV	
Other resonances	ρ ~ 770 MeV, …	New spin 1 and ½ states ~ Multi-TeV	

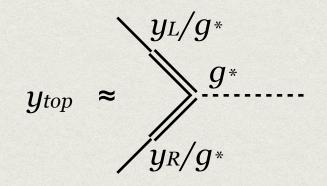
- Need to choose the correct G->H (spontaneous) breaking to have required NGBs
- Need to break H (explicitly, so pNGBs) via *g* (gauge) and *y* (Yukawa) mixings to generate effective (ie, one-loop) scalar potential for EWSB
- Gauge contribution significant but positive (ignore here), look at Yukawa (negative)

Model construction

• G/H SO(6)/SO(4) x SO(2)

• the coset delivers 8 NGBs (2 complex Higgs doublets)

• new spin 1/2 and 1 resonances too


G	H	N_G	NGBs rep. $[H] = \operatorname{rep.}[\operatorname{SU}(2) \times \operatorname{SU}(2)]$
SO(5)	SO(4)	4	${f 4}=({f 2},{f 2})$
SO(6)	SO(5)	5	${f 5}=({f 1},{f 1})+({f 2},{f 2})$
SO(6)	$SO(4) \times SO(2)$	8	$4_{+2} + \bar{4}_{-2} = 2 \times (2, 2)$
SO(7)	SO(6)	6	$6 = 2 \times (1, 1) + (2, 2)$
SO(7)	G_2	7	7 = (1, 3) + (2, 2)
SO(7)	$SO(5) \times SO(2)$	10	$\mathbf{10_0} = (3, 1) + (1, 3) + (2, 2)$
SO(7)	$[SO(3)]^{3}$	12	$(2, 2, 3) = 3 \times (2, 2)$
$\operatorname{Sp}(6)$	$\operatorname{Sp}(4) \times \operatorname{SU}(2)$	8	$(4, 2) = 2 \times (2, 2), (2, 2) + 2 \times (2, 1)$
SU(5)	$SU(4) \times U(1)$	8	$4_{-5} + \bar{4}_{+5} = 2 \times (2, 2)$
SU(5)	SO(5)	14	${f 14}=({f 3},{f 3})+({f 2},{f 2})+({f 1},{f 1})$

Mrazek et al., 2011

Partial compositeness (y)

Linear interactions between composite and elementary operators

$$\mathcal{L}_{\text{int}} = g J_{\mu} W^{\mu}$$
$$\mathcal{L}_{\text{int}} = y_L q_L \mathcal{O}_L + y_R t_R \mathcal{O}_R$$

In our scenario with G/H = SO(6)/SO(4)xSO(2) and fermions in the **6** of SO(6):

Custodial symmetry

The predicted leading order correction to the T parameter arises from the non-linearity of the GB Lagrangian. In the SO(6)/SO(4)xSO(2) model is

$$\hat{T} \propto 16 \times \frac{v^2}{f^2} \times \frac{\mathrm{Im}[\langle H_1 \rangle^{\dagger} \langle H_2 \rangle]^2}{(|\langle H_1 \rangle|^2 + |\langle H_2 \rangle|^2)^2}$$

no freedom in the coefficient, fixed by the coset possible solutions:

- CP (which we assume)
- C₂: H₁ → H₁, H₂ → -H₂ forbidding H₂ to acquire a vev (see later)

FCNCs

FCNCs mediated by the heavy resonances

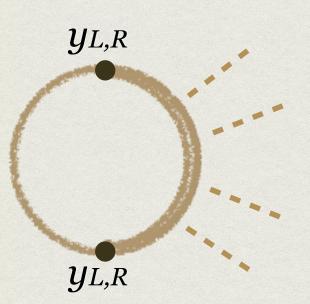
$$\sim \epsilon_L^i \epsilon_R^j \epsilon_L^k \epsilon_R^l \left(\frac{g^*}{m^*}\right)^2 a^{ijkl}, \quad a^{ijkl} \sim O(1)$$

 $\Psi \swarrow \varepsilon' \land \Psi'$ • does not require an excessive and for example, for $\Delta S = 2$, $\sim \frac{1}{m^{*2}} \frac{m_d}{v} \frac{m_s}{v}$ • does not require an excessive and unnatural tuning of the parameters flavour symmetries can also help to control these observables

Issues with Higgs-mediated FCNCs

FCNCs can be removed by

- assuming C₂ in the strong sector and in the mixings (ie, Y₁=0): <u>inert C2HDM</u> (not considered here)
- broken C₂ in the strong sector requires (flavour) <u>alignment</u> $Y_1^{IJ} \propto Y_2^{IJ}$


 $Y_{u}^{ij}Q^{i}u^{j}(a_{1u}H_{1} + a_{2u}H_{2}) + Y_{d}^{ij}Q^{i}d^{j}(a_{1d}H_{1} + a_{2d}H_{2}) + Y_{e}^{ij}L^{i}e^{j}(a_{1e}H_{1} + a_{2e}H_{2}) + h.c.$ (the ratio a_{1}/a_{2} is predicted by the strong dynamics)

The entire <u>effective</u> potential is fixed by the parameters of the strong sector and the scalar spectrum is entirely predicted by the strong dynamics

Note: <u>effective</u> also because integrate out heavy composite resonances (fermions and vectors)

Question is then, what does compositeness-driven EWSB predicts?

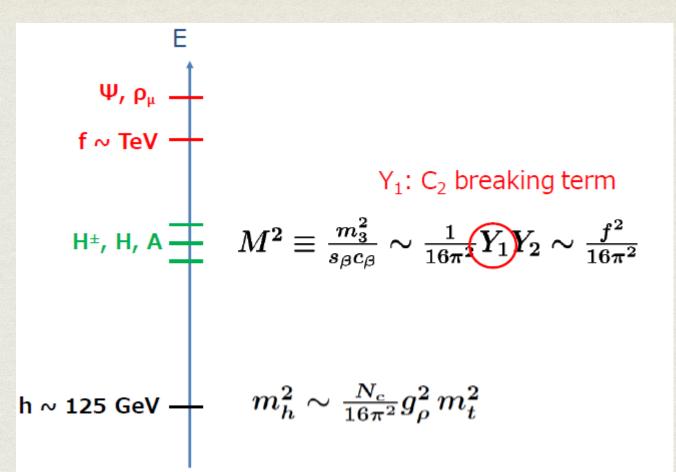
The effective potential

The potential up to the fourth order in the Higgs fields:

$$\begin{split} V &= m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - \left[m_3^2 H_1^{\dagger} H_2 + \text{h.c.} \right] \\ &+ \frac{\lambda_1}{2} (H_1^{\dagger} H_1)^2 + \frac{\lambda_2}{2} (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) \\ &+ \frac{\lambda_5}{2} (H_1^{\dagger} H_2)^2 + \lambda_6 (H_1^{\dagger} H_1) (H_1^{\dagger} H_2) + \lambda_7 (H_2^{\dagger} H_2) (H_1^{\dagger} H_2) + \text{h.c.} \end{split}$$

Light (SM-like) Higgs (ie, no inverted mass hierarchy):

without any tuning, the minimum of the potential is $v \sim f$ $m_{\Pi}^2 \sim \frac{g^{*2}}{16\pi^2} y^2 f^2$ while, in the tuned direction, a^{*2}

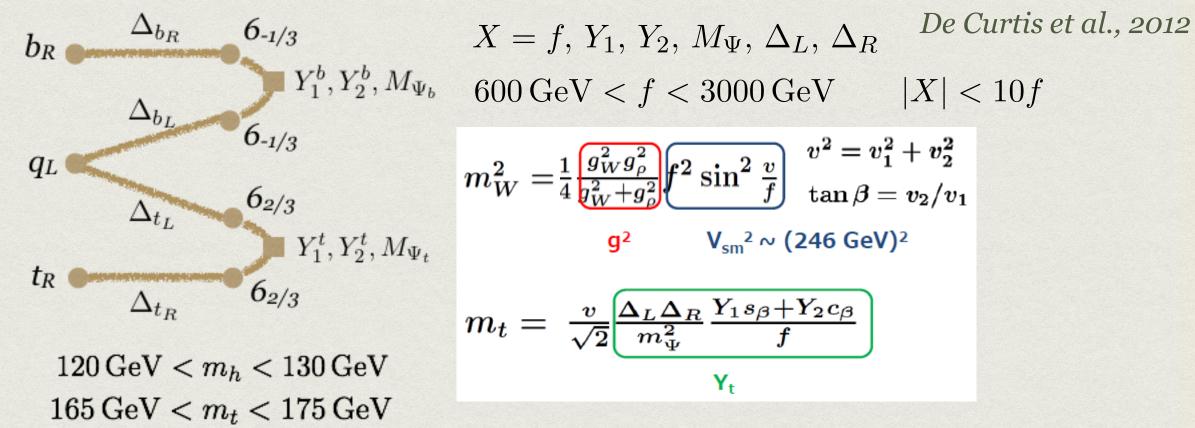

$$m_h^2 \sim \frac{g}{16\pi^2} y^2 v^2$$
 $m_h^2 \sim \frac{N_c}{16\pi^2} g_\rho^2 m_t^2$

(after reproducing top mass)

Heavy Higgs masses: $M^2 \equiv \frac{m_3^2}{s_\beta c_\beta} \sim \frac{1}{16\pi^2} Y_1 Y_2 \sim \frac{f^2}{16\pi^2}$ Any C2 breaking in the strong sector induces $m_3^2 \neq 0, \lambda_6 \neq 0, \lambda_7 \neq 0$ $\lambda_6 = \lambda_7 = \frac{5}{3} \frac{m_3^2}{f^2}$

it is not possible to realise a C2HDM-like scenario with a softly broken Z_2

To recap:

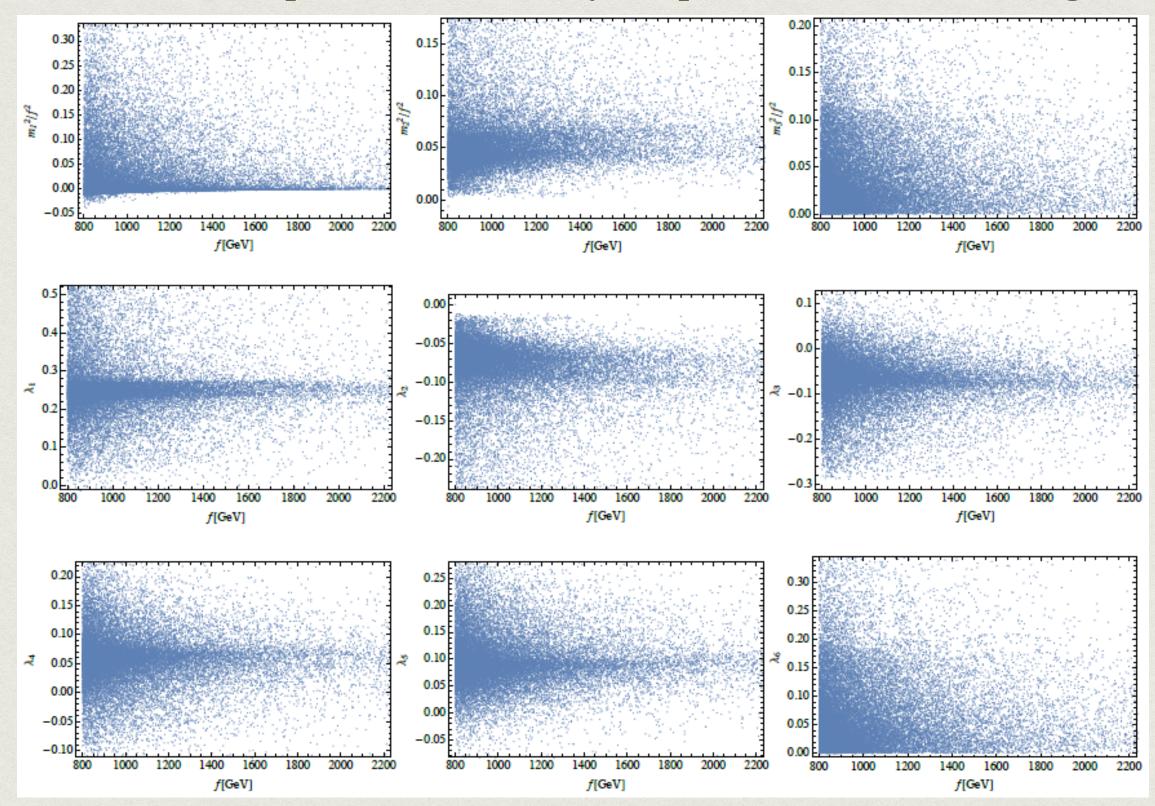

 \star For m_h ~ 125 GeV , we need g_p ~ 5.

★ f $\rightarrow \infty$: All extra Higgses are decoupled → (elementary) SM limit

★To get M≠0, we need C₂ breaking (Yukawa alignment is required →A2HDM).

Sampling the parameter space (now include b)

C2HDM: we adopt the L-R structure based on the 2-site models which represents the minimal choice for a realistic and calculable effective potential


MSSM: we use FeynHiggs 2.14.1 and scan the parameter space according to LHCHXSWG-2015-002:

- 2loop + NNLL resummation
- soft SUSY breaking = M_{SUSY} 1 TeV

 $2 < \tan \beta < 45$, $200 \,\text{GeV} < m_A < 1600 \,\text{GeV}$

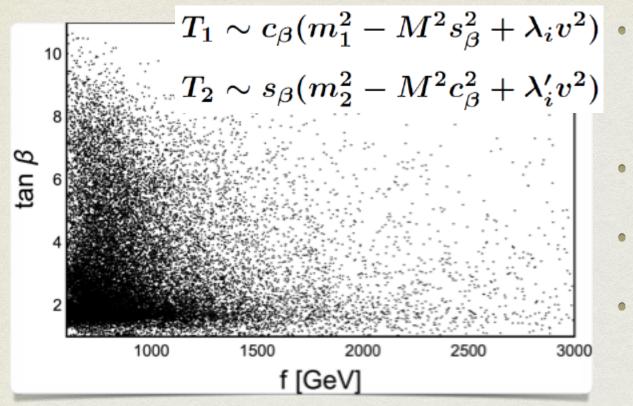
 $1 \,\mathrm{TeV} < M_{\mathrm{SUSY}} < 100 \,\mathrm{TeV} \qquad |X_t| < 3M_{\mathrm{SUSY}}$

The entire effective potential is fixed by the parameters of the strong sector

Checked all theoretical constraints (vacuum stability, triviality, unitarity)

Yukawa sector $\xi \equiv v_{\rm SM}^2/f^2$

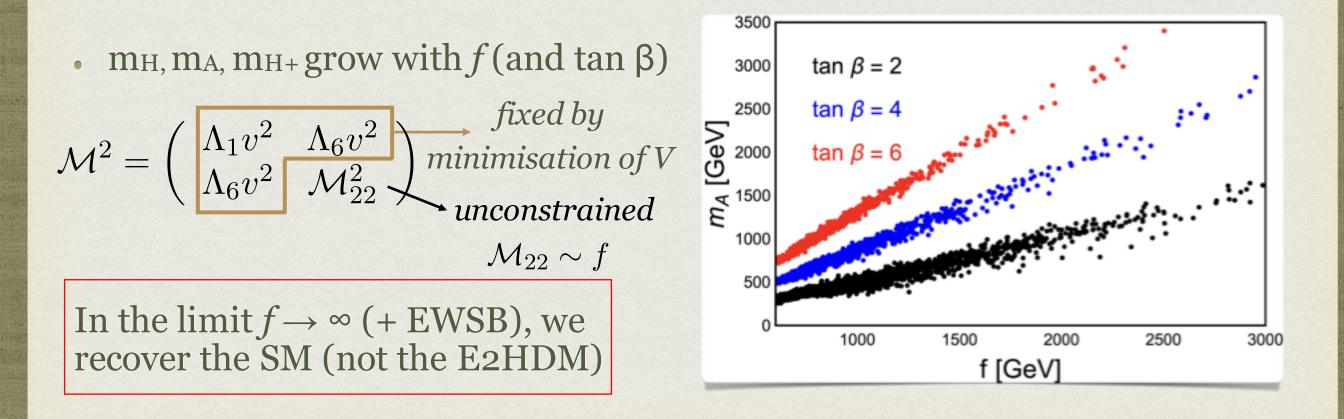
$$\begin{aligned} -\mathcal{L}_{\text{Yukawa}} &= \sum_{f=u,d,l} \frac{m_f}{v_{\text{SM}}} \bar{f} \left[\xi_h^f \, h + \xi_H^f \, H - 2i I_f \xi_A^f \, A \gamma^5 \right] f \\ &+ \frac{\sqrt{2}}{v_{\text{SM}}} \left[V_{ud} \, \bar{u} \left(-\xi_A^u m_u P_L + \xi_A^d m_d P_R \right) dH^+ + \xi_A^l \, m_l \, \bar{\nu} P_R l \, H^+ \right] + \text{h.c.}, \end{aligned}$$

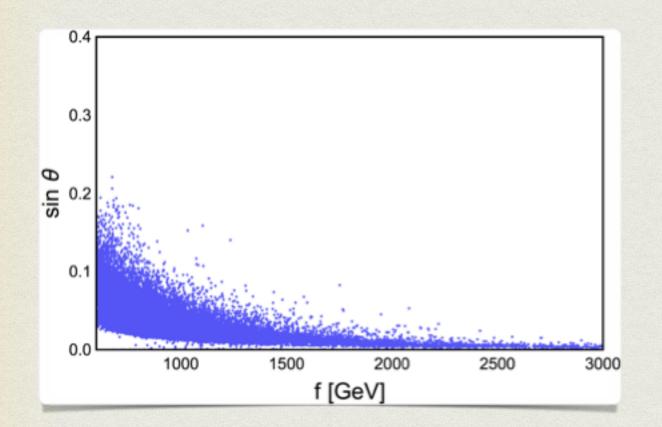

where $I_f = 1/2(-1/2)$ for f = u(d, l) and the ξ^f coefficients are

$$\begin{split} \xi_h^f &= (1 + c_f^h \,\xi) \cos\theta + (\zeta_f + c_f^H \,\xi) \sin\theta \,, \quad \xi_H^f = -(1 + c_f^h \,\xi) \sin\theta + (\zeta_f + c_f^H \,\xi) \cos\theta \,, \\ \xi_A^f &= \zeta_f + \xi \left[-\frac{\tan\beta}{2} \frac{1 + \bar{\zeta}_t^2}{(1 + \bar{\zeta}_f \,\tan\beta)^2} , \right] \end{split}$$

with

$$c_f^h = -\frac{1}{2} \frac{3 + \bar{\zeta}_f \tan \beta}{1 + \bar{\zeta}_f \tan \beta}, \quad c_f^H = \frac{1}{2} \frac{\bar{\zeta}_f (1 + \tan^2 \beta)}{(1 + \bar{\zeta}_f \tan \beta)^2},$$
$$\zeta_f = \frac{\bar{\zeta}_f - \tan \beta}{1 + \bar{\zeta}_f \tan \beta}, \quad \bar{\zeta}_f = -\frac{Y_1^f}{Y_2^f}.$$


The parameter θ denotes the mixing between the physical components of the two CP-even states while ζ_f represents the normalised coupling to the fermion f of the CP-even scalar that does not acquire a VEV in the Higgs basis. Since θ is predicted to be small, ζ_f controls the interactions of the Higgs states H, A, H^{\pm} at the zeroth order in ξ .

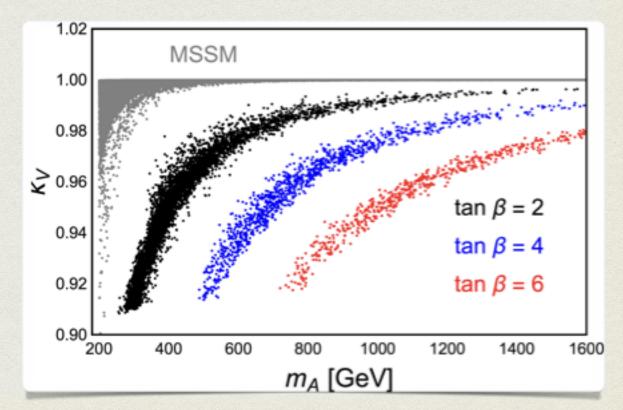


 $\tan \beta$ (usual vev ratio) predicted by

the strong sector

- m_h and m_{top} require tan $\beta \sim O(1)$
- larger tuning at large f
- values of tan β in the C2HDM and
 MSSM cannot be directly compared
 (see next slide)!

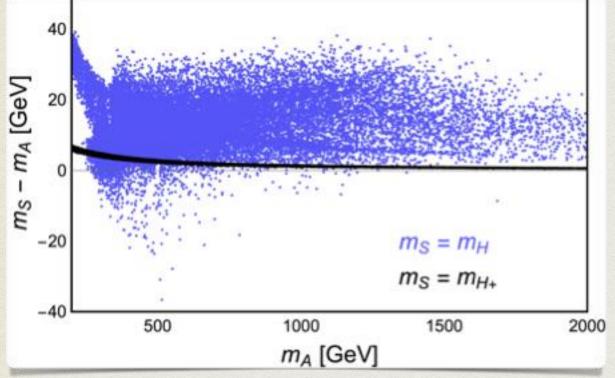
Mixing between the CP-even states *h*, *H*:

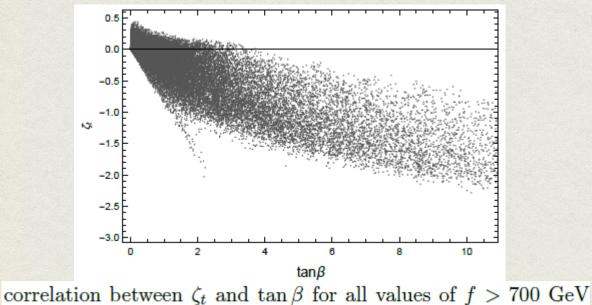

$$\tan 2\theta = -2\frac{\Lambda_6 v^2}{\mathcal{M}_{22}^2 - \Lambda_1 v^2} \sim c\frac{v^2}{f^2}$$

SM-like h requires large f while very non-SM-like h requires small f

The SM-like Higgs h coupling to W,Z $\kappa_V = \left(1 - \frac{\xi}{2}\right) \cos \theta, \quad \xi \equiv \frac{v_{\rm SM}^2}{f^2}$

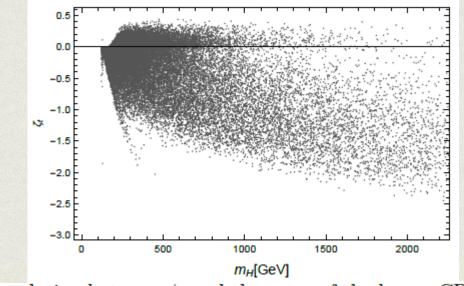
the alignment limit is approached more slowly in the C2HDM than in MSSM


a relevant deviation is present even for no mixing

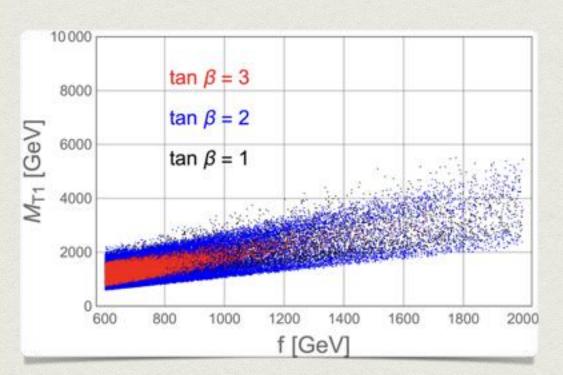

Can heavy Higgs mass spectra reveal C2HDM from MSSM?

• m_{H+} and m_{A} : very close in both scenarios (high degeneracy):

very sharp prediction in the C2HDM, $m_{H^{\pm}}^2 - m_A^2 \simeq \frac{\Delta_L^4}{m_\star^4} v^2$



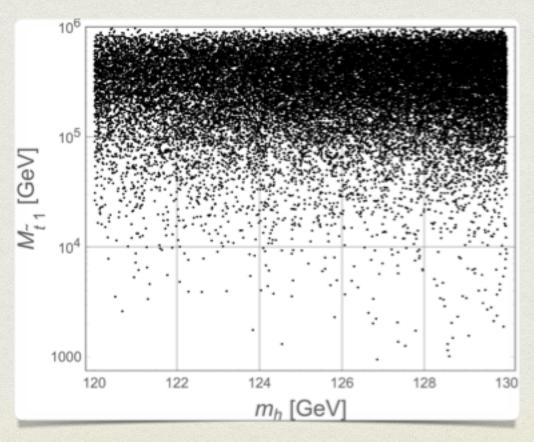
Recall, can do:



- m_H and m_{A:} larger mass splitting prediction in the C2HDM than in the MSSM (max 15 GeV)
- $H \rightarrow AZ^*$ can be an interesting channel discriminating the two scenarios
- $A \rightarrow HZ^*$ could also be useful

Can also do:

correlation between ζ_t and the mass of the heavy CP-even boson



$\begin{bmatrix} 10^{6} \\ 10^{5} \\ 10^{6} \\ 10^{4} \\ 10^{4} \\ 1000 \\ 120 \\ 122 \\ 122 \\ 124 \\ 126 \\ 126 \\ 128 \\ 130 \\ 130 \\ 120 \\ 128 \\ 130$

the heavy resonance in the **6** of SO(6) delivers 4 top partners, 1 bottom partner and 1 exotic fermion with Q = 5/3

reproducing the observed value of m^h requires a fermionic top partner in the C2HDM significantly lighter than the scalar one in the MSSM

MSSM: lightest stop \tilde{t}_1

C2HDM: lightest top partner T1

CONCLUSIONS AND PERSPECTIVES

- A C2HDM is the simplest natural 2HDM alternative to its SUSY version (MSSM) in the context of CHMs
- We considered the SO(6)/SO(4)xSO(2) scenario with a broken C₂ which realises a (Aligned) C2HDM
- Several existing observables can be used to discriminate between C2HDM and MSSM: *kv* (delayed decoupling), heavy Higgses' intern-decay patterns, (lightest) top partner spectrum
- Complete phenomenological study of the C2HDM in progress (fine tuning, new specific observables, ...)
- Other interesting scenarios: exact C₂, broken CP, etc.