Latest from CMS on the exploration of the Higgs sector

P_{T,Miss} = 319.1 GeV

 $P_{T}(b-jet) = 196.0 \text{ GeV}$

P. Ferreira da Silva (CERN) on behalf of the CMS Collaboration Workshop on Multi-Higgs Models, IST (Lisbon) Thursday, 6th September 2018

- Brief introduction (experimental point of view)
- Where are we in the exploration of the Higgs sector?
- Where are we headed to?
- Summary

Brief introduction (experimental point of view)

Challenges for Higgs Physics in Run 2 of the LHC

CMS performance

A golden Run for Higgs physics at the LHC

- 4
- >I 40 fb^{-I} (and still going) of data accumulated at I3 TeV in LHC Run 2
 - produced $|6k H \rightarrow \gamma \gamma, 33k q\bar{q}H \rightarrow \tau \tau$, $4|k t\bar{t}H(b\bar{b}), |84k VH(b\bar{b})$

 \Rightarrow differential measurements, reach for new direct observations

• but (yet) only 1.5k H $\rightarrow \mu\mu$, 13 HH $\rightarrow \gamma\gamma b\bar{b}$

 \Rightarrow still away from direct observation, playground for searches

Experimental challenges for Higgs Physics

- Higgs physics makes use of the full detector
 - reconstruct all objects: leptons, γ , E_T^{miss} , (b-) jets, ...
 - wide coverage: from $p_T > 5$ (leptons) to $|\eta| \sim 4.7$ (VBF)
- Increased luminosity comes with more pileup
 - currently acquiring data with average 38 pileup interactions
 - still performance maintained/improved with respect to Run I thanks to:
 - the upgrade of the CMS detector (next slide)
 - improvements in trigger and reconstruction

(e.g. filtering for pileup from pulse shapes to final physics objects, particle flow starting at trigger level, deploying machine learning algorithms as understanding of data increases)

CMS has undergone several mutations over the past 3 years

(2017) replaced DCDC converters (2018), strips operated at lower temperature (2018)

Selected aspects of performance in Run 2

7

- On top of particle flow:
 - pileup subtraction
 (charged hadron
 subtraction, pileup per
 particle id)
 - MVA identification
 - MVA energy regressions
- Overall excellent
 baseline performance
 for jets, e/γ, τ's and
 missing energy
 - at analysis level identification and energy scale/resolution can be further refined

Where are we in the exploration of the Higgs sector?

Properties of the H(125)

Searches for additional Higgs

Fitting the global properties of the H(125)

- Combined fit to different categories from different analyses
 - up to 265 independent categories, >5.5k nuisances to model systematics
 - decouple as much as possible production and decay, direct and loop-induced

$$\frac{N_{obs}}{N_{exp}} \propto \mu_{i}^{f} = \frac{\sigma_{i} \cdot BR^{f}}{\sigma_{i,SM} \cdot BR_{SM}^{f}} = \frac{\sigma_{i}}{\sigma_{i,SM}} \cdot \frac{\frac{\Gamma^{f}}{\Gamma}}{\frac{\Gamma^{f}_{SM}}{\Gamma_{SM}}} \xrightarrow{\kappa \text{ framework}} \kappa_{i}^{2} \cdot \kappa_{f}^{2}$$

 \Rightarrow assuming loops are resolved σ and BR can be fully parametrized

- some modifiers are effective $(\kappa_{\gamma}, \kappa_g)$ BSM mostly expected to change the rate
- ratios of the coupling modifiers are also used $\lambda_{ij} = \kappa_i / \kappa_j$

(loosen SM-like assumptions, particular useful for BSM re-interpretations)

Treatment of systematic uncertainties I

• Dominant exp. uncertainties are related to efficiency and background

10

- uncorrelated among channels
- except pileup, luminosity, jet energy scale, b-tag efficiency correlated (the latter two if not constrained in-situ or in the same phase space)
- unc. on background functional form parameters included in stat. uncertainty

Analysis		<i>δM/M</i> [%]	Detector modelling	Background
γγ		I-2	e.m. shower shapes	functional form
$ZZ^*(4\ell)$		1-2		Z+X
$WW^*(2\ell 2\nu)$		$\frac{1}{20}$ lepton efficiencies $\overline{t}t, WW, DY$		$\bar{t}t$,WW,DY
ττ		10-20	τ , p_T^{miss} energy scale	$DY {\rightarrow} \tau\tau$
$\overline{b}b$		10	b-tagging eff. / discr. shape	WZ+heavy flavours / QCD multijets
<i>τ</i> tH	multileptons	-	lepton efficiencies	reducible backgrounds (fakes, q flips)
	$\overline{b}b$	10	b-tagging eff. / discr. shape	$ar{t}t$ +heavy flavours / QCD multijets
μμ		1-2		functional form
invisible		-		$Z(Z)\nu\nu(\ell\ell), W(W)\ell\nu(\ell\nu), WZ \to \ell 3\nu$

Treatment of systematic uncertainties II

- Most relevant theory uncertainties for dominant gluon fusion
 - $p_T(H)$ is weighted to match NNLOPS per jet bin (base simulation is NLO+PS)
 - finite m_t corrections, jet-bin migrations, resummation, μ_R/μ_F
- Signal theory uncertainties are correlated among categories
 - including uncertainties on the BR
 - but boosted categories are treated separately (boosted $ggH \rightarrow \overline{b}b$)
- Background theory uncertainties are uncorrelated between analyses
 - exception made to underlying event and parton shower uncertainties
- Finite simulation statistical uncertainties modelled with Barlow-Beeston

Properties results (status as of March 2018) Overall signal strength

• The combined fit yields:

 $\mu = 1.17^{+0.06}_{-0.06} (\text{stat})$ +0.06 -0.05 (sig. th.) ± 0.06 (other)

- Most generic fit has 25
 independent production/decay
 scaling parameters →
 - if no dedicated analysis use SM prediction and remove from fit (e.g.VBFHbb,VHττ)
 - If high purity apply positive constraint (e.g. ZHγγ,VHZZ, ...)

Properties results (status as of March 2018) Coupling modifiers

Properties results (status as of March 2018) Searching for BSM in global fits I CMS PAS HIG-17-031

- Null search for other Higgs decays and BSM in the loops
 - assuming effective couplings for ggH (κ_g) and H $\rightarrow\gamma\gamma$ (κ_γ) and $|\kappa_Z|$, $|\kappa_W| \leq 1$
 - new BR, κ_q , κ_{γ} are the parameters of interest but profiled depending on the search

Properties results (status as of March 2018) Searching for BSM in global fits II CMS PAS HIG-17-031

more stringent observed limits

• Rates sensitive to the mixing angle (α) and ratio of vevs (tan β) in 2HDModels

- coupling modifiers for fermions change accordingly to the 2HDM model type
- test statistics used in the fit is re-written (e.g. as function of λ_{du} , λ_{Vu} , κ_{uu} for Type I,II)
- in the plane of interest evaluate where it drops by 5.99 wrt to max. (95%CL for 2 parameters)

• Results complement those of direct searches for additional Higgs bosons

From simplified template to differential cross sections

- Cross sections can be separated by production mode/kinematics bins
- In $\gamma\gamma$ (and ZZ) probe further inclusive, fiducial and first $d\sigma/dX$
 - migration matrix included in the combined fit of the fiducial σ
 - large bins such that regularization is not needed
- Direct comparison to theory: MC, fixed-order

Differential H $\rightarrow \gamma \gamma$

- Comparison with NLO+PS with or without weighting to NNLOPS
 - double differential $p_T(H)$ versus jet multiplicity
 - stat. dominated measurements, compatible with with predictions for m_H=125.09 GeV

arXiv:1807.03825

• start to probe pQCD, potential for model-independent BSM re-interpretation

Searching for BSM in p_T(H)

• $\gamma\gamma$, ZZ, bb differ in fiducial definition \rightarrow

 \Rightarrow redefine of $p_T(H)$ bins, treatment of BRs

35.9 fb⁻¹ (13 TeV)

CMS *Preliminary*

10

- Test shape/rate sensitivity in p_T(H)
 - couplings to quarks (c,b,t), gluons (dim-6 operator)

18

New direct observations: $H \rightarrow \tau \tau$

Phys. Lett. B 779 (2018) 283

- 2016 data almost sufficient for observation
 - 4.9/4.7 σ (obs/exp) \rightarrow 5.9 σ (obs and exp) after combination with Run I
 - 9 categories covering hadronic, leptonic τ decays and different p_T regions
 - fit to visible mass, $m_{\tau\tau}$, m_{ii} or $p_T^{\tau\tau}$ depending on the category
 - uncs.: similar stat and exp. systs (~15%), finite MC stats (~13%)

Searching for additional MSSM Higgs bosons with τ 's

arXiv:1803.06553

20

• Single narrow resonance in gg fusion or in association with bb

- final states with τ 's have superior experimental accessibility with respect to b's or μ 's
- 16 signal regions covering different final states, b content and mass/balance (m_T, D_ζ variables)
- search performed in the total m_T (sums individual m_T for t's and E_T^{miss}) spectrum
- No excess in ggH and bbH spectra, re-interpreted in the MSSM

New direct observations: ttH

Phys. Rev. Lett. 120 (2018) 231801

- Combination of Run I + 2016 dataset lead to 5.2/4.2σ (obs/exp)
 - several final states: multileptons, di-photons, bb
 - theory uncertainties on ttH normalization and tt+HF are crucial in the observation
 - with more data high purity channels (e.g. $ttH\gamma\gamma$) will gain more relevance

Probing the sign of y_t with tHq

- Single top production with H is rare due to interference
 - expect $\sigma \approx 71$ fb for the t-channel
 - combination of multilepton, bb

and re-interpreted ttH $\gamma\gamma$ categories

assuming SM ttH yield and acceptance

 μ_{tH} < 26.5 obs (13.6 exp)

- Re-interpretation for $\kappa_t \rightarrow$
 - exclusion of $\kappa_t < 0.9$
 - positive coupling starting to be favoured

 $\kappa_{\rm t}$

22

New direct observations: H→bb

arXiv:1808.08242

- Combination of up to 77.2 fb⁻¹ of Run 2 data with Run 1:5.6/5.5 σ obs/exp
 - VH categories dominate the combination

(fit to DNN output – 3 final states/4 categories)

• improvements in 2017 from better b identification/energy regression,

kinematic fit for the 2 lepton channel and FSR jet recovery

Rarer decay modes

- Testing 2nd generation couplings
 - approaching SM sensitivity with 2016

 μ < 2.92 obs (2.16 exp) at 95% CL

will require Run-3 data (300 fb⁻¹)

- Testing further contributions to loops
 - $Z\gamma$ and $\gamma^*\gamma$ interfere with each other

 $m(\ell\ell)$ used to enhance $Z\gamma$

 $BR(H \rightarrow Z\gamma) < 8.0 \text{ obs } (5.8 \text{ exp})$

 $BR(H \rightarrow \gamma^* \gamma) < 4.0 \text{ obs } (2.2 \text{ exp})$

will require HL-LHC to reach SM sensitivity

Towards a measurement of the Higgs self-coupling <u>CMS PAS-HIG-17-030</u>

- HH production probes directly potential/self-coupling
 - $V(h) = \frac{m_h^2}{2}h^2 + \lambda_3 vh^3 + \frac{\lambda_4}{4}h^4$ with the SM $\lambda_3 = \lambda_4 = m_h^2/2v^2$
 - extremely rare $\sigma_{SM}(HH) \lesssim \sigma_{SM}(H) \cdot 10^{-3}$
- Combine most sensitive final states
 - bbγγ (0.3%), bbττ (7%),

4b (33%), bbVV (25%)

 μ < 21.8 obs (12.4 exp) at 95% CL

will require HL-LHC to reach SM

25

 λ_3

 $g \cos \phi$

9,000

9 00000

Probing BSM in HH production

- HH: large potential for BSM
 - modified λ
 - (non-resonant)
 - s-channels

(2HDM, EWK singlets, gravitons)

 $\Rightarrow \sigma(HH)$ can increase up to 10pb

- No significant excess so far
 - more model-specific re-interpretations can be found in single-channel analyses (1806.00408, 1707.02909, 1708.04188)

26

Searching additional pair-produced Higgs

- Neutral higgs decaying to light pseudoscalar possible in 2HDM+S models
 - can be accompanied by extra spectator particles in some models
 - similar topology as in SUSY cascades with dark photons
 - consider different final states bbττ, ττμμ, 4μ, ...
 - no final combination yet available as for Run I... stay tuned

Searching additional pair-produced Higgs

- Neutral higgs decaying to light pseudoscalar possible in 2HDM+S models
 - can be accompanied by extra spectator particles in some models
 - similar topology as in SUSY cascades with dark photons
 - consider different final states $bb\tau\tau$, $\tau\tau\mu\mu$, 4μ , ...
 - no final combination yet available as for Run I... stay tuned

What are we aiming for?

Projections for Run 3 and HL-LHC

What are we aiming for?

Higgs couplings after HL-LHC

CMS Projection

- Establishing the Higgs couplings to bosons and fermions
 - <5-10% (<10-15%) unc. at the end of the HL-LHC (Run 3)
 - $H \rightarrow \mu\mu$ measured with 5-8% uncertainty
- Long-road ahead for Higgs self-couplings
 - maybe reach 3σ after full combination of HL-LHC data?

CMS Projection $\sqrt{s} = 13 \text{ TeV}$ SM gg \rightarrow HH

Summary

- Main H production/decay modes have been observed individually
- Next discovery targets:
 - rare decays/productions, 2nd generation
 - dedicated searches for additional Higgs boson
- All are milestones, still all are intermediate results
 - see all @ <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG</u>
 - 6 weeks to go until Run 2 pp run ends, final analyses to come

LHC Run 2: the machine has "warmed up",

the challenging search for **BSM** has just begun

Channels used in the combination

CMS PAS HIG-17-031

Production	n and decay tags	Expected tagged signal fraction	Number of	Mass resolution
$H \rightarrow \alpha \alpha$ Section 2.1	, ,	1 00 0	categories	
$11 \rightarrow \gamma\gamma$, Section 2.1	Untagged	74-91% ggH	4	
	VRE	51 80% VBE	3	
	VH hadronic	25% WH 15% 7H	1	
0.0.		2570 WH, 1570 ZH	1	~1.2%
		04-85% WIT	2	~1-270
		98% ZH	1	
	$\nabla H p_{T}^{mass}$	59% VH	1	
$H \rightarrow 77^{(*)} \rightarrow 4\ell$ Sc	ttH	80-89% ttH, ≈8% tH	2	
$11 \rightarrow 22^{\circ} \rightarrow 4\ell, 50^{\circ}$	Untagged	~95% agH	3	
	VPE 1 2 int	~70 /0 gg11	6	
	VDF 1, 2-jet	$\approx 11-47$ /0 V DF	0	
4µ, 2e2µ/2µ2e, 4e	VH hadronic	≈13% WH, ≈10% ZH	3	\approx 1-2%
	VH leptonic	≈46% WH	3	
	$VH p_T^{\text{mass}}$	≈56% ZH	3	
(.)	ttH	≈71% ttH	3	
$\exists \to WW^{(*)} \to \ell \nu \ell \nu,$	Section 2.3			
eu/ue	ggH 0, 1, 2-jet	\approx 55-92% ggH, up to \approx 15% H $\rightarrow \tau \tau$	17	
-1 - 1 -	VBF 2-jet	\approx 47% VBF, up to \approx 25% H $\rightarrow \tau \tau$	2	
ee+µµ	ggH 0, 1-jet	≈84-94% ggH	6	$\approx 20\%$
eµ+jj	VH 2-jet	22% VH, 21% H $ ightarrow au au$	1	1-2010
3ℓ	WH leptonic	pprox80% WH, up to 19% H $ ightarrow au au$	2	
4ℓ	ZH leptonic	85-90% ZH, up to 14% H $ ightarrow au au$	2	
$H \rightarrow \tau \tau$, Section 2.4				
	0-jet	$pprox$ 70-98% ggH, 29% H $ ightarrow$ WW in e μ	4	
$e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$	VBF	$pprox$ 35-60% VBF, 42% H $ ightarrow$ WW in e μ	4	$\approx 10-20\%$
	Boosted	$pprox$ 48-83% ggH, 43% H $ ightarrow$ WW in e μ	4	
VH production with	$H \rightarrow bb$, Section 2.5			
$Z(\nu\nu)bb$	ZH leptonic	≈100% VH, 85% ZH	1	
$W(\ell \nu)bb$	WH leptonic	\approx 100% VH, \approx 97% WH	2	~10%
7(00)bb	Low $p_{\rm T}({\rm V})$ ZH leptonic	pprox100% ZH, of which $pprox$ 20% ggZH	2	~ 1070
$Z(\ell\ell)$ DD	High $p_{\rm T}({\rm V})$ ZH leptonic	$\approx 100\%$ ZH, of which $\approx 36\%$ ggZH	2	
Boosted H Production	n with $H \rightarrow bb$, Section 2.6			
$H \to bb$	$p_{\rm T}({\rm H})$ bins	≈72-79% ggH	6	$\approx 10\%$
ttH production with	$H \rightarrow leptons, Section 2.7$			
	2ℓss	WW/ $\tau\tau \approx 4.5, \approx 5\%$ tH	10	
	3ℓ	WW : $\tau\tau$: ZZ \approx 15 : 4 : 1, \approx 5% tH	4	
$H \rightarrow WW \tau \tau ZZ$	4ℓ	WW : $\tau\tau$: ZZ \approx 6 : 1 : 1, \approx 3% tH	1	
11 -7 111, 11, 22	$1\ell+2\tau_h$	96% ttH with H $\rightarrow \tau \tau$, \approx 6% tH	1	
	$2\ell ss+1\tau_h$	$\tau\tau$: WW \approx 5 : 4, \approx 5% tH	2	
	$3\ell+1\tau_h$	$\tau\tau$: WW : ZZ \approx 11 : 7 : 1, \approx 3% tH	1	
ttH production with	$H \rightarrow bb$, Section 2.8			
	$t\bar{t} \rightarrow jets$	\approx 83-97% ttH with H \rightarrow bb	6	
$H \to bb$	$t\bar{t} \rightarrow 1\ell$ +jets	$\approx\!\!65\text{-}95\%$ ttH with H \rightarrow bb, up to 20% H \rightarrow WW	18	
	$t\bar{t} ightarrow 2\ell$ +jets	${\approx}84\text{-}96\%$ ttH with H ${\rightarrow}$ bb	3	
$H \rightarrow \mu\mu$, Section 2.9				
μμ	S/B bins	56-96% ggH, 1-42% VBF	15	≈1-2%
Search for invisible H	I decays, Section 2.10			
	VBF	52% VBF, 48% ggH	1	
$H \rightarrow inv$	$ggH + \ge 1$ jet	80% ggH, 9% VBF	1	
$11 \rightarrow 11$	VH hadronic	54% VH, 39% ggH	1	
	ZH leptonic	≈100% ZH, of which 21% ggZH	1	

p-vals for the SM predictions

CMS PAS HIG-17-031

35

Parameterisation	p -value (q_{SM})	DOF	Parameters of interest
Global signal strength	6.12% (3.51)	1	μ
Production processes	9.21% (9.46)	5	$\mu_{ m ggH}, \mu_{ m VBF}, \mu_{ m WH}, \mu_{ m ZH}, \mu_{ m ttH}$
Decay modes	43.4% (4.85)	5	$\mu^{\gamma\gamma}, \mu^{ZZ}, \mu^{WW}, \mu^{\tau\tau}, \mu^{bb}$
$\sigma_i \cdot BR^f$ products	50.4% (21.3)	22	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Ratios of σ and BR relative to gg \rightarrow H \rightarrow ZZ	24.5% (11.5)	9	$ \begin{array}{l} \mu_{\rm ggH}^{\rm ZZ}, \ \mu_{\rm VBF}/\mu_{\rm ggH}, \ \mu_{\rm WH}/\mu_{\rm ggH}, \ \mu_{\rm ZH}/\mu_{\rm ggH}, \ \mu_{\rm ttH}/\mu_{\rm ggH}, \ \mu^{\rm WW}/\mu^{\rm ZZ}, \\ \mu^{\gamma\gamma}/\mu^{\rm ZZ}, \ \mu^{\tau\tau}/\mu^{\rm ZZ}, \ \mu^{\rm bb}/\mu^{\rm ZZ} \end{array} $
Simplified template cross sections with branching fractions relative to BR ^{ZZ}	17.2% (14.0)	10	$ \begin{array}{l} \sigma_{ggH} \cdot BR^{ZZ}, \sigma_{VBF} \cdot BR^{ZZ}, \sigma_{H+V(qq)} \cdot BR^{ZZ}, \sigma_{H+W(\ell\nu)} \cdot BR^{ZZ}, \\ \sigma_{H+Z(\ell\ell/\nu\nu)} \cdot BR^{ZZ}, \sigma_{ttH} \cdot BR^{ZZ}, BR^{bb} / BR^{ZZ}, BR^{\tau\tau} / BR^{ZZ}, BR^{WW} / BR^{ZZ}, \\ BR^{\gamma\gamma} / BR^{ZZ} \end{array} $
Couplings, SM loops	46.9% (5.60)	6	$\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_\mu$
Couplings vs mass	17.1% (3.54)	2	M,ϵ
Couplings, BSM loops	57.7% (5.68)	7	$\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_\gamma, \kappa_g$
Couplings, BSM loops and decays including $H \rightarrow inv.$ channels	78.6% (5.53)	9	$\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_\gamma, \kappa_g, BR_{inv.}, BR_{undet.}$
Ratios of coupling modifiers	56.7% (5.77)	7	$\kappa_{gZ}, \lambda_{WZ}, \lambda_{\gamma Z}, \lambda_{tg}, \lambda_{bZ}, \lambda_{\tau Z}, \lambda_{Zg}$
Fermion and vector couplings	16.9% (3.55)	2	$\kappa_{\rm F}, \kappa_{\rm V}$
Fermion and vector couplings, per decay mode	63.9% (7.89)	10	$\kappa_{\rm F}^{\rm bb}, \kappa_{\rm F}^{\tau\tau}, \kappa_{\rm F}^{\rm WW}, \kappa_{\rm F}^{\rm ZZ}, \kappa_{\rm F}^{\gamma\gamma}, \kappa_{\rm V}^{\rm bb}, \kappa_{\rm V}^{\tau\tau}, \kappa_{\rm V}^{\rm WW}, \kappa_{\rm V}^{\rm ZZ}, \kappa_{\rm V}^{\gamma\gamma}$
Up vs down-type couplings	25.5% (4.06)	3	$\lambda_{ m Vu}, \lambda_{ m du}, \kappa_{uu}$
Lepton vs quark couplings	26.5% (3.97)	3	$\lambda_{\ell \alpha}, \lambda_{V \alpha}, \kappa_{aa}$

-	1
- <	6
-	

			Effective	
Production	Loops	Interference	scaling factor	Resolved scaling factor
$\sigma(ggH)$	 ✓	b – t	$\frac{\kappa_{g}^{2}}{\kappa_{g}^{2}}$	$1.04 \cdot \kappa_{t}^{2} + 0.002 \cdot \kappa_{b}^{2} - 0.038 \cdot \kappa_{t}\kappa_{b}$
$\sigma(VBF)$	_	_	8	$0.73 \cdot \kappa_W^2 + 0.27 \cdot \kappa_Z^2$
$\sigma(WH)$	_	-		κ_W^2
$\sigma(qq/qg \rightarrow ZH)$	_	_		κ_Z^2
$\sigma(m gg ightarrow m ZH)$	\checkmark	Z-t		$2.46 \cdot \kappa_Z^2 + 0.47 \cdot \kappa_t^2 - 1.94 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	-	-		$\kappa_{\rm t}^2$
$\sigma(\text{gb} \rightarrow \text{WtH})$	_	W-t		$2.91 \cdot \kappa_t^2 + 2.40 \cdot \kappa_W^2 - 4.22 \cdot \kappa_t \kappa_W$
$\sigma(qb \rightarrow tHq)$	-	W - t		$2.63 \cdot \kappa_{\rm t}^2 + 3.58 \cdot \kappa_{\rm W}^2 - 5.21 \cdot \kappa_{\rm t} \kappa_{\rm W}$
$\sigma(bbH)$	_	-		$\kappa_{\rm b}^2$
Partial decay width				
Γ^{ZZ}	_	_		κ_Z^2
Γ^{WW}	-	-		$\kappa_{\rm W}^2$
$\Gamma^{\gamma\gamma}$	\checkmark	W - t	κ_{γ}^2	$1.59 \cdot \kappa_{\rm W}^2 + 0.07 \cdot \kappa_{\rm t}^2 - 0.67 \cdot \kappa_{\rm W} \kappa_{\rm t}$
$\Gamma^{ au au}$	_	_		κ_{τ}^2
Г ^{bb}	_	-		$\kappa_{\rm b}^2$
$\Gamma^{\mu\mu}$	-	_		κ_{μ}^2
Total width for $BR_{BSM} = 0$				· · · · · · · · · · · · · · · · · · ·
				$0.58 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.08 \cdot \kappa_{\rm g}^2 +$
Γ _H	\checkmark	_	$\kappa_{\rm H}^2$	$+ 0.06 \cdot \kappa_{\tau}^{2} + 0.026 \cdot \kappa_{Z}^{2} + 0.029 \cdot \kappa_{c}^{2} +$
			11	$+ 0.0023 \cdot \kappa_{\gamma}^2 + 0.0015 \cdot \kappa_{Z\gamma}^2 +$
				$+ 0.00025 \cdot \kappa_{\rm s}^2 + 0.00022 \cdot \kappa_{\mu}^2$

Modifications to the κ framework

- Fits in the κ -framework are re-casted in BSM models
- 2HDM (CP conserving, Z₂ symmetry protecting tree-level FCNC) [1106.0034]
 - H(125) is the lightest neutral CP-even
 - MSSM fully determined by knowledge of m_A and tan β

 $(m_Z^2 + m_A^2 \tan^2 \beta - m_H^2 (1 + \tan^2 \beta))$

- hMSSM particular realization of the MSSM [1307.5205, 1502.05653]
 - use measured m_H to "limit" radiative corrections assuming the top-stop sector dominates

	2HDM					
	type I	type II	Type III	Type IV		
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\frac{s_d + s_u \tan \beta}{\sqrt{1 + \tan^2 \beta}}$	
κ_u	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$S_u \frac{\sqrt{1 + \tan^2 \beta}}{\tan \beta}$	
κ_d	$\cos(\alpha) / \sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$s_d \sqrt{1 + \tan^2 \beta}$	
κ_{ℓ}	$\cos(\alpha) / \sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha) / \sin(\beta)$	$s_d \sqrt{1 + \tan^2 \beta}$	
	$s_u = \frac{1}{\sqrt{1 + \frac{1}{2}}}$	$\frac{1}{(m_A^2 + m_Z^2)^2 \tan^2 \beta}$	$=$ $s_d = s_u \cdot \frac{1}{m_Z^2}$	$\frac{m_{\rm A}^2 + m_Z^2 \tan \beta}{+ m_{\rm A}^2 \tan^2 \beta - m_{\rm H}^2 (1)}$	$+\tan^2\beta)$	

Selections, categories, observables I

$H \rightarrow \tau \tau$ Phys. Lett. B 779 (2018) 283

Cha	nnel Trigger req	uirement	Le	pton selection	n
			$p_{\rm T}$ (GeV)	η	Isolation
$\tau_h \tau_h$	$\tau_{\rm h}(35) \& \tau_{\rm h}$	(35)	$p_{\rm T}^{t_{\rm h}} > 50 \& 40$	$ \eta^{\tau_{\rm h}} < 2.1$	MVA τ _h ID
$\mu \tau_{\rm h}$	$\mu(22)$		$p_{\rm T}^{\mu} > 23$	$ \eta^{\mu} < 2.1$	$I^{\mu} < 0.15$
			$p_{\mathrm{T}}^{\hat{\tau}_{\mathrm{h}}} > 30$	$ \eta^{ au_{ m h}} < 2.3$	MVA Th ID
	u(10) & T	(21)	$20 < n^{\mu} < 23$	$ n^{\mu} < 21$	$I^{\mu} < 0.15$
	$\mu(19) \propto t_{\rm h}$	21)	$p_{\rm T}^{\rm Th} > 30$	$ \eta' < 2.1$	
	-(25)		$p_T > 50$	$ \eta = < 2.5$	IVIVA (h ID
$e\tau_h$	e(25)		$p_{T}^{2} > 26$	$ \eta^{z} < 2.1$	$I^{2} < 0.1$
			$p_{\rm T}^{i_{\rm h}} > 30$	$ \eta^{\tau_{\rm h}} < 2.3$	MVA τ_h ID
eμ	$e(12) \& \mu(2)$	23)	$p_{T}^{e} > 13$	$ \eta^{\rm e} < 2.5$	$I^{\rm e} < 0.15$
			$p_{\mathrm{T}}^{\mu} > 24$	$ \eta^{\mu} < 2.4$	$I^{\mu} < 0.2$
	e(23) & u(8	0	$n^{\rm e} > 24$	$ n^{\rm e} < 2.5$	$I^{\rm e} < 0.15$
	C(20) CC // (C	<i>'</i>)	$p_{T}^{\mu} > 15$	$ n^{\mu} < 2.4$	$I^{\mu} < 0.2$
			/1-	11 1 2	
	0-jet	VBF			Boosted
			Selection		
$\tau_h \tau_h$	No jet	≥ 2 jets, $p_{\rm T}^i$	$^{\circ} > 100 \text{GeV}, \Delta \eta_{jj} >$	2.5	Others
$\mu \tau_{\rm h}$	No jet	≥ 2 jets, m_{jj}	$>$ 300 GeV, $p_{\rm T}^{\tau\tau}$ >	50 GeV, $p_{\rm T}^{4h} > 40$	GeV Others
$e\tau_h$	No jet	≥ 2 jets, m_{jj}	$> 300 \text{GeV}, p_{\mathrm{T}}^{\tau\tau} > 300 \text{GeV}$	50 GeV	Others
eμ	No jet	2 jets, m_{jj} >	> 300 GeV		Others
			Observables		
$\tau_h \tau_h$	$m_{\tau\tau}$	$m_{jj}, m_{\tau\tau}$			$p_{\mathrm{T}}^{\tau\tau}, m_{\tau\tau}$
$\mu \tau_{\rm h}$	$\tau_{\rm h}$ decay mode, $m_{\rm vis}$	$m_{jj}, m_{\tau\tau}$			$p_{T}^{\tau\tau}, m_{\tau\tau}$
eτh	τ_h decay mode, m_{vis}	$m_{jj}, m_{\tau\tau}$			$p_{T}^{\tau\tau}, m_{\tau\tau}$
еµ	$p_{\rm T}^{\mu}, m_{\rm vis}$	$m_{jj}, m_{\tau\tau}$			$p_{\mathrm{T}}^{\mathrm{T}\mathrm{T}}, m_{\mathrm{T}\mathrm{T}}$

$\phi \rightarrow \tau \tau$ <u>arXiv:1803.06553</u>

Final state	First object	Second object
$e\mu^+$	$p_{\rm T}^{\rm e} > 13 { m GeV}, \eta^{\rm e} < 2.5$	$p_{\rm T}^{\mu}$ >10 GeV, $ \eta^{\mu} $ <2.4
$e\tau_h$	$p_{\rm T}^{\rm e} > 26 { m GeV}, \eta^{\rm e} < 2.1$	$p_{\rm T}^{\tau_{\rm h}} > 30 { m GeV}, \eta^{\tau_{\rm h}} < 2.3$
$\mu \tau_{ m h}$	$p_{\rm T}^{\mu}$ >23 GeV, $ \eta^{\mu} $ <2.1	$p_{\rm T}^{\bar{\tau}_{\rm h}} > 30 { m GeV}, \eta^{\tau_{\rm h}} < 2.3$
$ au_{\rm h} au_{\rm h}$	$p_{\mathrm{T}}^{\tau_{\mathrm{h}}} >$	$> 40 { m GeV}$, $ \eta^{ au_{ m h}} < 2.1$

38

⁺ For events passing only one trigger an additional requirement of $p_{\rm T} > 24 \,\text{GeV}$ is applied on the higher- $p_{\rm T}$ lepton candidate as explained in the text.

$$\begin{split} D_{\zeta} &= p_{\zeta}^{\text{miss}} - 0.85 \, p_{\zeta}^{\text{vis}}; \qquad p_{\zeta}^{\text{miss}} = \vec{p}_{\mathrm{T}}^{\text{miss}} \, \hat{\zeta}; \qquad p_{\zeta}^{\text{vis}} = \left(\vec{p}_{\mathrm{T}}^{\,\mathrm{e}} + \vec{p}_{\mathrm{T}}^{\,\mu}\right) \, \hat{\zeta} \\ m_{\mathrm{T}}^{\mathrm{tot}} &= \sqrt{m_{\mathrm{T}}^{2}(p_{\mathrm{T}}^{\,\tau_{1}}, p_{\mathrm{T}}^{\,\tau_{2}}) + m_{\mathrm{T}}^{2}(p_{\mathrm{T}}^{\,\tau_{1}}, p_{\mathrm{T}}^{\,\mathrm{miss}}) + m_{\mathrm{T}}^{2}(p_{\mathrm{T}}^{\,\tau_{2}}, p_{\mathrm{T}}^{\,\mathrm{miss}}), \\ m_{\mathrm{T}} &= \sqrt{2 \, p_{\mathrm{T}} \, p_{\mathrm{T}}^{\,\prime} \left[1 - \cos(\Delta \phi)\right]} \end{split}$$

Additional neutral Higgs decaying to τ's arXiv:1803.06553

- Limits on one process leave the normalization of the other process free
- $p_T(\phi)$ estimated at NLO QCD: differences between couplings to t and b mostly at low mass

Selections, categories, observables II

ttHbb <u>arXiv:1804.03682</u>

ttHbb (all hadronic) arXiv:1803.06986

40

Selections, categories, observables III

41

			Selection	$1\ell + 2 au_{ m h}$	4ℓ
ttH multilep <u>arXiv:1803.05485</u>			Targeted tTH decays	$\begin{array}{l} t \rightarrow b\ell\nu, t \rightarrow bqq, \\ H \rightarrow \tau\tau \rightarrow \tau_{h}\tau_{h} + \nu's \end{array}$	$\begin{split} t &\to b\ell\nu, t \to b\ell\nu, \\ H &\to WW \to \ell\nu\ell\nu \\ t \to b\ell\nu, t \to b\ell\nu, \\ H \to ZZ \to \ell\ell qq \text{ or } \ell\ell\nu\nu \end{split}$
			Trigger	Single=lepton and lepton+ τ_h triggers	Single-, double- and triple-lepton triggers
Selection	2ℓss	$2\ell ss + 1\tau_h$	Lepton $p_{\rm T}$	$p_{\rm T} > 25$ (e) or 20 GeV (μ)	$p_{\rm T} > 25 / 15 / 15 / 10 {\rm GeV}$
Targeted ttH decay	$t \rightarrow b\ell\nu, t \rightarrow bqq,$ $H \rightarrow WW \rightarrow \ell\nu qq$	$t \rightarrow b\ell\nu, t \rightarrow bqq,$ $H \rightarrow \tau\tau \rightarrow \ell\tau_{h} + \nu's$	$\tau_{\rm h} p_{\rm T}$	$p_{\rm T} > 30 / 20 {\rm GeV}$	
Trigger	Single- and dout	ple-lepton triggers	Charge requirements	$\sum q = 0$ and $\sum q = \pm 1$	$\sum q = 0$
Lepton p_T	$p_{\mathrm{T}} > 25$ / 15 GeV	$p_{\mathrm{T}} > 25$ / 15 (e) or 10 GeV (μ)	Lat multiplicity	$\tau_h \qquad \ell, \tau_h$	l
$\tau_h p_T$	2 same sign lentons	$p_{\rm T} > 20 {\rm GeV}$	b to goin a requirements	≥ 3 jets	≥ 2 jets
charge requirements	and charge quality requirements	and charge quality requirements	b tagging requirements	≥1 tight b-tagged jet	$OI \geq 2100se b-tagged jets$
Jet multiplicity	\geq 4 jets	$\sum_{\substack{\ell, {ar \eta}_{\mathrm{h}}}} q = \pm 1$ \geq 3 jets	Missing transverse momentum	—	No requirement if $N_{ m j} \geq 4$ $L_{ m D} > 45{ m GeV}^+$
b tagging requirements	≥ 1 tight b-tagged jet o	or \geq 2 loose b-tagged jets			$L_{\rm D} > 30 {\rm GeV}$ otherwise
Missing transverse	$L_{\rm D} > 30 {\rm GeV}$	$L_{\rm D}>30{ m GeV}^*$	Dilepton mass	$m_{\ell\ell} > 12 \text{GeV}$	$m_{\ell\ell} > 12 \text{GeV}$
momentum Dilepton mass	$m_{\rm er} > 12 {\rm GeV}$ and μ	$m_{-} = m_{-} > 10 \text{GeV}^{*}$	Direptort indes		and $ m_{\ell\ell} - m_Z > 10 \text{GeV}^{\ddagger}$
Calcotion		24 + 1=	Four-lepton mass	_	$m_{4\ell} > 140 \mathrm{GeV^{\$}}$
Targeted tfH decays	$\begin{split} & t \to b\ell\nu, \ t \to b\ell\nu, \\ & H \to WW \to \ell\nu qq \\ & t \to b\ell\nu, \ t \to bq, \\ & H \to WW \to \ell\nu\ell\nu \\ & t \to b\ell\nu, \ t \to bq, \\ & H \to ZZ \to \ell\ell qq \ or \ \ell\ell\nu\nu \end{split}$	$ \begin{array}{c} J \in \mathcal{F} \ \tau \ t_h \\ t \to b \ell \nu, \\ H \to \tau \tau \to b \ell \nu, \\ H \to \tau \tau \to \ell \tau_h + \nu' s \end{array} $	⁺ If the event contains a SF [‡] Applied to all SFOS leptc [§] Applied only if the event	OS lepton pair and $N_{j} \leq 3$. on pairs. contains 2 SFOS lepton pairs.	
Trigger	Single-, double- and	triple-lepton triggers			
Lepton p_T	$p_{\rm T} > 25$ / 15 / 15 GeV	$p_{\rm T} > 20 / 10 / 10 {\rm GeV}$			35.9 fb (13 TeV)
th PT Charge requirements	$\Sigma q = \pm 1$	$\sum_{r} q = 0$			
Jet multiplicity b tagging requirements	$\frac{\overline{\ell}}{2}$ >2 >1 tight b-tagged jet o	$\bar{\ell}_{\bar{\tau}_{h}}$? jets or ≥2 loose b-tagged jets			ttH H→ττ ttH H→ZZ
Missing transverse momentum	No requirem $L_{\rm D} > 4$ $L_{\rm D} > 30{\rm Ge}$	nent if $N_i \ge 4$ 45 GeV ⁺ 2V otherwise		0.7	ttH H→WW
Dilepton mass	$m_{\ell\ell} > 12 \mathrm{GeV}$ and $ m_{\ell\ell} > 12 \mathrm{GeV}$	$ m_{\ell\ell} - m_{Z_{\ell}} > 10 \mathrm{GeV^{\ddagger}}$		0.6	
* Applied only if both le	ptons are electrons. SEOS lepton pair and $N < 2$			0.5	
[‡] Applied to all SEOS ler	SPUS lepton pair and $N_j \leq 3$.				
Tryinca to un or Ob lep	Provi Pano.			0.4	

0.3 0.2 0.1 0 2ISS

31

4I 2ISS+ t_h 3I+ t_h

1l+2τ_h

Selections, categories, observables IV

tHq CMS PAS-HIG-18-009

Same-sign channel ($\mu\mu/e\mu$)	<i>ℓℓℓ</i> channel			
Exactly two tight same sign leptons	Exactly three tight leptons			
$p_{\rm T} > 25/15 { m GeV}$	$p_{\rm T} > 25/15/15{ m GeV}$			
	No lepton pair with $ m_{\ell\ell} - m_Z < 15 \text{GeV}$			
No loose leptons with $m_{\ell\ell} < 12 \text{GeV}$				
One or more b tagged jet with $p_{\mathrm{T}} > 25 \mathrm{GeV}$ and $ \eta < 2.4$				
One or more untagged jet with $p_{\rm T} > 25 {\rm GeV}$ for	or $ \eta < 2.4$ and $p_{\rm T} > 40$ GeV for $ \eta > 2.4$			

Signal region	Control region
One much (electron) with $n_{-} > 27(35)$ CeV	Two leptons: $p_T > 20/20 \text{ GeV} (\mu \mu / e \mu)$
One much (electron) with $p_{\rm T} > 27(33)$ GeV	or $p_{\rm T} > 20/15 { m GeV}$ (ee/ μ e)
No additional loose leptons	No additional loose leptons
Three or four b tagged jets	Two b tagged jets
$p_{ m T}>30{ m GeV}$ and $ \eta <2.4$	$p_{ m T}>30{ m GeV}$ and $ \eta <2.4$
One or more untagged jets	One or more loose b tagged jets
$p_{ m T}>30{ m GeV}$ for $ \eta <2.4$ or	$p_{ m T} > 30{ m GeV}$ and $ \eta < 2.4$
$p_{ m T} > 40{ m GeV}$ for $ \eta \geq 2.4$	
$E_{\rm T}^{\rm miss} > 35(45)$ GeV for muons (electrons)	$E_{\rm T}^{\rm miss} > 40{ m GeV}$

Very briefly on charged Higgs searches

- Searches in top decays, tb,VBFWZ show no evidence so far
- Model independent and re-interpretations available in several

95% CL limit on $B(t \rightarrow H^+b)$

recent papers

Flavour changing neutral currents

Constraints on Higgs couplings from top

