CP violation in the 2HDM and EFT: the ZZZ vertex

Hermès Bélusca-Maïto hbelusca@phy.hr

Based on [JHEP 1804 (2018) 002 (arXiv:1710.05563)], with

Adam Falkowski (LPT Orsay), and Duarte Fontes, Jorge C. Romão, João P. Silva (CFTP Lisboa)

비로 《문》 《문》 《팀》 《미》

Department of Physics, Faculty of Sciences, University of Zagreb, Croatia

Multi-Higgs Workshop @ Lisbon, September 4-7 2018

Outline

Motivation, C2HDM

2 Calculation setup

- Couplings & Propagators
- The diagrams
- Result for ZZZ in $\mathbb{C}2HDM$
- Discussion

Comparison with ZZZ in SM-EFT

- Generalities
- Matching with EFT
- Identifying the operator(s) in the SM-EFT
- Discussion

Outline

Motivation, C2HDM

Calculation setup

- Couplings & Propagators
- The diagrams
- Result for ZZZ in $\mathbb{C}2HDM$
- Discussion

3 Comparison with ZZZ in SM-EFT

- Generalities
- Matching with EFT
- Identifying the operator(s) in the SM-EFT
- Discussion

Summary

Motivation, C2HDM ○●○○○ Calculation setup

Comparison with ZZZ in SM-EFT

Summary

Motivation for 2HDM and ZZZ vertex

- 2HDM: simple SM extension realized by some motivated BSM models: e.g. type-II by SUSY models, other types in composite Higgs models (see [Stefano Moretti's talk]).
- Amongst \neq signatures, a possible one concerns deviations in ZZ production via contributions from ZZZ vertex (see [Grządkowski-2016]).
- The *ZZZ* tensor structure contains an observable CP-odd part.
- Comparing wrt. an EFT model-matching and an SM-EFT approach (top-down vs. bottom-up), allowing us to understand how well NP can be described with EFT & how much information is lost (see also [HBM-2016]).

Complex 2HDM in a nutshell [Gunion-1989, Branco-2011] (1/3)

- Original Lagrangian \mathcal{L} with two scalar doublets $\Phi_{1,2}$ (VEVs: $v_{1,2}/\sqrt{2}$).
- \mathbb{Z}_2 symm. imposed to avoid FCNCs at tree-level: $(\Phi_1, \Phi_2) \rightarrow (\Phi_1, -\Phi_2)$.
- 4 types of 2HDM depending on H_i couplings to fermions.

"Higgs basis" [Lavoura-1994]: only 1st one has a VEV, $v = \sqrt{v_1^2 + v_2^2}$.

$$\Phi_{1,2} \to H_1 = \begin{pmatrix} -iG^+ \\ \frac{1}{\sqrt{2}}(v+h+iG^0) \end{pmatrix}, \quad H_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(R+iI) \end{pmatrix}.$$

 \mathcal{L} then becomes [Bernon–2015] $(Y_3, Z_{5,6,7} \in \mathbb{C})$:

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\mathsf{SM}}^{\mathsf{no}\,\mathsf{Higgs}} + |D_{\mu}H_{1}|^{2} + |D_{\mu}H_{2}|^{2} + \mathcal{L}_{Y} - V_{H} \,, \quad -\mathcal{L}_{Y} = Y_{f}\overline{f_{R}}H_{1}^{\dagger}f_{L} + \frac{\eta_{f}}{t_{\beta}}Y_{f}\overline{f_{R}}H_{2}^{\dagger}f_{L} + \mathsf{h.c.} \,, \\ V_{H} &= Y_{1}|H_{1}|^{2} + Y_{2}|H_{2}|^{2} + (Y_{3}H_{1}^{\dagger}H_{2} + \mathsf{h.c.}) + \frac{Z_{1}}{2}|H_{1}|^{4} + \frac{Z_{2}}{2}|H_{2}|^{4} + Z_{3}|H_{1}|^{2}|H_{2}|^{2} \\ &+ Z_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1}) + \left\{\frac{Z_{5}}{2}(H_{1}^{\dagger}H_{2})^{2} + (Z_{6}|H_{1}|^{2} + Z_{7}|H_{2}|^{2})(H_{1}^{\dagger}H_{2}) + \mathsf{h.c.}\right\} \end{split}$$

(Sum over f=u,d,l, and $\eta_f=1$ or $-t_{eta}^2$ depending on the 2HDM type.)

Motivation, C2HDM Calculation setup Comparison with ZZZ in SM-EFT Summary 00000

- Complex 2HDM in a nutshell [Gunion-1989, Branco-2011] (2/3)
- Neutral scalars $\{h, R, I\}$ "Higgs basis" \rightarrow neutral mass-eigenstate scalars $\{h_1, h_2, h_3\}$ via rotation matrix T [Branco-2011, Fontes-2014].
- E.g. for the real 2HDM, couplings to vector bosons g_{h_iVV} are $\propto \sin_{\beta-\alpha}$ for h_1 , $\propto \cos_{\beta-\alpha}$ for h_2 and none for h_3 (α, β : rotation angles).

Two limits (similar to $\mathbb{R}2HDM$)

- Alignment limit: $\cos_{\beta-\alpha} \ll 1$, i.e. h_1 lives in H_1 and corresponds to the SM Higgs boson, while $h_{2,3}$ can be almost degenerated.
- Decoupling limit: $Y_2 \gg v^2$, so that $m_{h_2,2,H^{\pm}} \gg m_{h_1}$.

Stationarity conditions (\leftarrow potential minimization)

 $Y_1 = \frac{-Z_1 v^2}{2}, \quad \Rightarrow \text{Only } Z_5, Z_6, Z_7 \text{ are independently complex.} \\ \Rightarrow \text{The invariants source of CP violation must be related to}$ $\text{Im}(Z_7Z_6^*)$, $\text{Im}(Z_6^2Z_5^*)$ and $\text{Im}(Z_7^2Z_5^*)$ [Lavoura-1994].

 $Y_3 = \frac{-Z_6 v^2}{2}.$

《曰》 《圖》 《글》 《글》 글날

From the rotation matrix T:

- h couples to gauge bosons, coupling coincides with the SM one g_{hVV}^{SM} $\Rightarrow g_{h_iVV} = T_{1i} \times g_{hVV}^{SM}$.
- T is orthogonal \Rightarrow Sum rule: $\sum_{i} |g_{h_iVV}|^2 = |g_{hVV}^{SM}|^2$: ensures that each $|g_{h_iVV}|$ is always $< |g_{hVV}^{SM}|$ (generalizes for any n-HDM).

Nota bene

Finding a $|g_{h_iVV}| > |g_{hVV}^{SM}|$ would exclude SM and all of these models. Experimental measurements consistent with SM predictions \rightarrow the mixing angles in T are in the alignment limit and $h_1 \sim h$ in the "Higgs basis".

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の へ の

Outline

Motivation, C2HDM

2 Calculation setup

- Couplings & Propagators
- The diagrams
- Result for ZZZ in $\mathbb{C}2HDM$
- Discussion

3 Comparison with ZZZ in SM-EFT

- Generalities
- Matching with EFT
- Identifying the operator(s) in the SM-EFT
- Discussion

Summary

Lorentz + Bose symmetries constrain Z^3 vertex function $\Gamma_{\mu\alpha\beta}$:

$$\begin{split} i\Gamma_{\mu\alpha\beta} &= -e\frac{q^2 - m_Z^2}{m_Z^2} f_4^Z(q^2) (\eta_{\mu\alpha} p_{1,\beta} + \eta_{\mu\beta} p_{2,\alpha}) - e\frac{q^2 - m_Z^2}{m_Z^2} f_5^Z(q^2) \epsilon_{\mu\alpha\beta\rho} (p_1 - p_2)^{\rho} \\ &+ \tilde{f}_1(q^2) (\eta_{\mu\alpha} p_{2,\beta} + \eta_{\mu\beta} p_{1,\alpha}) + \tilde{f}_2(q^2) \eta_{\alpha\beta} q_\mu + \tilde{f}_3(q^2) q_\mu p_{1,\beta} p_{2,\alpha} \\ &+ \tilde{f}_4(q^2) q_\mu p_{1,\alpha} p_{2,\beta} + \tilde{f}_5(q^2) q_\mu (p_{1,\alpha} p_{1,\beta} + p_{2,\alpha} p_{2,\beta}) \,. \end{split}$$

 $f_4^Z(q^2)$ term is CP-odd: e.g. effective interaction $\frac{\tilde{\kappa}_{ZZZ}}{m_Z^2}\partial_\mu Z_\nu\partial^\mu Z^\rho\partial_\rho Z^\nu$ provides $f_4^Z(q^2) = \tilde{\kappa}_{ZZZ}$. $f_5^Z(q^2)$ term is CP-even.

Calculation setup

Comparison with ZZZ in SM-EFT

Summary

ZZZ vertex structure [Hagiwara-1986, Gounaris-1999] (2/2)

$$\begin{split} i\Gamma_{\mu\alpha\beta} &= -e\frac{q^2 - m_Z^2}{m_Z^2} f_4^Z(q^2) (\eta_{\mu\alpha} p_{1,\beta} + \eta_{\mu\beta} p_{2,\alpha}) - e\frac{q^2 - m_Z^2}{m_Z^2} f_5^Z(q^2) \epsilon_{\mu\alpha\beta\rho} (p_1 - p_2)^{\rho} \\ &\quad + \tilde{f}_1(q^2) (\eta_{\mu\alpha} p_{2,\beta} + \eta_{\mu\beta} p_{1,\alpha}) + \tilde{f}_2(q^2) \eta_{\alpha\beta} q_\mu + \tilde{f}_3(q^2) q_\mu p_{1,\beta} p_{2,\alpha} \\ &\quad + \tilde{f}_4(q^2) q_\mu p_{1,\alpha} p_{2,\beta} + \tilde{f}_5(q^2) q_\mu (p_{1,\alpha} p_{1,\beta} + p_{2,\alpha} p_{2,\beta}) \,. \end{split}$$

Remarks:

- $f_4^Z(q^2)$ and $f_5^Z(q^2)$ are related to observables, the $\tilde{f}_i(q^2)$ are not.
- Example of $\overline{f}f \to ZZ$ with a Z^* in s-channel.
- The $f_i(q^2)$ may be gauge-dependent in specific calculations.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■目目 シの()~

Calculation setup

Comparison with ZZZ in SM-EFT

Summary

8/25

Couplings & Propagators

Vertices [Fontes-2017] (momenta incoming, Feynman rules' 'i' included):¹

$$[h_i, h_j, Z^{\mu}] = \frac{g}{2c_W} (p_i - p_j)^{\mu} \epsilon_{ijk} x_k , \quad [Z^{\mu}, G^0, h_i] = \frac{g}{2c_W} (p_i - p_0)^{\mu} x_i ,$$

 $[h_i,Z^\mu,Z^\nu]=i\,\frac{g}{c_W}\,m_Z\,g^{\mu\nu}\,x_i\,,\quad\text{where:}\quad x_i\equiv T_{1i}=\frac{g_{h_iVV}}{g_{hVV}^{\mathsf{SM}}}\,,\quad c_W\equiv\cos\theta_W\,.$

In generic R_{ξ} gauge, Goldstone G^0 and Z propagators read [Romao-2012]:

$$[G^0, G^0] = \frac{i}{p^2 - \xi m_Z^2 + i\epsilon}, \quad [Z^\mu, Z^\nu] = \frac{-i}{k^2 - m_Z^2 + i\epsilon} \left[g^{\mu\nu} - (1-\xi) \frac{k^\mu k^\nu}{k^2 - \xi m_Z^2} \right]$$

Calculations performed with Mathematica and package FeynCalc [Mertig-1990, Shtabovenko-2016], cross-checked with Package-X [Patel-2015]. Loop-functions conventions from LoopTools [Hahn-1998].

¹The gauge couplings convention $D_{\mu} = \partial_{\mu} + igA_{\mu}$ is used. If $D_{\mu} = \partial_{\mu} - igA_{\mu}$ is used instead, the sign of $[h_i, h_j, Z^{\mu}]$ and $[Z^{\mu}, G^0, h_i]$ is flipped and the Z^3 form factor picks up an overall minus sign.

Hermès Bélusca-Maïto (PMF Zagreb) CP in 2HDM and EFT: ZZZ vertex

Motivation, C2HDM	Calculation setup	Comparison with ZZZ in SM-EFT	Summary
00000	00000000	000000000	00
h_i, h_i, h_k loop			

Each scalar in the loop is different ($\leftarrow \epsilon_{ijk}$ in the couplings).

 $(q, \mu) (k+q) (k+$

Hermès Bélusca-Maïto (PMF Zagreb)

CP in 2HDM and EFT: ZZZ vertex

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の へ の Multi-Higgs Lisbon 2018 9/25

Calculation setup

Comparison with ZZZ in SM-EFT

Summary

 h_i, h_j, G^0 loop

The Goldstone can be on each of the internal lines. All combinations of h_i, h_j with $i \neq j$ appear.

10/25

Calculation setup

Comparison with ZZZ in SM-EFT

Summary

 h_i, h_j, Z loop

The Z can be on each of the internal lines. All combinations of h_i, h_j with $i \neq j$ appear.

$$e \frac{q^2 - m_Z^2}{m_Z^2} f_4^{Z,hhZ} = F_4^{Z,hhG}(1) - F_4^{Z,hhG}(\xi) - \frac{8}{16\pi^2} \left(\frac{g}{2c_W}\right)^3 x_1 x_2 x_3 m_Z^2 \sum_{i,j,k} \epsilon_{ijk} C_1(q^2, m_Z^2, m_Z^2, m_Z^2, m_Z^2, m_R^2) \,.$$

Calculation setup

Comparison with ZZZ in SM-EFT

Summary

The result $(1-loop) - \mathbb{C}2HDM$

- $f_4^Z = f_4^{Z,hhh} + f_4^{Z,hhZ} + f_4^{Z,hhG}$: the ξ -dependent parts cancel out each other: Result is gauge-invariant.
- Due to the antisymmetric ϵ_{ijk} the UV-divergences of the PaVe C_{001} cancel out: Result is finite.

$$e\frac{q^2 - m_Z^2}{m_Z^2} f_4^Z(q^2) \left[\frac{1}{16\pi^2} \left(\frac{g}{c_W}\right)^3 x_1 x_2 x_3\right]^{-1} \equiv \hat{f}_4^{\ Z} = \sum_{i,j,k} \epsilon_{ijk} \left[-C_{001}(q^2, m_Z^2, m_Z^2, m_I^2, m_j^2, m_Z^2) + C_{001}(q^2, m_Z^2, m_Z^2, m_I^2, m_j^2, m_Z^2)\right]$$

$$+C_{001}(q^2, m_Z^2, m_Z^2, m_Z^2, m_j^2, m_k^2) + C_{001}(q^2, m_Z^2, m_Z^2, m_i^2, m_Z^2, m_k^2) -m_Z^2 C_1(q^2, m_Z^2, m_Z^2, m_i^2, m_Z^2, m_k^2)].$$

(Note: Each diagram agrees with [Grządkowski–2016] when $\xi = 1$.)

<u>−</u> √ 10⁻⁶

10-7

10-8

102

Figure: $|f_4|$ scatter plots in C2HDM for two \neq CM energies, satisfying theoretical (unitarity, V_H bounded from below) and experimental (LHC Higgs, EDM, EW precision meas.) constraints.

• $|f_4^Z|$ can reach values of $\mathcal{O}(10^{-5})$ in realistic parameter space of C2HDM.

10⁴

• Compare with recent ATLAS [Aaboud-2017] and CMS [Sirunyan-2017] analyses of ZZ production at the LHC: upper bound on $|f_4^Z|$ (assumed \mathbb{R}) of $\mathcal{O}(10^{-3})$.

103

 m_H (GeV)

<u>−</u>7 10⁻⁶

10-7

10-8

 10^{2}

10⁴

103

 m_H (GeV)

Calculation setup 00000000

Comparison with ZZZ in SM-EFT

Summary

Phenomenological discussion (2/2)

However when considering a generic BSM framework, one must check whether effects other than f_A^Z may contribute to the actual experimental observable being measured (and from which f_A^Z is inferred): example with $h \to ZZ$ production:

- Not a problem with SM Higgs: \approx 5% contribution to σ_{ZZ} ; for measuring f_{\perp}^{Z} each Z in final state is required to have a $m_Z \in [60; 120]$ GeV.
- Problem happens if *heavier* Higgs decays to ZZ. Mitigated in C2HDM because: 1) from $h_{125} \rightarrow ZZ$ measurements the corresponding coupling in C2HDM lies very close to SM value (\rightarrow alignment limit), 2) C2HDM sum rule guarantees that any heavier scalar has a very small coupling to ZZ.

14 / 25

Outline

Motivation, C2HDM

Calculation setup

- Couplings & Propagators
- The diagrams
- Result for ZZZ in C2HDM
- Discussion

Comparison with ZZZ in SM-EFT

- Generalities
- Matching with EFT
- Identifying the operator(s) in the SM-EFT
- Discussion

Summary

Motivation, C2HDM	Calculation setup	Comparison with ZZZ in SM-EFT	Summary
00000	000000000	000000000	00
EFT intro (simp	lified!)		

- Suppose new degrees of freedom @ high energy \Rightarrow Separation of scales: $m(NP) \gg m(EW)$.
- At lower energies, NP modifies interactions of SM fields (modify SM predictions). Formally: NP fields are integrated out, generation of non-renormalizable dim. ≥ 5 effective operators.

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{d \ge 5} \frac{\mathcal{C}^{(d)}}{\Lambda_{\text{NP}}^{d-4}} \mathcal{O}^{(d)}(\{\text{SM fields}\}) = \mathcal{L}_{D=5} + \mathcal{L}_{D=6} + \dots,$$

- \mathcal{L}_{SM} : the Standard-Model Lagrangian.
- Λ_{NP} : energy scale(s) of NP; $\mathcal{C}^{(d)}$: dimensionless effective coupling ("Wilson coefficient"); $\mathcal{O}^{(d)}$: effective operator, function of SM fields only.
- $\mathcal{L}_{D=5}$ ("Weinberg operator"): masses for neutrinos.
- $\mathcal{L}_{D \geq 6}$: the part of interest!

A = A = A = A = A = A = A

Calculation setup

Comparison with ZZZ in SM-EFT

Summary

Matching C2HDM result with EFT

"Naive" expansion of loop functions in terms of $1/m_H$?

 \rightarrow Not tractable due to complicated form and non-analytic behaviour.

\Rightarrow Method of regions [Beneke-1997]

In our 1-loop integrals case with two \neq mass scales $m_{\text{light}} \ll m_{\text{heavy}}$: 1) expand integrand for *soft* momenta and compute integral; 2) expand integrand for *hard* momenta and compute integral, and 3) sum both contribs. together.

With $m_1 = m_h = 125$ GeV, $m_2 = m_H$ and $m_3 = \sqrt{m_H^2 + \delta}$ with $\delta \sim v$, in decoupling limit $m_h \ll m_H$ (and $q^2 \ll m_H^2$), we find:

- leading contributions are $\mathcal{O}(m_H^{-4})$, from diagrams with 1 heavy scalar and 2 SM particles (h, Z, G^0) in the loop, correspond to the soft region $(k \ll m_H)$ of the integrals;
- other regions / diagrams are $\mathcal{O}(m_H^{-6})$ or higher.

Motivation, C2HDM	Calculation setup	Comparison with ZZZ in SM-EFT	Summary
00000	000000000	000000000	00
Matching resul	t		

The form of the expansion is found to be (when $m_h \ll m_H$ and $q^2 \ll m_H^2$):

$$ef_4^Z(q^2) \sim \frac{\delta^2 x_1 x_2 x_3}{m_H^4} \left(\frac{g}{c_W}\right)^3 \times \mathsf{func}(q^2, m_h, m_Z) \,,$$

where func(q^2, m_h, m_Z) is some complicated kinematical function. In the decoupling limit the Higgs mixing angles are also suppressed: $\delta^2 x_1 x_2 x_3 \approx \frac{v^6}{2m_H^4} \operatorname{Im}(Z_5^* Z_6^2).$

$$ef_4^Z(q^2) \sim \operatorname{Im}(Z_5^*Z_6^2) \frac{v^6}{2m_H^8} \left(\frac{g}{c_W}\right)^3 \times \operatorname{func}(q^2, m_h, m_Z).$$

A B A B A B B B A A A

Hermès Bélusca-Maïto (PMF Zagreb)

CP in 2HDM and EFT: ZZZ vertex

Multi-Higgs Lisbon 2018 18 / 25

Hermès Bélusca-Maïto (PMF Zagreb)

CP in 2HDM and EFT: ZZZ vertex

Multi-Higgs Lisbon 2018 19 / 25

Calculation setup

Comparison with ZZZ in SM-EFT

Summary

Prerequisites for SM-EFT

General assumptions

- The operators are $G_{\mathsf{SM}} = SU(3)_C \times SU(2)_L \times U(1)_Y$ invariant.
- The 125 GeV Higgs boson h_1 belongs to the Higgs scalar SU(2) doublet H that transforms as $(\mathbf{1}, \mathbf{2})_{1/2}$ of G_{SM} and acquires a VEV v. (OK since we already work with such doublets in the 2HDM.)

Start from \mathcal{L}_{C2HDM} (terms not relevant here are dropped) and work in the "Higgs basis" where $\langle H_1 \rangle = v/\sqrt{2}$ while $\langle H_2 \rangle = 0$, \oplus Stationarity conditions:

$$\begin{split} \mathcal{L}_{\text{C2HDM}} \supset |D_{\mu}H_{1}|^{2} - Z_{1} \frac{|H_{1}|^{2} - v^{2}}{2} |H_{1}|^{2} + |D_{\mu}H_{2}|^{2} - Y_{2}|H_{2}|^{2} - Z_{3}|H_{1}|^{2}|H_{2}|^{2} \\ &- Z_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1}) - \left\{ \frac{Z_{5}}{2}(H_{1}^{\dagger}H_{2})^{2} + Z_{6}X_{0}(H_{1}^{\dagger}H_{2}) + \text{h.c.} \right\} + \dots, \end{split}$$

where: $X_0 = |H_1|^2 - \frac{v^2}{2}$.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の へ の

Motivation, C2HDM	Calculation setup	Comparison with ZZZ in SM-EFT	Summary
00000	000000000	000000000000000000000000000000000000000	00
Procedure			

Write EOM for $H_2^{(\dagger)}$ & search for perturbative solution $H_2 = \sum_{n=1}^{+\infty} Y_2^{-n} H_2^{(n)}$; $Y_2 \equiv$ large mass² scale Λ_{NP} (we implicitly suppose the **decoupling limit**):

$$Y_2H_2 + D^2H_2 + Z_6^*X_0H_1 + Z_5^*(H_2^{\dagger}H_1)H_1 + \dots = 0.$$

 \Rightarrow Recursive equations:

$$H_2^{(1)} = -Z_6^* X_0 H_1, \quad H_2^{(n+1)} = -D^2 H_2^{(n)} - Z_5^* (H_2^{(n)\dagger} H_1) H_1 + \dots,$$

and we need to go up to n = 4. Replace all the $H_2^{(n)}$ values recursively into the expanded ansatz and back into \mathcal{L}_{C2HDM} , to obtain a tree-level-generated EFT expressed only in terms of the $H_1 \equiv H$ doublet and D_{μ} :

$$\mathcal{L}_{\mathsf{C2HDM}}^{\mathsf{EFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{n=1}^{+\infty} Y_2^{-n} \mathcal{L}^{(2n+4)} \,.$$

21 / 25

Calculation setup

Comparison with ZZZ in SM-EFT

Summary

Identifying the operator(s) in the SM-EFT (1/2)

Examples (note:
$$X_0 = |H_1|^2 - \frac{v^2}{2}$$
):

Operator	Properties
${\cal L}^{(6)} \supset Z_6 ^2 X_0^2 H ^2$	Shifts triple- h coupling.
$\mathcal{L}^{(8)} \supset Z_6 D_\mu(X_0 H) ^2$	Renormalizes h kinetic term.
$\mathcal{L}^{(10)} \supset \propto D_{\mu}(H^{\dagger}X_0)D_{\mu}(X_0 H ^2H) + \text{h.c.}$	CP-odd interactions
	$\propto { m Im}(Z_5^*Z_6^2)h^{\geq 3}\partial_\mu Z^\mu$, does not
	generate ZZZ simply.

And (red: term that generates CP-violating interactions): $\mathcal{L}^{(12)} \supset \frac{-Z_5^* Z_6^2}{m_H^8} \left[D^2 (H^{\dagger} X_0) D^2 (X_0 |H|^2 H) + (D^2 (H^{\dagger} X_0) H)^2 / 2 \right] + \text{h.c.,}$ leading to (using classical EOM for $h: v \Box h = \ldots$):

$$\begin{split} \mathcal{L}^{(12)} &\supset \frac{\mathrm{Im}(Z_5^* Z_6^2)}{m_H^8} \frac{g v^6}{2c_W} Z^{\nu} \partial_{\nu} h \Box h + \mathcal{O}(Zh^3) \\ &\to \frac{\mathrm{Im}(Z_5^* Z_6^2)}{m_H^8} \frac{g v^5}{2c_W} Z^{\nu} \partial_{\nu} h(m_Z^2 Z_{\mu} Z^{\mu} + 2m_W^2 W_{\mu}^+ W^{-\mu}) \,. \end{split}$$

(4個) (目) (日) (1000)

Calculation setup

Comparison with ZZZ in SM-EFT

Summary

23 / 25

Identifying the operator(s) in the SM-EFT (2/2)

$$\operatorname{Im}(Z_5^*Z_6^2) \left(\frac{g}{c_W}\right)^3 \frac{v^7}{8m_H^8} Z^\nu \partial_\nu h Z_\mu Z^\mu \text{ at } d = 12 \text{ and is CP-odd.}$$

Figure: 1-loop diagram contributing to the Z^3 vertex in EFT, with insertion of the d = 12 operator. (+ 2 other diags. with permutations of external legs.)

Personal comment! Alternative computation: use "Universal 1-Loop Effective Action" (UOLEA) technique, extended at d = 12 and including light/heavy fields mixing? ([Cheyette,Gaillard (1980); Henning, Lu, Murayama (2014); Drozd, Ellis, Quevillon, You (2014-2015), + Zhang (2017); et al.], and [HBM talk @ 2HDM-Workshop 2016].)

Motivation, C2HDM	Calculation setup	Comparison with ZZZ in SM-EFT	Summary
Discussion			

- In C2HDM the ZZZ vertex arises from a d=12 operator inserted at 1-loop level.
- While ZZZ cannot be generated at d = 6, it could be a priori generated at $d \ge 8$, e.g. $\mathcal{L}_{d=8} = \frac{ic_8}{\Lambda^4} B_{\mu\nu} B^{\mu\rho} H^{\dagger} \{ D^{\nu}, D_{\rho} \} H$ (and $B_{\mu\nu} \to W^i_{\mu\nu}$) [Degrande-2013], and contribute to f_4^Z .
- However these cannot be generated in the C2HDM at 1-loop, because all the CP-violating effects are \propto to the **Jarlskog-type invariant** (see [Lavoura-1994]) $J_{\text{CP}} = \frac{(m_{h_3}^2 - m_{h_2}^2)(m_{h_3}^2 - m_{h_1}^2)(m_{h_2}^2 - m_{h_1}^2)}{m_{h_1}^2 m_{h_2}^2 m_{h_3}^2} x_1 x_2 x_3 \propto \text{Im}(Z_5^* Z_6^2).$
- \hbar power-counting (see refs. in [HBM-2018]) show that the d = 12 operator is allowed within the C2HDM at tree-level, while the d = 8 one cannot appear before 3-loop level in the matching.

Outline

Motivation, C2HDM

Calculation setup

- Couplings & Propagators
- The diagrams
- Result for ZZZ in C2HDM
- Discussion

3 Comparison with ZZZ in SM-EFT

- Generalities
- Matching with EFT
- Identifying the operator(s) in the SM-EFT
- Discussion

Motivation, C2HDM	Calculation setup	Comparison with ZZZ in SM-EFT	Summary
00000	000000000	000000000	0.
Summary			

- The CP-violating ZZZ vertex has been studied in the C2HDM and in its matching within the SM-EFT framework.
- The CP-odd form-factor f_4^Z has been evaluated at 1-loop in R_{ξ} gauge and is gauge-independent; the leading contribs. arise from triangle diagrams with SM particles and heavy Higgses.
- It probes one of the Jarlskog J_{CP} invariants in the extended Higgs sector.
- Using the f_4^Z approximation in decoupling limit we found the dominant diagrams and operator responsible for CP-violating ZZZ vertex in the low-energy EFT where the heavy scalars are integrated out.
- Via power-counting and J_{CP} , we confirmed that the operator appears in the EFT at d = 12 in the matching at 1-loop. \Rightarrow CP-violating effects in ZZ production are extremely suppressed when $v \ll m_H$.

Thank you for your attention!

ELE DOG

References

References (1/4)

- [HBM-2018] H. Bélusca-Maïto, A. Falkowski, D. Fontes, J. C. Romão, and J. P. Silva, "CP violation in 2HDM and EFT: the ZZZ vertex," JHEP 04 (2018) 002, arXiv:1710.05563 [hep-ph].
- [HBM-2016] H. Bélusca-Maïto, A. Falkowski, D. Fontes, J. C. Romão, and J. P. Silva, "Higgs EFT for 2HDM and beyond," *Eur. Phys. J.* C77 no. 3, (2017) 176, arXiv:1611.01112 [hep-ph].
- [Grządkowski-2016] B. Grządkowski, O. M. Ogreid, and P. Osland, "CP-Violation in the ZZZ and ZWW vertices at e⁺e⁻ colliders in Two-Higgs-Doublet Models," JHEP 05 (2016) 025, arXiv:1603.01388 [hep-ph]. [Erratum: JHEP11,002(2017)].
- [Lavoura-1994] L. Lavoura and J. P. Silva, "Fundamental CP-violating quantities in a SU(2) x U(1) model with many Higgs doublets," *Phys. Rev.* D50 (1994) 4619–4624, arXiv:hep-ph/9404276 [hep-ph].
- [Bernon-2015] J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang, and S. Kraml, "Scrutinizing the alignment limit in two-Higgs-doublet models: $m_h = 125$ GeV," *Phys. Rev.* D92 no. 7, (2015) 075004, arXiv:1507.00933 [hep-ph].
- [Branco-2011] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, "Theory and phenomenology of two-Higgs-doublet models," *Phys. Rept.* 516 (2012) 1–102, arXiv:1106.0034 [hep-ph].

References (2/4)

- [Fontes-2014] D. Fontes, J. C. Romão, and J. P. Silva, " $h \rightarrow Z\gamma$ in the complex two Higgs doublet model," *JHEP* **12** (2014) 043, arXiv:1408.2534 [hep-ph].
- [Gunion–1989] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, "The Higgs Hunter's Guide," Front. Phys. 80 (2000) 1–404.
- [Hagiwara–1986] K. Hagiwara, R. D. Peccei, D. Zeppenfeld, and K. Hikasa, "Probing the Weak Boson Sector in $e^+e^- \rightarrow W^+W^-$," *Nucl. Phys.* B282 (1987) 253–307.
- [Gounaris–1999] G. J. Gounaris, J. Layssac, and F. M. Renard, "Signatures of the anomalous Z_{γ} and ZZ production at the lepton and hadron colliders," *Phys. Rev.* D61 (2000) 073013, arXiv:hep-ph/9910395 [hep-ph].
- [Fontes-2017] D. Fontes, M. Mühlleitner, J. C. Romão, R. Santos, J. P. Silva, and J. Wittbrodt, "Couplings in the complex 2HDM," 2017. http://porthos.tecnico.ulisboa.pt/arXiv/C2HDM/.
- [Romao-2012] J. C. Romão and J. P. Silva, "A resource for signs and Feynman diagrams of the Standard Model," Int. J. Mod. Phys. A27 (2012) 1230025, arXiv:1209.6213 [hep-ph].

[Shtabovenko-2016] V. Shtabovenko, R. Mertig, and F. Orellana, "New Developments in FeynCalc 9.0," Comput. Phys. Commun. 207 (2016) 432-444, arXiv:1601.01167 [hep-ph].

References (3/4)

- [Mertig-1990] R. Mertig, M. Bohm, and A. Denner, "FEYN CALC: Computer algebraic calculation of Feynman amplitudes," Comput. Phys. Commun. 64 (1991) 345–359.
- [Patel-2015] H. H. Patel, "Package-X: A Mathematica package for the analytic calculation of one-loop integrals," Comput. Phys. Commun. 197 (2015) 276-290, arXiv:1503.01469 [hep-ph].
- [Hahn-1998] T. Hahn and M. Perez-Victoria, "Automatized one loop calculations in four-dimensions and D-dimensions," Comput. Phys. Commun. 118 (1999) 153-165, arXiv:hep-ph/9807565 [hep-ph].
- [Aaboud–2017] **ATLAS** Collaboration, M. Aaboud *et al.*, " $ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$ cross-section measurements and search for anomalous triple gauge couplings in 13 TeV *pp* collisions with the ATLAS detector," *Phys. Rev.* **D97** no. 3, (2018) 032005, arXiv:1709.07703 [hep-ex].
- [Sirunyan-2017] **CMS** Collaboration, A. M. Sirunyan *et al.*, "Measurements of the pp \rightarrow ZZ production cross section and the Z \rightarrow 4 ℓ branching fraction, and constraints on anomalous triple gauge couplings at $\sqrt{s} = 13$ TeV, " *Eur. Phys. J.* **C78** (2018) 165, arXiv:1709.08601 [hep-ex]. [Erratum: Eur. Phys. J.C78,no.6,515(2018)].
- [Beneke–1997] M. Beneke and V. A. Smirnov, "Asymptotic expansion of Feynman integrals near threshold," Nucl. Phys. B522 (1998) 321–344, arXiv:hep-ph/9711391 [hep-ph].

References (4/4)

[Degrande-2013] C. Degrande, "A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions," JHEP 02 (2014) 101, arXiv:1308.6323 [hep-ph].