The Grimus-Neufeld model: Restricting Yukawa couplings with the neutrino sector

Vytautas Dudenas, Simonas Draukšas, <u>Thomas Gajdosik</u>, Andrius Juodagalvis, Paulius Juodsnukis, Darius Jurčiukonis

Vilnius University

Workshop on Multi-Higgs Models, Lisbon, 09/2018

Our model: the $312-\nu$ SM (i.e. the Grimus-Neufeld model)

Standard Model (SM) + one fermionic singlet + two Higgs doublets

• is not a new idea: [G-N] W. Grimus and H. Neufeld, Nucl. Phys. B **325** (1989) 18.

outline of the talk

- the Grimus-Neufeld model
 - treelevel
 - and shortly at one-loop
- the Grimus-Lavoura approximation
 - allowing the analytic prediction of neutrino masses
- determining Lagrangian parameters
 - from masses and mixings
 - * in the Grimus-Lavoura approximation !
- difficulties, comparisons, plans

The bare Lagrangian of the $312-\nu$ SM

- Gauge sector \mathcal{L}_G and Fermion-Gauge sector of the SM:
 - gauge group $U(1)_{Y} \otimes SU(2)_{L} \otimes SU(3)_{color}$
 - gauge covariant derivative $D_{\mu} \psi$
 - and the Lagrangian $\mathcal{L}_{\mathsf{G}-\mathsf{F}} = \sum_{\psi} ar{\psi} \, i D \hspace{-1.5mm}/ \psi$
- Gauge-Higgs sector with the gauge covariant derivative $D_{\mu}\phi_a$ and the Lagrangian $\mathcal{L}_{G-H} = (D^{\mu}\phi_a)^{\dagger}(D_{\mu}\phi_a) - V(\phi_a)$
- Higgs sector: two Higgs doublets ϕ_a in the Higgs potential $V(\phi_a)$ [H-ON] H. E. Haber and D. O'Neil, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188 [hep-ph]]
- Fermion-Higgs sector with the Yukawa couplings (ignoring quarks)

$$\mathcal{L}_{\mathsf{F}-\mathsf{H}} = -\ell_{Lj}^{0} \phi_{a} Y_{Ljk}^{a} e_{Rk}^{0} - \ell_{Lj}^{0} \tilde{\phi}_{\bar{a}} \tilde{Y}_{Lj}^{a} N^{0} + h.c.$$

h the adjoint Higgs doublet $\tilde{\phi}_{\bar{a}} = \epsilon \phi_{a}^{*} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} (\phi_{a}^{+})^{*} \\ (\phi_{a}^{0})^{*} \end{pmatrix} =: \begin{pmatrix} \phi_{\bar{a}}^{0*} \\ -\phi_{\bar{a}}^{-} \end{pmatrix}$

• Majorana sector with the Majorana singlet N^0 : $D_\mu N^0 = \partial_\mu N^0$

wit

The 312- ν SM has parameters additionally to the "original" SM

- the singlet Majorana mass term M_R
- the neutrino Yukawa coupling of the first Higgs doublet

 $(Y_N^{(1)})_j := \widetilde{Y}_{Lj}^1 = \frac{\sqrt{2}}{v} (M_D)_j \dots$ the "Dirac mass" term

• the Yukawa couplings of the second Higgs doublet

 $(Y_E^{(2)})_{jk} := Y_{Ljk}^2$ to lepton doublets and charged lepton singlets ℓ_{Rj} $(Y_N^{(2)})_j := \tilde{Y}_{Lj}^2$ to lepton doublets and neutral fermionic singlet N_R

- additional parameters in the Higgs sector see [H-ON]
 - $-m_{H_2}^2$, $m_{H_3}^2$, $m_{H^{\pm}}^2$ masses of the additional Higgs bosons
 - θ_{12}, θ_{13} mixing angles between the neutral Higgs fields

CP conservation forces the mixing to the pseudo-scalar A^0 to zero: $\theta_{13} = 0$

 $-Z_2, Z_3, Z_7$... parameters of the Higgs potential,

not fixed by tree level mass relations

$312-\nu$ SM tree level for the neutral fermions

- the Yukawa coupling $(Y_N^{(1)})_j$ mixes the neutral leptons ν_j with N_R
- the mixing gives a $(3+1) \times (3+1)$ symmetric mass matrix

$$M_{\nu} = \begin{pmatrix} M_L & M_D^{\top} \\ M_D & M_R \end{pmatrix} \quad \text{with} \quad \begin{array}{l} M_L = 0_{3\times3} \\ M_D^{\top} = (m_{De}, m_{D\mu}, m_{D\tau})^{\top} = \frac{v}{\sqrt{2}} Y_N^{(1)} \end{array}$$

- M_{ν} has rank 2 \Rightarrow only two masses are non-zero

• diagonalizing M_{ν}

 $U_{(\nu)}^{\dagger}M_{\nu} = \text{diag}(m_{o="\text{zero"}}, m_{t="\text{third"}}, m_{s="\text{seesaw"}}, m_{4})U_{(\nu)}^{\top} =: \widehat{m}U_{(\nu)}^{\top}$ with $m_{o} = m_{t} = 0$ by the unitary matrix

$$U_{(\nu)} = \begin{pmatrix} u_{eo} & u_{et} & cu_{es} & -isu_{es} \\ u_{\mu o} & u_{\mu t} & cu_{\mu s} & -isu_{\mu s} \\ u_{\tau o} & u_{\tau t} & cu_{\tau s} & -isu_{\tau s} \\ 0 & 0 & -is & c \end{pmatrix} \quad \text{where} \quad \begin{aligned} c^2 &= \frac{m_4}{m_4 + m_s} \\ s^2 &= \frac{m_s}{m_4 + m_s} \end{aligned}$$

- with $u_{k\alpha}$ being a unitary 3×3 -matrix

 $312-\nu$ SM tree level for the neutral fermions

• from
$$U_{(\nu)}^{\dagger} M_{\nu} = \hat{m} U_{(\nu)}^{\top}$$
 and $(Y_N^{(1)})_k = \frac{\sqrt{2}}{v} (M_D)_k$ we get
 $u_{ko}^* (Y_N^{(1)})_k = u_{kt}^* (Y_N^{(1)})_k = 0$

- the two tree level massless "neutrinos" $\zeta_{o,t}^{M}$ are degenerate
- use the second Higgs coupling $(Y_N^{(2)})_k$ to distinguish them: $u_{ko}^*(Y_N^{(2)})_k = 0$ and $u_{kt}^*(Y_N^{(2)})_k =: d \neq 0$
- \Rightarrow parametrize the Yukawa couplings as

$$(Y_N^{(1)})_k = \frac{\sqrt{2}m_D}{v} u_{ks} \qquad (Y_N^{(2)})_k := d u_{kt} + d' u_{ks}$$

with the abbreviation $m_D^2 = |(M_D)_e|^2 + |(M_D)_{\mu}|^2 + |(M_D)_{\tau}|^2$

- as a tree level identification one can take $u_{k\alpha} = (U_{\text{PMNS}})_{k\alpha}$

* this identification chooses a basis for the degenerate massless "neutrinos" $\zeta_{o,t}^{M}$ $312-\nu$ SM for the neutral fermions at one-loop level

• the model generates a loop induced mass $m_t \propto d^2$

* this is the Grimus-Neufeld model

- and a loop correction δm_s for the seesaw mass $m_s^{[0]} \propto \frac{m_D^2}{M_P}$

determining the parameters at tree level

- we can use physical masses and couplings
 - from the Higgs sector [see Tuesdays talk of Odd Magne Ogreid]
 - \ast Higgs masses m_h , m_H , m_A , m_{H^\pm} and Higgs-Gauge couplings
 - from the neutrino sector
 - * neutrino mixing matrix U_{PMNS}
 - * neutrino mass differences $\Delta m^2_{
 m atm}$ and $\Delta m^2_{
 m sol}$
 - ! but we have only a single mass difference at tree level, since $m_o = m_t = 0$

\Rightarrow we need the one-loop level to determine parameters

Including one-loop predictions: using $\tilde{m}_i = m_{i,\text{phys}}$ and δm_i

- renormalizing the Lagrangian expressed in the mass eigenstates
 - needs a counter term $\delta^{ct}m$ for each non vanishing mass m
 - * we have $m_3 > 0$ already at tree level . . .

"Trick" of Grimus and Lavoura

[G-L] W. Grimus and L. Lavoura, JHEP 0011 (2000) 042 [arXiv:hep-ph/0008179].

- renormalize the Lagrangian expressed in interaction eigenstates
 - the counter term for the mass matrix

$$\delta^{\mathsf{ct}} M_{\nu} = \begin{pmatrix} \delta^{\mathsf{ct}} M_L & (\delta^{\mathsf{ct}} M_D)^{\top} \\ \delta^{\mathsf{ct}} M_D & \delta^{\mathsf{ct}} M_R \end{pmatrix} \quad \text{has} \quad \delta^{\mathsf{ct}} M_L = \mathbf{0}_{3 \times 3}$$

* since $M_L^{\text{tree}} = 0_{3 \times 3}$

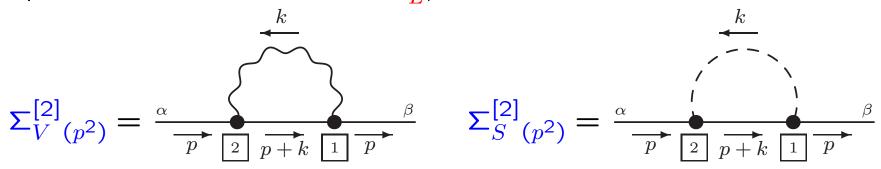
- the counter term $\delta^{\text{ct}}(M_D)_k = \frac{1}{\sqrt{2}} [(\delta^{\text{ct}}v)(Y_N^{(1)})_k + v(\delta^{\text{ct}}Y_N^{(1)})_k]$
 - * is fixed by the vacuum and the Higgs coupling
- $\delta^{ct}M_R$ is "fixed" by the not measured heavy singlet ... and ignored

The Grimus-Lavoura procedure

[G-L] W. Grimus and L. Lavoura, JHEP **0011** (2000) 042 [arXiv:hep-ph/0008179].

reducing the problem to the "light" neutrinos $\zeta_{o,t,s}^M$:

- staying in the interaction eigenstates basis $M_{\nu} = \begin{pmatrix} 0 & M_D^+ \\ M_D & M_R \end{pmatrix}$ leads to an effective 3 × 3-neutrino mass matrix \mathcal{M}_{ν}
 - at tree level $\mathcal{M}_{\nu}^{\text{tree}} = -M_D^{\top} M_R^{-1} M_D$,
 - and at one-loop level $\mathcal{M}_{\nu}^{1-\text{loop}} = \mathcal{M}_{\nu}^{\text{tree}} + \delta \mathcal{M}_{\nu}$, with $\delta \mathcal{M}_{\nu} = \delta M_L - \delta M_D^{\top} M_R^{-1} M_D - M_D^{\top} M_R^{-1} \delta M_D + M_D^{\top} M_R^{-1} \delta M_R M_R^{-1} M_D$
- assuming δM_R to be irrelevant (as M_R is a free unmeasurable parameter)
- assuming corrections with δM_D to be subdominant $\propto Y^2 m_{\ell^{\pm}} \frac{m_D}{M_B}$ or $g^2 m_{\ell^{\pm}} \frac{m_D}{M_B}$
- \Rightarrow loop corrections come from δM_L , calculated from



The Grimus-Lavoura procedure

calculating $\delta^{\text{loop}}M_L$ from the selfenergy $\Sigma_{(p^2)}^{[2]}$

- at vanishing external momentum $p^2 = \tilde{m}^2 = m_{\rm phys}^2 \sim 0$
 - for the mass term only the neutral bosons contribute
 - $-Z^0$ and G^0 combine to a gauge invariant contribution
- \Rightarrow one gets an effective 1-loop improved 3 \times 3-mass matrix $(\mathcal{M}_{\nu}^{1-\text{loop}})_{jk}$
 - that depends on SM parameters and on
 - the neutral Higgs masses m_h^2 , m_H^2 , m_A^2 , and mixing angle θ_{12}
 - the heavy singlet mass $M_R \sim m_4$
 - and the Yukawa coupling parameters d, d', and m_D
 - the singular values of $(\mathcal{M}_{\nu}^{1-\text{loop}})$ are the masses of the "light" neutrinos

* this is the Grimus-Lavoura approximation

Determining the Lagrangian parameters

calculating this effective 1-loop improved 3×3 -mass matrix

• we get $(\mathcal{M}_{\nu}^{1-\text{loop}})_{jk} = u_{jt}u_{kt}A + (u_{jt}u_{ks} + u_{js}u_{kt})B + u_{js}u_{ks}C$ - with $A = d^2f_1 \qquad B = d'df_1 + id\frac{\sqrt{2}m_D}{v}f_2$ $C = d'^2f_1 + 2id'\frac{\sqrt{2}m_D}{v}f_2 + \frac{2m_D^2}{v^2}f_3$

- the f_i depend on the parameters of the Higgs sector

$$\begin{split} f_1 &= s_{12}^2 L_h + c_{12}^2 L_H - L_A \\ f_2 &= s_{12} c_{12} [L_H - L_h] \\ f_3 &= c_{12}^2 L_h + s_{12}^2 L_H + 3L_Z - \frac{v^2}{2m_4} \\ \text{and } s_{12} &= \sin \theta_{12}, \ c_{12} &= \cos \theta_{12} \\ - C \text{ includes the tree level seesaw contribution: } \frac{v^2 |Y_N^{(1)}|^2}{2m_4} = \frac{m_D^2}{m_4} \\ \bullet \left(\mathcal{M}_{\nu}^{1-\text{loop}}\right)_{jk} \text{ is obviously only rank 2 :} \\ u_{j\alpha}^* \left(\mathcal{M}_{\nu}^{1-\text{loop}}\right)_{jk} u_{j\beta}^* = \left(\begin{array}{c} 0 & 0 & 0 \\ 0 & A & B \\ 0 & B & C \end{array}\right)_{\alpha\beta} \end{split}$$

determining Lagrangian parameters

Diagonalizing $(\mathcal{M}_{\nu}^{1-\text{loop}})_{jk}$ gives the masses \tilde{m}_t and $\tilde{m}_s = m_s + \delta m_s$

• using $u_{j\alpha}^*$ the mass $\tilde{m}_o = 0$ can be factored out

 \Rightarrow the diagonalization can be simplified to a 2 \times 2 seesaw relation

$$R^{\dagger} \cdot \begin{pmatrix} A & B \\ B & C \end{pmatrix} = \begin{pmatrix} \tilde{m}_t & 0 \\ 0 & \tilde{m}_s \end{pmatrix} \cdot R^{\top} \quad \text{with} \quad R = e^{i\frac{\alpha}{2}} \begin{pmatrix} \bar{c} & \bar{s} \\ -\bar{s}^* & \bar{c}^* \end{pmatrix}$$

— with
$$\bar{c} = e^{rac{i}{2}(\gamma+\delta)}\coseta$$
 and $\bar{s} = e^{rac{i}{2}(\gamma-\delta)}\sineta$

- R is needed as it describes the mixing between ζ_t^M and ζ_s^M

• we can determine the masses $ilde{m}_t$ and $ilde{m}_s$ from A, B, and C alone :

$$\tilde{m}_t^2 + \tilde{m}_s^2 = \operatorname{Tr}\left[\begin{pmatrix} A & B \\ B & C \end{pmatrix}^{\dagger} R \cdot R^{\dagger} \begin{pmatrix} A & B \\ B & C \end{pmatrix}\right] = |A|^2 + 2|B|^2 + |C|^2$$

and $\tilde{m}_t \tilde{m}_s = \operatorname{det}[R^{\dagger}] \operatorname{det}\begin{bmatrix} A & B \\ B & C \end{bmatrix} \operatorname{det}[R^*] = e^{-2i\alpha}[AC - B^2]$

 \Rightarrow the orthonormal vectors $u_{j\alpha}^*$ do not appear in the neutrino masses:

$$\tilde{m}_{t,s} = \tilde{m}_{t,s} \left[m_h^2, m_H^2, m_A^2, \theta_{12}, v^2, \tilde{m}_4, m_D^2, d, d' = |d'| e^{i\phi'} \right]$$

taking \tilde{m}_t and \tilde{m}_s as measured masses

• determining *d* is simple:

$$\tilde{m}_t \tilde{m}_s = |AC - B^2| = d^2 \frac{2m_D^2}{v^2} |f_1 f_3 - f_2^2| \Rightarrow d^2 = \frac{v^2}{2m_D^2} \frac{\tilde{m}_t \tilde{m}_s}{|f_1 f_3 - f_2^2|}$$
- since the determinant equation does not depend on $|d'|$

• the trace equation, $\tilde{m}_t^2 + \tilde{m}_s^2 = |A|^2 + 2|B|^2 + |C|^2$, involves a fourth order polynomial in |d'|:

$$0 = a_4 |d'|^4 + a_3 |d'|^3 + a_2 |d'|^2 + a_1 |d'| + a_0$$

where

$$a_{4} = f_{1}^{2} \qquad a_{3} = -4\sin\phi'\frac{\sqrt{2}m_{D}}{v}f_{1}f_{2}$$

$$a_{2} = 2\left[d^{2}f_{1}^{2} + 2\frac{2m_{D}^{2}}{v^{2}}f_{2}^{2} - (1 - 2\sin^{2}\phi')\frac{2m_{D}^{2}}{v^{2}}f_{1}f_{3}\right]$$

$$a_{1} = -4\sin\phi'\frac{\sqrt{2}m_{D}}{v}\left[d^{2}f_{1} + \frac{2m_{D}^{2}}{v^{2}}f_{3}\right]f_{2}$$

$$a_{0} = d^{4}f_{1}^{2} + 2d^{2}\frac{2m_{D}^{2}}{v^{2}}f_{2}^{2} + \frac{4m_{D}^{4}}{v^{4}}f_{3}^{2} - \tilde{m}_{t}^{2} - \tilde{m}_{s}^{2}$$

 $\Rightarrow |d'| = |d'|[v^2; m_h, m_H, m_A, s_{12}; \tilde{m}_t, \tilde{m}_s, \tilde{m}_4; m_D^2; \phi'] \text{ and } d' = |d'|e^{i\phi'}$

neutrino mass eigenstates from the Grimus-Lavoura approximation

- the "heavy" state $\tilde{\zeta}_4^M = \zeta_4^M$ with mass m_4 was "integrated out"
- the massless state $\tilde{\zeta}^M_o = \zeta^M_o$ with mass $m_o = 0$ was left untouched
- the tree level states $\zeta_{t,s}^M$ were mixed into one-loop mass eigenstates $\tilde{\zeta}_{t,s}^M$

$$\tilde{\zeta}_{o}^{M} = \zeta_{o}^{M} , \quad \begin{pmatrix} \tilde{\zeta}_{t}^{M} \\ \tilde{\zeta}_{s}^{M} \end{pmatrix} = R^{\top} \cdot \begin{pmatrix} \zeta_{t}^{M} \\ \zeta_{s}^{M} \end{pmatrix} , \quad \tilde{\zeta}_{4}^{M} = \zeta_{4}^{M}$$

⇒ the tree level identification with the PMNS matrix is changed: $\begin{aligned} u_{ko} &= (U_{\text{PMNS}})_{ko} \\ u_{kt} &= (R)_{tt} (U_{\text{PMNS}})_{kt} + (R)_{ts} (U_{\text{PMNS}})_{ks} & \text{with } k = e, \mu, \tau \\ u_{ks} &= (R)_{st} (U_{\text{PMNS}})_{kt} + (R)_{ss} (U_{\text{PMNS}})_{ks} \end{aligned}$

• What means o, t, s in terms of the measured neutrino mass states ?

- depends on the scenario: normal / inverted hierarchy
- depends on the ordering of m_t and m_s

using the measured mass differences $\Delta m_{sol}^2 = \Delta m_{21}^2$ and $\Delta m_{atm}^2 \approx |\Delta m_{31}^2|$ [SoNO2018] P. F. de Salas *et al.*, Phys. Lett. B **782** (2018) 633

• one neutrino is masseless at one-loop

 \Rightarrow the mass differences determine the masses

- for the normal hierarchy (NH) we have $\tilde{m}_o = \tilde{m}_1 = 0$ (i.e. o = 1) $\Rightarrow \tilde{m}_2 = \sqrt{\Delta m_{sol}^2}$ and $\tilde{m}_3 = \sqrt{\Delta m_{atm}^2}$
- the inverted hierarchy (IH) has $\Delta m^2_{31} < 0$

 \Rightarrow we have to assign $\tilde{m}_o = \tilde{m}_3 = 0$ (i.e. o = 3)

– we get
$$\tilde{m}_1 = \sqrt{\Delta m^2_{\rm atm}}$$
 and $\tilde{m}_2 = \sqrt{\Delta m^2_{\rm atm} + \Delta m^2_{\rm sol}}$

- the ordering of m_t and m_s influences the assignement:
 - for NH we usually expect $m_t = \tilde{m}_2 < \tilde{m}_3 = m_s$ (i.e. t = 2 and s = 3)
 - * but we could also have $\overline{\text{NH}}$: $m_s = \tilde{m}_2 < \tilde{m}_3 = m_t$ (i.e. t = 3 and s = 2)
 - for IH we usually expect $m_t = \tilde{m}_1 < \tilde{m}_2 = m_s$ (i.e. t = 1 and s = 2)
 - * but we could also have $\overline{\rm IH}$: $m_s=\tilde{m}_1<\tilde{m}_2=m_t$ (i.e. t= 2 and s= 1)

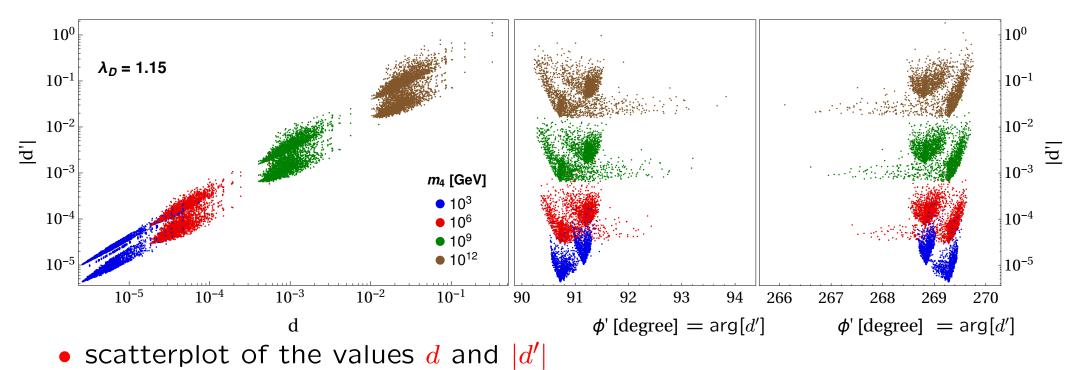
the role of m_D^2

- m_D^2 is the size of the tree level Dirac mass term
 - and given by tree level masses: $m_D^2 = M_R m_s^{[0]} \approx m_4 m_s \neq \tilde{m}_4 \tilde{m}_s$
 - from mass measurements we have no clue about m_s or m_4
 - assuming the model has a sensible loop expansion
 - \Rightarrow the loop correction should not invalidate the tree level (i.e. $m_4m_s=\mathcal{O}[\tilde{m}_4\tilde{m}_s]$)
- we set the scale of m_D^2 with the measured masses
 - and parametrize the difference by a multiplicative parameter

$$m_D^2 = m_4 m_s := \lambda_D^2 \tilde{m}_4 \tilde{m}_s = \lambda_D^2 \tilde{m}_4 \begin{cases} \sqrt{\Delta m_{\text{atm}}^2} & \dots & \text{NH} \\ \sqrt{\Delta m_{\text{sol}}^2} & \dots & \text{NH} \\ \sqrt{\Delta m_{\text{atm}}^2 + \Delta m_{\text{sol}}^2} & \dots & \text{IH} \\ \sqrt{\Delta m_{\text{atm}}^2} & \dots & \text{IH} \end{cases}$$

– a conservative range is $\frac{1}{2} \leq \lambda_D^{} \leq 2$

d and |d'| are fully determined:



- shown values of ϕ' allow physical solutions for the fourth order equation

- the Higgs masses m_H and m_A vary between 0.2 and 1.2 TeV
- the mixing angle θ_{12} gives a stable, perturbative, and unitary Higgs potential taking the data points (https://doi.org/10.18279/MIDAS.2HDMpar.61451) from the bachelor thesis of A. Kunčinas:

 $\langle \texttt{http://talpykla.elaba.lt/elaba-fedora/objects/elaba:23352542/datastreams/MAIN/content} \rangle$

Determining the rotation matrix R

• the 2×2 seesaw relation gives

$$\tan^{2} \beta = \frac{|A|^{2} + |B|^{2} - \tilde{m}_{t}^{2}}{\tilde{m}_{s}^{2} - |A|^{2} - |B|^{2}}$$

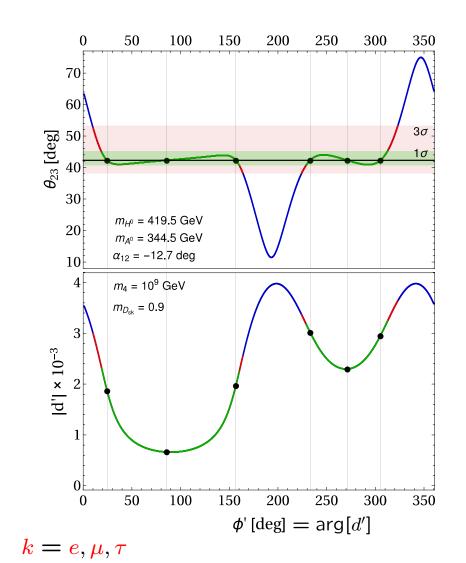
$$e^{2i\alpha} = \frac{\tilde{m}_{t} \tilde{m}_{s}}{AC - B^{2}}$$

$$e^{i\delta} = -\frac{(A^{*}B + B^{*}C) \tan \beta}{|A|^{2} + |B|^{2} - \tilde{m}_{t}^{2}} = \dots$$

$$e^{i\gamma} = \frac{e^{i\alpha}}{\tilde{m}_{s}}(Ce^{-i\delta} - B \tan \beta) = \dots$$

... indicate different possible analytic expressions

• *R* then determines the vectors $u_{k\alpha}$: $u_{ko} = (U_{\text{PMNS}})_{ko}$ $u_{kt} = (R)_{tt}(U_{\text{PMNS}})_{kt} + (R)_{ts}(U_{\text{PMNS}})_{ks}$ $u_{ks} = (R)_{st}(U_{\text{PMNS}})_{kt} + (R)_{ss}(U_{\text{PMNS}})_{ks}$ with $k = e, \mu, \tau$



• which fully determines the Yukawa couplings:

$$(Y_N^{(1)})_k = \frac{\sqrt{2}m_D}{v} u_{ks} \qquad (Y_N^{(2)})_k = d u_{kt} + d' u_{ks}$$

Difficulties

- for a value of ϕ' , the fourth order equation for |d'| can have
 - no solution: this value of ϕ' does not give a physical point
 - one solution: this value of ϕ' does give a physical point
 - $\ast\,$ if the resulting mixing matrix is compatible with the measured $U_{\rm PMNS}$
 - more than one solution:

each value of d' can give a distinct physical point

- $\ast\,$ if the resulting mixing matrix is compatible with the measured $U_{\rm PMNS}$
- \Rightarrow one still has to check the obtained parameter point
 - in a similar way as in a Monte Carlo method
 - * reproduction of the input neutrino masses: $\tilde{m}_1 = 0$, \tilde{m}_2 , \tilde{m}_3 , $\tilde{m}_4 \approx m_4 \approx M_R$ checks the numerics
 - + the "success rate" with the Grimus-Lavoura approximation for valid parameter points is much higher than random points
 - $\ast\,$ the approximation ''ignores'' the neutrino mixing matrix

Comparison with SPheno and FlexibleSUSY

- S. Draukšas implemented the GN model in SPheno and FlexibleSUSY
 - the code generation worked
 - SPheno could not reproduce the small neutrino masses
 - FlexibleSUSY gave qualitatively an expected spectrum
 - * time was (too) short
 - * implementing the parameter selection from the GL-approximation was difficult

Plans

- We want a full renormalization of the GN model
 - see talk of Vytautas Dūdėnas on Tuesday
 - giving us an estimate of the size of the GL approximation
- We want to extend the comparison with SPheno and FlexibleSUSY
- We want to make predictions with the determined Yukawa couplings

Thank you

for discussion

and comments

and of course for the workshop! \bigcirc