# Conditions for the custodial symmetry in multi-Higgs-doublet models

#### Marius Solberg

Department of Structural Engineering Norwegian University of Science and Technology (NTNU)

Workshop on Multi-Higgs Models, Lisboa, August 30, 2022.

Based on arXiv:1801.00519v2

# The custodial symmetry (CS) in the SM

• The custodial symmetry<sup>1</sup> is an approximate symmetry, guards the  $\rho$  parameter from large radiative corrections:

$$\rho = \frac{m_W^2}{m_Z^2 \cos^2(\vartheta_W)} \tag{1}$$

- On tree-level  $\rho = 1$
- If CS was exact  $\Rightarrow \rho = 1$  at all orders of perturbation theory. (But broken by kinetic Higgs terms and Yukawas)
- $\rho = 1.01019 \pm 0.00009$  when  $\cos^2(\vartheta_W)$  is interpreted in  $\overline{\rm MS}$  at energy scale  $m_Z$ .<sup>2</sup>



<sup>&</sup>lt;sup>1</sup>P. Sikivie, L. Susskind, M. B. Voloshin and V. I. Zakharov, Nucl. Phys. B **173** (1980) 189.

### CS is exact in the SM Higgs potential:

SM Higgs Lagrangian:

$$\mathcal{L}_{\mathcal{H}} = (D_{\alpha}\Phi)^{\dagger} (D^{\alpha}\Phi) - V_{\mathsf{SM}}(\Phi)$$
 (2)

• where  $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} \phi_1 + i\phi_2 \\ v + \phi_3 + i\phi_4 \end{pmatrix}$ , covar. derivative  $D^\alpha = \partial^\alpha + \frac{ig}{2}\sigma_jW_j^\alpha + \frac{ig'}{2}B^\mu$ , and potential

$$V_{\mathsf{SM}}(\Phi) = \lambda (\Phi^{\dagger} \Phi)^2 + \mu^2 \Phi^{\dagger} \Phi. \tag{3}$$

• Write  $\Phi$  as a real quadruplet  $\Phi_r = \begin{pmatrix} \operatorname{Re}(\Phi) \\ \operatorname{Im}(\Phi) \end{pmatrix}$ , then  $V_{\operatorname{SM}}(\Phi) = V_{\operatorname{SM}}(\Phi_r)$  is invariant under

$$\Phi_r \to O\Phi_r, \quad O \in O(4).$$

- In the limit  $g' \to 0$   $(g' = U(1)_Y$  hypercharge coupling) the kinetic terms,  $(D_\alpha \Phi)^\dagger (D^\alpha \Phi)$ , are invariant under  $SO(4) \subset O(4)$ .
- This is the custodial SO(4) symmetry (" $SO(4)_C$ "), spontaneously broken down to "custodial" SO(3) in the SM.

## The custodial symmetry in the NHDM

- In NHDM  $(N \ge 2)$ , there may also be terms in the potential violating CS, even before SSB.
- ⇒ The NHDM potential is not always CS.

- In the 2HDM necessary and sufficient conditions for CS are given in H. E. Haber and D. O'Neil, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] and B. Grzadkowski, M. Maniatis and J. Wudka, JHEP 1111 (2011) 030 [arXiv:1011.5228].
- Necessary and sufficient conditions for 3HDM and necessary conditions for 4HDM and 5HDM are given in C. C. Nishi, Phys. Rev. D 83 (2011) 095005 [arXiv:1103.0252].
- I apply a generalization of B. Grzadkowski, M. Maniatis and J. Wudka's formalism.<sup>3</sup>



 The NHDM-potential may be built up by the following hermitian building blocks ("bilinears"):

$$\begin{split} \widehat{B}_{mn} &\equiv \frac{1}{2} \big( \Phi_m^\dagger \Phi_n + \Phi_n^\dagger \Phi_m \big) = \mathsf{Re} \big( \Phi_m^\dagger \Phi_n \big), \\ \widehat{A}_m &\equiv \widehat{B}_{mm} \\ \widehat{C}_{mn} &\equiv \frac{-i}{2} \big( \Phi_m^\dagger \Phi_n - \Phi_n^\dagger \Phi_m \big) = \mathsf{Im} \big( \Phi_m^\dagger \Phi_n \big). \end{split}$$

• Here the  $\widehat{B}$ 's are O(4)-symmetric (i.e. CS), while the  $\widehat{C}$ 's are not:

# Symmetry group of bilinears B

$$\widehat{B}_{mn} = \operatorname{Re}(\Phi_m^{\dagger} \Phi_n) = \left( \operatorname{Re}(\Phi_m)^T, \operatorname{Im}(\Phi_m)^T \right) \begin{pmatrix} \operatorname{Re}(\Phi_n) \\ \operatorname{Im}(\Phi_n) \end{pmatrix}, \quad (5)$$

which is invariant under O(4) transformations O

$$\begin{pmatrix}
\operatorname{Re}(\Phi_n) \\
\operatorname{Im}(\Phi_n)
\end{pmatrix} \to O\begin{pmatrix}
\operatorname{Re}(\Phi_n) \\
\operatorname{Im}(\Phi_n)
\end{pmatrix}, \quad O^T O = I_{4\times 4}.$$
(6)

# Symmetry group of bilinears C

Write

$$\widehat{C}_{mn} = \operatorname{Im}(\Phi_m^{\dagger} \Phi_n) = \left( \operatorname{Re}(\Phi_m)^T, \operatorname{Im}(\Phi_m)^T \right) J \begin{pmatrix} \operatorname{Re}(\Phi_n) \\ \operatorname{Im}(\Phi_n) \end{pmatrix}$$
(7)
$$= \operatorname{Re}(\Phi_m)^T \operatorname{Im}(\Phi_n) - \operatorname{Im}(\Phi_m)^T \operatorname{Re}(\Phi_n),$$

where

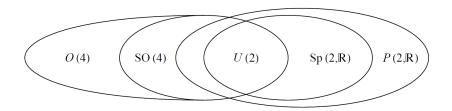
$$J = \begin{pmatrix} 0_{2\times2} & I_{2\times2} \\ -I_{2\times2} & 0_{2\times2} \end{pmatrix}.$$
 (8)

 $\widehat{C}_{mn}$  is then invariant under the real symplectic group  $Sp(2,\mathbb{R})$ 

$$\left(\begin{array}{c} \operatorname{Re}(\Phi_n) \\ \operatorname{Im}(\Phi_n) \end{array}\right) \to S \left(\begin{array}{c} \operatorname{Re}(\Phi_n) \\ \operatorname{Im}(\Phi_n) \end{array}\right), \tag{9}$$

defined by

$$S^T J S = J.$$
 (10) entrue (10) even (10) eve



- SO(4): Custodial symmetry
- O(4): symmetry group of bilinears  $\widehat{B}$
- $Sp(2,\mathbb{R})$ : symmetry group of bilinears  $\widehat{C}$
- $U(2) \cong SO(4) \cap Sp(2,\mathbb{R}) \cong SU(2)_L \times U(1)_Y$ : global symmetry of the SM
- $P(2,\mathbb{R})$ : symmetry group of quartic terms  $\widehat{C}_{mn}\widehat{C}_{m'n'}$ .

 Most general NHDM-potential can then be written (summation over repeated indices)

$$V = \mu_{mn} \widehat{B}_{mn} + \mu_{mn}^{(2)} \widehat{C}_{mn} + \lambda_{mn,m'n'}^{(1)} \widehat{B}_{mn} \widehat{B}_{mn} + \lambda_{mn,m'n'}^{(2)} \widehat{B}_{mn} \widehat{C}_{mn} + \lambda_{mn,m'n'}^{(3)} \widehat{C}_{mn} \widehat{C}_{mn},$$
(11)

while the most general CS potential is

$$V_{CS} = \mu_{mn}\widehat{B}_{mn} + \lambda_{mn,m'n'}^{(1)}\widehat{B}_{mn}\widehat{B}_{mn}.$$
 (12)

- In  $V_{CS}$  the CS is manifest.
- For a specific potential, the CS may be hidden, that is, not manifest.

- A CS potential can always be transformed into a manifestly CS potential through a SU(N) basis shift.<sup>4</sup>
- We can now apply a "bilinear formalism" to derive necessary and sufficient conditions for having a CS potential:

### Bilinear formalism

• The general NHDM potential may be written<sup>5</sup>

$$V = \xi_0 K_0 + \xi_a K_a + \eta_0 K_0^2 + 2K_0 \eta_a K_a + K_a E_{ab} K_b, \quad (13)$$

ullet where the  $N^2$  linearly independent bilinears can be written

$$K_{\alpha} = \operatorname{Tr}(\tilde{K}\lambda_{\alpha}). \tag{14}$$

where the Hermitian  $N\times N$  matrix  $\tilde{K}$  is given by  $\tilde{K}_{ij}=\Phi_i^\dagger\Phi_i$  and  $\lambda_\alpha$  are generalized Gell-Mann matrices.

- The  $\xi$ 's,  $\eta$ 's and  $E_{ab}$  are parameters.
- We define the matrices  $\lambda_{\alpha}$  such that the  $SO(4)_C$ -violating bilinears  $\widehat{C}$  are ordered first:

$$K_a = 2\widehat{C}_{m(a),n(a)}, \quad \text{for } 1 \le a \le \frac{N(N-1)}{2} \equiv k.$$
 (15)

• In the 3HDM we then get elements  $K_a$ ,  $a \in \{1, 2, \dots, N^2 - 1\}$  given by

$$\vec{K} = 2\left(\widehat{C}_{12}, \widehat{C}_{13}, \widehat{C}_{23}, \widehat{B}_{12}, \widehat{B}_{13}, \widehat{B}_{23}, \frac{\widehat{A}_1 - \widehat{A}_2}{2}, \frac{\widehat{A}_1 + \widehat{A}_2 - 2\widehat{A}_3}{2\sqrt{3}}\right)^T,$$
(16)

While, generally,

$$K_0 = \operatorname{Tr}(\widetilde{K}\lambda_0) = \sqrt{\frac{2}{N}}(\widehat{A}_1 + \ldots + \widehat{A}_N)$$

The general NHDM potential:

$$V = \xi_0 K_0 + \xi_a K_a + \eta_0 K_0^2 + 2K_0 \eta_a K_a + K_a E_{ab} K_b, \quad (13)$$

• Under a Higgs basis shift  $\Phi_i \to \Phi'_i = U_{ij}\Phi_i$ , V transforms as

$$\xi_0 \to \xi_0, \quad \eta_0 \to \eta_0,$$

$$\vec{\xi} \to R(U)\vec{\xi}, \quad \vec{\eta} \to R(U)\vec{\eta},$$

$$E \to E' = R(U)ER^T(U), \tag{17}$$

• where  $R(U) \in Ad_{SU(N)} \subset SO(N^2 - 1)$  is given by

$$U^{\dagger} \lambda_a U = R_{ab}(U) \lambda_b. \tag{18}$$

- The bilinears transform under the adjoint representation of SU(N).
- 2HDM:  $Ad_{SU(2)} = SO(3)$
- NHDM, N>2:  $Ad_{SU(N)} \subseteq SO(N^2-1)$
- ⇒ "Harder" to know when you can transform a potential to a manifestly CS potential in NHDM, N>2, since not all orthogonal matrices are at your disposal.

#### Main result

$$V = \xi_0 K_0 + \xi_a K_a + \eta_0 K_0^2 + 2K_0 \eta_a K_a + K_a E_{ab} K_b. V \text{ is } SO(4)_C\text{-symmetric} \Leftrightarrow$$

- i) The nullity l of E is  $\geq k = N(N-1)/2$ .
- ii)  $\exists$  a real  $(N^2-1)\times(N^2-1)$  matrix R whose k = N(N-1)/2 first rows are an orthonormal set of nullvectors of E, such that

$$f^{abc} = R_{ai}R_{bj}R_{ck}f^{ijk}, (19)$$

is satisfied for all a, b and c.  $f^{ijk}$  here are the structure constants associated with the alternatively ordered, generalized Gell-Mann matrices  $\{\lambda_i\}_{i=1}^{N^2-1}$ .

iii) 
$$R$$
 of condition ii) also satisfies

$$R_{ij}\xi_j=0\quad\text{and}\quad R_{ij}\eta_j=0\quad\text{for all}\quad 1\leq i\leq \frac{N(N-1)}{2}\equiv k.$$

- Conditions essentially as in the 2HDM, except from one new:
- Existence of a rotation matrix R which rotates E to a manifestly CS form, and where
- $R \in Ad_{SU(N)} \subseteq SO(N^2 1) \Leftrightarrow$

$$f^{abc} = R_{ai}R_{bj}R_{ck}f^{ijk}. (19)$$

### The case N=2

• 
$$f^{abc} = R_{ai}R_{bj}R_{ck}f^{ijk} \stackrel{N=2}{\Leftrightarrow}$$

$$\epsilon^{abc} = R_{ai}R_{bj}R_{ck}\epsilon^{ijk}$$
$$= \det(R)\epsilon^{abc}$$

- Which holds for any  $R \in SO(3)$  (=  $Ad_{SU(2)}$ ).
- This new condition evaporates in the case N=2.

### N > 2

- Main problem for determining CS:
- ullet Proving or disproving the existence of a matrix R with the property

$$f^{abc} = R_{ai}R_{bj}R_{ck}f^{ijk} \tag{19}$$

- (alternatively, the equivalent  $R_{ek}f^{ijk} = R_{ai}R_{cj}f^{ace}$ .)
- N=3: Solving 56 ( $\sim N^6$ ) cubic equations in 40 ( $\sim N^4$ ) variables.
- An numerical 3HDM-example, where CS is shown in a certain potential by solving eqs. (19) with Mathematica:

### An example

Consider the 3HDM potential given by

$$V = \xi_0 K_0 + \xi_a K_a + \eta_0 K_0^2 + 2 K_0 \eta_a K_a + K_a E_{ab} K_b,$$

with

$$\begin{split} V &= \xi_0 K_0 + \xi_a K_a + \eta_0 K_0^2 + 2K_0 \eta_a K_a + K_a E_{ab} K_b, \\ &= \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 & 1 & 0 & 1 & \frac{\sqrt{3}}{2} & -\frac{1}{2\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 1 & \frac{1}{\sqrt{2}} & 2\sqrt{2} & -1 & 2\sqrt{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{\sqrt{2}} & 0 & 1 & 0 & 1 & \frac{\sqrt{3}}{2} & -\frac{1}{2\sqrt{2}} \\ 1 & 2\sqrt{2} & 1 & -\frac{1}{2} & \frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & 0 \\ 0 & -1 & 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 & 0 \\ 1 & 2\sqrt{2} & 1 & -\frac{1}{2} & \frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & 0 \\ \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} & 0 & 0 & 0 & \frac{3}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{1}{2\sqrt{2}} & -\frac{1}{2} & -\frac{1}{2\sqrt{2}} & 0 & 0 & 0 & -\frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix} \end{split}$$

$$\vec{\xi} = \begin{pmatrix} \frac{1}{6}, & -\frac{1}{3\sqrt{2}}, & \frac{1}{6}, & -\frac{1}{6}, & -\frac{1}{3\sqrt{2}}, & -\frac{1}{6}, & \frac{1}{2\sqrt{6}}, & -\frac{1}{6\sqrt{2}} \end{pmatrix}^T,$$

$$\vec{\eta} = \begin{pmatrix} \frac{5\sqrt{2}}{3}, & -\frac{2}{3}, & \frac{5\sqrt{2}}{3}, & -\frac{2\sqrt{2}}{3}, & 2, & -\frac{2\sqrt{2}}{3}, & \frac{1}{\sqrt{3}}, & -\frac{1}{3} \end{pmatrix}^T,$$

- Nullity(E) =  $3 \ge k = N(N-1)/2 = 3 \Rightarrow$  Condition i) satisfied.
- Mathematica then gives the following orthonormal nullvectors (i.e. eigenvalue 0) of E:

$$\tilde{n}_{1} = \left(0, 0, 0, 0, 0, 0, \frac{1}{2}, \frac{\sqrt{3}}{2}\right)^{T},$$

$$\tilde{n}_{2} = \left(0, 0, 0, -\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0, 0\right)^{T},$$

$$\tilde{n}_{3} = \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0, 0, 0, 0, 0, 0\right)^{T}.$$
(20)

- We now apply Mathematica's Solve-command, and solve  $f^{abc} = R_{ai}R_{bj}R_{ck}f^{ijk}$  (19) with  $\tilde{n}_1$ ,  $\tilde{n}_2$  and  $\tilde{n}_3$  as the first 3 rows of R.
- We then get a solution

$$R = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

• which corresponds to the manifestly  $SO(4)_C$ -symmetric matrix E':

• cf. the terms  $K_a E_{ab} K_b$  of V, with  $K_{1,2,3} \propto \widehat{C}$ .

- ⇒ Condition ii) of the main result is satisfied.
- We can then check that  $(R\vec{\xi})_i = 0$  and  $(R\vec{\eta})_i = 0$  for i=1,2,3
- → Condition iii) is satisfied.
- $\Rightarrow V$  is  $SO(4)_C$ -symmetric.

 Finally, we can then find a Higgs basis transformation  $U \in SU(3)$  which corresponds to this R through the relation

$$U^{\dagger} \lambda_a U = R_{ab}(U) \lambda_b. \tag{18}$$

One such matrix will be

$$U = \begin{pmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} \\ 0 & i & 0 \end{pmatrix}.$$
 (22)

• ( $\alpha U$  and  $\alpha^2 U$  where  $\alpha = e^{\frac{2\pi i}{3}}$  will also correspond to the same R.)