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The custodial symmetry (CS) in the SM

The custodial symmetry1 is an approximate symmetry,
guards the ρ parameter from large radiative corrections:

ρ =
m2
W

m2
Z cos2(ϑW )

(1)

On tree-level ρ = 1
If CS was exact ⇒ ρ = 1 at all orders of perturbation
theory. (But broken by kinetic Higgs terms and Yukawas)
ρ = 1.01019 ± 0.00009 when cos2(ϑW ) is interpreted in
MS at energy scale mZ .2

1P. Sikivie, L. Susskind, M. B. Voloshin and V. I. Zakharov, Nucl. Phys. B 173 (1980) 189.
2R. L. Workman et al. [Particle Data Group], PTEP 2022 (2022), 083C01
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CS is exact in the SM Higgs potential:
SM Higgs Lagrangian:

LH = (DαΦ)† (DαΦ) − VSM(Φ) (2)

where Φ = (φ
+

φ0) = (
φ1 + iφ2

v + φ3 + iφ4
), covar. derivative

Dα = ∂α + ig
2 σjW

α
j +

ig′
2 B

µ, and potential

VSM(Φ) = λ(Φ†Φ)2 + µ2Φ†Φ. (3)

Write Φ as a real quadruplet Φr = (
Re(Φ)
Im(Φ)), then

VSM(Φ) = VSM(Φr) is invariant under

Φr → OΦr, O ∈ O(4). (4)
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In the limit g′ → 0 (g′ = U(1)Y hypercharge coupling)
the kinetic terms, (DαΦ)† (DαΦ), are invariant under
SO(4) ⊂ O(4).
This is the custodial SO(4) symmetry ("SO(4)C"),
spontaneously broken down to "custodial" SO(3) in the
SM.
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The custodial symmetry in the NHDM

In NHDM (N ≥ 2), there may also be terms in the
potential violating CS, even before SSB.
⇒ The NHDM potential is not always CS.
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In the 2HDM necessary and sufficient conditions for CS
are given in H. E. Haber and D. O’Neil, Phys. Rev. D 83
(2011) 055017 [arXiv:1011.6188] and B. Grzadkowski,
M. Maniatis and J. Wudka, JHEP 1111 (2011) 030
[arXiv:1011.5228].
Necessary and sufficient conditions for 3HDM and
necessary conditions for 4HDM and 5HDM are given in
C. C. Nishi, Phys. Rev. D 83 (2011) 095005
[arXiv:1103.0252].
I apply a generalization of B. Grzadkowski, M. Maniatis
and J. Wudka’s formalism.3

3M. Maniatis and O. Nachtmann, Phys. Rev. D 92 (2015) no.7, 075017 [arXiv:1504.01736 [hep-ph]].
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The NHDM-potential may be built up by the following
hermitian building blocks ("bilinears"):

B̂mn ≡
1
2(Φ

†
mΦn +Φ†

nΦm) = Re(Φ†
mΦn),

Âm ≡ B̂mm

Ĉmn ≡
−i
2 (Φ

†
mΦn −Φ†

nΦm) = Im(Φ†
mΦn).

Here the B̂’s are O(4)-symmetric (i.e. CS), while the Ĉ’s
are not:
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Symmetry group of bilinears B̂

B̂mn = Re(Φ†
mΦn) = (Re(Φm)T , Im(Φm)T )(

Re(Φn)
Im(Φn)

) , (5)

which is invariant under O(4) transformations O

( Re(Φn)
Im(Φn)

) → O ( Re(Φn)
Im(Φn)

) , OTO = I4×4. (6)
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Symmetry group of bilinears Ĉ
Write

Ĉmn = Im(Φ†
mΦn) = (Re(Φm)T , Im(Φm)T )J (

Re(Φn)
Im(Φn)

) (7)

= Re(Φm)T Im(Φn) − Im(Φm)TRe(Φn),

where
J = ( 02×2 I2×2

−I2×2 02×2
) . (8)

Ĉmn is then invariant under the real symplectic group Sp(2,R)

( Re(Φn)
Im(Φn)

) → S ( Re(Φn)
Im(Φn)

) , (9)

defined by
STJS = J. (10)
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SO(4): Custodial symmetry
O(4): symmetry group of bilinears B̂
Sp(2,R): symmetry group of bilinears Ĉ
U(2) ≅ SO(4) ∩ Sp(2,R) ≅ SU(2)L ×U(1)Y : global
symmetry of the SM
P (2,R): symmetry group of quartic terms ĈmnĈm′n′ .
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Most general NHDM-potential can then be written
(summation over repeated indices)

V = µmnB̂mn + µ(2)mnĈmn + λ(1)mn,m′n′B̂mnB̂mn

+ λ(2)mn,m′n′B̂mnĈmn + λ(3)mn,m′n′ĈmnĈmn, (11)

while the most general CS potential is

VCS = µmnB̂mn + λ(1)mn,m′n′B̂mnB̂mn. (12)

In VCS the CS is manifest.
For a specific potential, the CS may be hidden, that is,
not manifest.
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A CS potential can always be transformed into a
manifestly CS potential through a SU(N) basis shift.4

We can now apply a "bilinear formalism" to derive
necessary and sufficient conditions for having a CS
potential:

4C. C. Nishi, Phys. Rev. D 83 (2011) 095005 [arXiv:1103.0252 [hep-ph]].
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Bilinear formalism
The general NHDM potential may be written5

V = ξ0K0 + ξaKa + η0K
2
0 + 2K0ηaKa +KaEabKb, (13)

where the N2 linearly independent bilinears can be written

Kα = Tr(K̃λα). (14)

where the Hermitian N ×N matrix K̃ is given by
K̃ij = Φ†

jΦi and λα are generalized Gell-Mann matrices.
The ξ’s, η’s and Eab are parameters.
We define the matrices λα such that the
SO(4)C-violating bilinears Ĉ are ordered first:

Ka = 2Ĉm(a),n(a), for 1 ≤ a ≤ N(N − 1)
2 ≡ k. (15)

5M. Maniatis and O. Nachtmann, Phys. Rev. D 92 (2015) no.7, 075017 [arXiv:1504.01736 [hep-ph]].
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In the 3HDM we then get elements Ka,
a ∈ {1,2, . . . ,N2 − 1} given by

K⃗ = 2(Ĉ12, Ĉ13, Ĉ23, B̂12, B̂13, B̂23,
Â1 − Â2

2 ,
Â1 + Â2 − 2Â3

2
√

3
)
T

,

(16)

While, generally,

K0 = Tr(K̃λ0) =
√

2
N
(Â1 + . . . + ÂN)
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The general NHDM potential:

V = ξ0K0 + ξaKa + η0K
2
0 + 2K0ηaKa +KaEabKb, (13)

Under a Higgs basis shift Φi → Φ′

i = UijΦj, V transforms
as

ξ0 → ξ0, η0 → η0,

ξ⃗ → R(U)ξ⃗, η⃗ → R(U)η⃗,
E → E′ = R(U)ERT (U), (17)

where R(U) ∈ AdSU(N) ⊂ SO(N2 − 1) is given by

U †λaU = Rab(U)λb. (18)
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The bilinears transform under the adjoint representation
of SU(N).
2HDM: AdSU(2) = SO(3)
NHDM, N>2: AdSU(N) ⫋SO(N2 − 1)
⇒ "Harder" to know when you can transform a potential
to a manifestly CS potential in NHDM, N>2, since not
all orthogonal matrices are at your disposal.



17/27

The custodial symmetry in the SM
The custodial symmetry in the NHDM

An example

Symmetries of the bilinears
Bilinear formalism
Conditions for the custodial symmetry

Main result
V = ξ0K0 + ξaKa + η0K2

0 + 2K0ηaKa +KaEabKb. V is
SO(4)C-symmetric ⇔
i) The nullity l of E is ≥ k = N(N − 1)/2.
ii) ∃ a real (N2 − 1) × (N2 − 1) matrix R whose
k = N(N − 1)/2 first rows are an orthonormal set of
nullvectors of E, such that

fabc = RaiRbjRckf
ijk, (19)

is satisfied for all a, b and c. f ijk here are the structure
constants associated with the alternatively ordered,
generalized Gell-Mann matrices {λj}N

2
−1

j=1 .
iii) R of condition ii) also satisfies

Rijξj = 0 and Rijηj = 0 for all 1 ≤ i ≤ N(N − 1)
2 ≡ k.
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Conditions essentially as in the 2HDM, except from one
new:
Existence of a rotation matrix R which rotates E to a
manifestly CS form, and where
R ∈ AdSU(N) ⫋ SO(N2 − 1) ⇔

fabc = RaiRbjRckf
ijk. (19)
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The case N = 2

fabc = RaiRbjRckf ijk
N=2⇔

εabc = RaiRbjRckε
ijk

= det(R)εabc

Which holds for any R ∈ SO(3) (= AdSU(2)).
This new condition evaporates in the case N=2.
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N > 2

Main problem for determining CS:
Proving or disproving the existence of a matrix R with
the property

fabc = RaiRbjRckf
ijk (19)

(alternatively, the equivalent Rekf ijk = RaiRcjface.)
N=3: Solving 56 (∼ N6) cubic equations in 40 (∼ N4)
variables.
An numerical 3HDM-example, where CS is shown in a
certain potential by solving eqs. (19) with Mathematica:
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An example

Consider the 3HDM potential given by

V = ξ0K0 + ξaKa + η0K
2
0 + 2K0ηaKa +KaEabKb,

with
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V = ξ0K0+ξaKa+η0K
2
0+2K0ηaKa+KaEabKb,

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1√
2 0 1 0 1

√
3
2

2 − 1
2
√

2
1√
2 1 1√

2 2
√

2 −1 2
√

2
√

3
2 − 1

2

0 1√
2 0 1 0 1

√
3
2

2 − 1
2
√

2
1 2

√
2 1 − 1

2
1√
2 − 1

2 0 0
0 −1 0 1√

2 0 1√
2 0 0

1 2
√

2 1 − 1
2

1√
2 − 1

2 0 0
√

3
2

2

√
3

2

√
3
2

2 0 0 0 3
4 −

√
3

4
− 1

2
√

2 − 1
2 − 1

2
√

2 0 0 0 −
√

3
4

1
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

ξ⃗ = ( 1
6 , − 1

3
√

2 ,
1
6 , − 1

6 , − 1
3
√

2 , −
1
6 ,

1
2
√

6 , −
1

6
√

2 )
T
,

η⃗ = ( 5
√

2
3 , − 2

3 ,
5
√

2
3 , − 2

√
2

3 , 2, − 2
√

2
3 , 1√

3 , −
1
3 )

T
,

with arbitrary η0 and ξ0.
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Nullity(E) = 3 ≥ k = N(N − 1)/2 = 3⇒ Condition i)
satisfied.
Mathematica then gives the following orthonormal
nullvectors (i.e. eigenvalue 0) of E:

ñ1 = (0,0,0,0,0,0,
1
2 ,
√

3
2 )

T

,

ñ2 = (0,0,0,−
1√
2
,0, 1√

2
,0,0)

T

,

ñ3 = (−
1√
2
,0, 1√

2
,0,0,0,0,0)

T

. (20)
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We now apply Mathematica’s Solve-command, and solve
fabc = RaiRbjRckf ijk (19) with ñ1, ñ2 and ñ3 as the first
3 rows of R.
We then get a solution

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 1
2

√

3
2

0 0 0 − 1
√

2 0 1
√

2 0 0
− 1
√

2 0 1
√

2 0 0 0 0 0
0 −1 0 0 0 0 0 0
1
√

2 0 1
√

2 0 0 0 0 0
0 0 0 − 1

√

2 0 − 1
√

2 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0

√

3
2 −1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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which corresponds to the manifestly SO(4)C-symmetric
matrix E′:

E′ = RERT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 −1 4 −1 −1
0 0 0 −1 0 −2 0 1
0 0 0 4 −2 −1 1 0
0 0 0 −1 0 1 0 0
0 0 0 −1 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (21)

cf. the terms KaEabKb of V , with K1,2,3 ∝ Ĉ.
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⇒ Condition ii) of the main result is satisfied.
We can then check that (Rξ⃗)i = 0 and (Rη⃗)i = 0 for
i = 1,2,3
⇒ Condition iii) is satisfied.
⇒ V is SO(4)C-symmetric.
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Finally, we can then find a Higgs basis transformation
U ∈ SU(3) which corresponds to this R through the
relation

U †λaU = Rab(U)λb. (18)

One such matrix will be

U =
⎛
⎜⎜
⎝

− 1
√

2 0 1
√

2
− i
√

2 0 − i
√

2
0 i 0

⎞
⎟⎟
⎠
. (22)

(αU and α2U where α = e 2πi
3 will also correspond to the

same R.)
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