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› 2HDMs are simple extension of the SM that allows for CP violation or provides the 

possibility for Dark Matter.

› Within the framework of 2HDM, many different models are possible.

› Imposing symmetries on the 2HDM-potential restricts the number of parameters with 

physical consequences.

› Six allowed symmetries (not counting custodial symmetries).

› Symmetries can be unbroken, broken softly or broken spontaneously (3 choices).

› Naively this yields 6 x 3 =18 different models one can consider, each with unique physical 

consequences. Plus, there may be more than one way to softly break a symmetry. 

› What are the physical signatures of each of these models? 

The zoo of 2HDM-models:

2



› 14 parameters (reducible to 11)

› 4 complex parameters

The 2HDM potential
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The freedom to choose a basis
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› Initial expression of Lagrangian is defined with respect to doublets         and         .

› We may rotate to another basis by the following transformation

where U is any U(2) matrix.

› Potential parameters will change under change of basis.

› Physics must remain unchanged if we change basis.

› Observables cannot depend on choice of basis – they should be basis-independent, i.e.

invariant under a change of basis.

› Invariant descriptions of the physical properties of the 2HDM is important and necessary.



Higgs-Family-symmetries: 

Z2, U(1) and SO(3) symmetries of the 2HDM potential

If a basis exists so that the 2HDM potential 

is invariant under the transformation

the 2HDM potential is Z2-symmetric.

If a basis exists so that the 2HDM potential 

is invariant under the transformation

the 2HDM potential is U(1)-symmetric.
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If a basis exists so that the 2HDM potential is 

invariant under the transformation

the 2HDM potential is SO(3)-symmetric.

The challenging part is to check 

if such a basis exists. 

The symmetry may be hidden but can become 

“visible” after rotating to another basis. 

Expressing symmetries in terms of physical 

observables (basis invariants) makes this hunt for 

a symmetry-basis redundant.



› There are three different classes of CP-

symmetries, according to the form the

U(2) matrix can have.

› CP1: 

› CP2:

› CP3: 

CP-symmetries:

CP1, CP2 and CP3 of the 2HDM potential

Whenever there exists a basis in which the 

2HDM potential is invariant under the 

transformation

the 2HDM is CP-symmetric, or 

CP-conserving.

is a U(2)-matrix.
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Each of these six symmetries imply that 
there exists a basis in which the 
parameters of the potential satisfy the 
constraints of the table below. (For some 
symmetries the potential can be further 
simplified by basis changes.)

Still, the challenging part is to check 

if such a basis exists. 

NOTE: We have not made any 

assumptions about the vacuum, so the 

symmetries may or may not be broken by 

the vacuum (spontaneously broken).

V2 V4



Most general form of charge-conserving vacuum:

If a basis exists… Time to get rid of this phrase!!!

The 2HDM vacuum and the three ways to impose a symmetry
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Vacuum V2 V4

Unbroken symmetry Invariant Invariant Invariant

Spontaneously broken symmetry Broken Invariant Invariant

Softly broken symmetry N/A Broken Invariant



› Potential has initially 14 parameters

› Exploit the freedom to change basis and reduce to 11 
independent parameters.

› Traditional approach: 
Work out masses and couplings expressed in terms of the initial 
14 (or 11) parameters of the potential.

› Our approach: 
Work the other way around. Pick a set of 11 independent physical
masses and couplings (all invariants) and express the initial 14 
parameters in terms of these

› We now choose our set of 11 independent parameters to consist 
of:
- Four squared masses
- Three gauge couplings
- Four scalar couplings

› All observables from the potential (invariants) expressible through 
these.

› All trilinear and quadrilinear scalar couplings expressible through 
these.

The physical parameter set          and counting of parameters. 

9

Satisfying:

Description of translation process: 

Ogreid: PoS CORFU2017 (2018) 065

Remaining scalar couplings expressible in terms of     : 

Grzadkowski, Haber, Ogreid & Osland: JHEP 12 (2018) 056



CP1
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Model Invariant parts Conditions

Softly broken 

CP1

V4 I6Z = 0

Spontaneously 

broken CP1

V=V2+V4 IY3Z = I2Y2Z = I3Y3Z = I6Z = 0

Unbroken CP1 

(CP conservation)

V=V2+V4 and 

vacuum

Im J1 = Im J2 = Im J30 = 0 

For definitions and translations of invariants see
Lavoura & Silva: Phys. Rev. D 50, 4619 (1994)

Gunion & Haber: Phys. Rev. D 72, 095002 (2005)

Grzadkowski, Ogreid &Osland: JHEP11 (2014) 084

Grzadkowski, Ogreid & Osland: Phys. Rev. D 94, 115002 (2016) 



Expression showing explicitly that CP 

conservation leads to I6Z = 0

(Spontaneously broken CP requires

Δm+ = Δq =0)

Here, cij are complicated expressions in the

parameters of .

Softly broken CP1 - (I6Z = 0) - two equivalent expressions

Expression showing that unbroken CP 

leads to I6Z = 0.

(Unbroken CP requires all Im Ji=0.)

Here, ci are complicated expressions in the

parameters of .
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Softly broken CP1

› One constraint – reducing the number of free parameters to 10.

› I6Z homogeneous polynomial of order 6 in                                                     with

appearing in the “coefficients” of this polynomial. 

› Model name: Case SOFT-CP1



› All these invariants also vanish whenever CP1 is unbroken – assuming this is not the case 

leads to two constraints:

or more compactly

› Two constraints - model has 9 parameters

› Model name: Case D

Spontaneously broken CP1  (IY3Z = I2Y2Z = I3Y3Z = I6Z = 0)
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Unbroken CP1 – CP conservation (Im J1 = Im J2 = Im J30 = 0)

› If one of the following physical configurations occur, then we have CP conservation.

How to interpret these three different cases of unbroken CP?
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Unbroken CP1 – Case C 

› Two constraints – leaving us with 9 parameters

› Couplings HkW
+W- and HkH

+H- vanish.

› This implies that couplings HkZZ and HiHjZ also vanish. 

› One of the three neutral scalars, Hk does not couple to CP-even pairs. One mass 

eigenstate Hk is a pseudoscalar, hence CP-odd. The two remaining mass eigenstates are 

CP-even.
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Unbroken CP1 – Case B

› Case with mass degeneracy between H1 and H2.

› One can then form new states

› The new states are just as physical acceptable as the old states, i.e. they must describe 

the same physics.
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Unbroken CP1 – Case B

› Working out the couplings of the new states, we find

› The combination                                     still holds for any value of α.

› Can physics depend upon an arbitrary angle α ? CLEARLY NOT!

› The mass degeneracy makes these couplings unphysical in the sense that they cannot be 

measured themselves. Only combinations that are independent of α can be measured.

› Examples:
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Unbroken CP1 – Case B

› In processes with external H1 and H2 one must sum corresponding squares of amplitudes 

(no interference).

› Consider H+H- → H{1,2} (external). The sum of squared amplitudes becomes proportional to

, which is physical since it is independent of α.

› In processes with virtual H1 and H2 summation should be done at the level of amplitudes.

› Consider W+W- → H{1,2,3} (internal) → H+H-. The amplitude becomes proportional to

, which is physical since it is independent of α. 
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Unbroken CP1 – Case B and Case A

› Mass degeneracy introduces an arbitrary angle in the neutral-sector rotation matrix that 

makes couplings dependent upon an unphysical angle α.

› Picking a particular value of α does not make the couplings physical, but one can pick an 

angle such that (or equivalently ). That is similar to

Case C with the mass degeneracy in addition.

› Moreover, mass degeneracy will be lost at one-loop level. It is not RG-stable. Case B must 

necessarily “migrate” into Case C at one-loop level.

› Similar arguments apply for 

› Discarding RG-unstable cases, we are only left with

of unbroken CP1. 
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CP1 - Overview
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Z2
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Model Invariant parts Conditions

Softly broken Z2 V4 [Z(1), Z(11)] = 0

Spontaneously broken Z2

(and unbroken Z2)

V=V2+V4

(and vacuum)

[Z(1), Z(11)] = [Z(1), Y] = 

[Y(1), Y] = 0

For definitions of commutators see
Davidson & Haber: Phys. Rev. D 72, 035004 (2005)



› Two constraints – leaving us with 9 free parameters

› Popular model since FCNC are constrained and CP is broken.

Softly broken Z2 when 𝑚12
2 is complex (C2HDM)
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CP1 unbroken

Three constraints - leaving us with 8 free

parameters.

Contains Case C of unbroken CP1.

Softly broken Z2 when 𝑚12
2 is real

CP1 broken spontaneously

Three constraints - leaving us with 8 free

parameters.

Combination of Case SOFT-Z2-X with

Case D of spontaneously broken CP1.

22



Z2 unbroken

Four constraints - leaving us with 7 free

parameters.

Contains two times Case C (applied to two

different neutral scalars) of CP1 invariant 

potential.

The Inert doublet model (IDM).

Only possibility of Dark Matter in 2HDM.

Spontaneusly broken Z2 and unbroken Z2

Z2 broken spontaneously

Four constraints - leaving us with 7 free

parameters.

Combination of Cases C and D of CP1 

invariant potential.
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U(1)
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Model Invariant 

parts

Conditions

Softly broken U(1) V4 Δ=0 and ξ x e = η x e =  0

or

Δ=Δ0=0

Spontaneously broken U(1)

(and unbroken U(1))

V=V2+V4

(and vacuum)

Δ=0 and ξ x e = 0

or

Δ=Δ0=0 and ξ x η = 0

For definitions and translation of bilinear 

formalism quantities see
Ferreira, Haber, Nachtmann, Silva: Int.J.Mod.Phys A26 769 (2011)

Ferreira, Grzadkowski, Ogreid, Osland: JHEP 02 (2021) 196 



› Four constraints – leaving us with 7 free parameters

› CP unbroken since it contains Case C.

Softly broken U(1)

25



U(1) unbroken

Five constraints - leaving us with 6 free

parameters.

Contains two times Case C (applied to two

different neutral scalars) of CP1 invariant 

potential. Also Case B of CP1 invariant 

potential satisfied.

The Inert doublet model (IDM) with mass

degeneracy.

Spontaneously broken U(1) and unbroken U(1)

U(1) broken spontaneously

Five constraints - leaving us with 6 free
parameters.

Combination of Cases C and D of CP1 
invariant potential.

Massless pseudoscalar since continuous
U(1) symmetry is spontaneously broken.
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CP2
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Model Invariant 

parts

Conditions

Softly broken CP2 V4 η =  0

Spontaneously broken CP2

(CP2 cannot be unbroken)

V=V2+V4 ξ = η = 0

For definitions and translation of bilinear 

formalism quantities see
Ferreira, Haber, Nachtmann, Silva: Int.J.Mod.Phys A26 769 (2011)

Ferreira, Grzadkowski, Ogreid, Osland: JHEP 02 (2021) 196



Option II and Option IV are identical

modulo a change of basis.

Option III and Option V are identical

modulo a change of basis.

Softly broken CP2

Change to basis where 𝜆6 = 𝜆7 = Im 𝜆5 = 0

Seemingly five different ways to softly break 

CP2:
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Option II and Option IV are identical

modulo a change of basis.

Option III and Option V are identical

modulo a change of basis.

All different physics models contained in 

Options I, II and III.

Softly broken CP2

Change to basis where 𝜆6 = 𝜆7 = Im 𝜆5 = 0

Seemingly five different ways to softly break 

CP2:
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Softly broken CP2

leads to

Most general way to softly break CP2. CP is 

broken explicitly by the soft terms. 
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… or it leads to

Z2 is spontaneously broken since it 

contains Case CD.

Softly broken CP2

Depending on the form of the vacuum this

leads to either…

Z2 is unbroken since it contains Case CC.
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… or it leads to

CP1 is spontaneously broken since it 

contains Case D (but not Case C).

Softly broken CP2

Depending on the form of the vacuum this

leads to either…

CP1 is unbroken since it contains Case C.
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CP2 can not be unbroken.

Spontaneously broken CP2

CP2 broken spontaneously

Six constraints – leaving us with 5 free 

parameters.

Case results from combining three CP1 

symmetries (C, C and D).
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CP3
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Model Invariant 

parts

Conditions

Softly broken CP3 V4 Δ=0 and η =  0

Spontaneously broken CP3

(and unbroken CP3)

V=V2+V4

(and vacuum)

Δ=0 and ξ = η = 0

For definitions and translation of bilinear 

formalism quantities see
Ferreira, Haber, Nachtmann, Silva: Int.J.Mod.Phys A26 769 (2011)

Ferreira, Grzadkowski, Ogreid, Osland: JHEP 02 (2021) 196



leads to

The most general way to softly break CP3. 

CP1 is unbroken since it contains Case C.

Softly broken CP3

Change to basis where 𝑚11
2 = 𝑚22

2

Three different ways to softly break CP3:
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… or it leads to

U(2) is spontaneously broken since it 

contains Case C0D.

Softly broken CP3

Depending on the form of the vacuum this

leads to

U(2) is unbroken since it contains

Case BCC.
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… or it leads to

Z2 is spontaneously broken since it 

contains Case CD.

Softly broken CP3

Depending on the form of the vacuum this

leads to

Z2 is unbroken since it contains

Case CC.
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CP3 unbroken

Six constraints - leaving us with 5 free

parameters.

Combination of Cases B, C, C and D of

CP1 invariant potential.

Spontaneously broken CP3 and unbroken CP3

CP3 broken spontaneously

Six constraints - leaving us with 5 free

parameters.

Combination of Cases C, C and D of CP1 

invariant potential.

Massless pseudoscalar since continuous

CP3 symmetry is spontaneously broken.
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SO(3)
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Model Invariant 

parts

Conditions

Softly broken SO(3) V4 Δ=Δ0=0 and η =  0

Spontaneously broken SO(3)

(SO(3) cannot be unbroken)

V=V2+V4 Δ=Δ0=0 and ξ = η = 0

For definitions and translation of bilinear 

formalism quantities see
Ferreira, Haber, Nachtmann, Silva: Int.J.Mod.Phys A26 769 (2011)

Ferreira, Grzadkowski, Ogreid, Osland: JHEP 02 (2021) 196



SO(3) broken spontaneously

Eight constraints - leaving us with 3 free

parameters.

Combination of Cases B, C, C and D of

CP1 invariant potential.

Massless pseudoscalars since continuous

SO(3) symmetry is spontaneously broken.

Softly broken SO(3) and spontaneously broken SO(3)

SO(3) broken softly

Seven constraints - leaving us with 4 free

parameters.

Combination of Cases B, C and C of CP1 

invariant potential.

Mass degeneracy present.
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Thank you for nor falling aZZZZZZleep!

› Imposing symmetries on the 2HDM 

potential and/or vacuum has physical 

implications. Has been presented for all 

possible combinations.

› Different physics depending on if the 

symmetry is softly broken, 

spontaneously broken or unbroken.

› If (and when) we discover the 2HDM 

particle zoo and measure all 11 

masses/couplings we can identify if any 

symmetries are present and in which 

part of the potential/vacuum.
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