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Introduction

3HDM’s have 46 linearly independent parameters
(Olaussen et al, 2011),

Imposing some symmetry, get predictivity

2HDM’s may provide additional CP violation
or a DM candidate, not both

This talk: S3 symmetry
Robin Plantay: Weinberg’s 3HDM

limited predictivity
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Initial basis, S3 symmetry (under interchange of 3 objects)

Irreducible representation:
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Express S3-symmetric 3HDM potential as [Das & Dey, 2014]
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2 quadratic terms, 8 quartic ones
All parameters real, no explicit CP violation

(fewer than general 2HDM)
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12 vacua have at least one vanishing vev, but some have
massless states. Others have no stabilising symmetry or non-
suitable Yukawa sectors. Left with two (or three).

Symmetry under h1 ! �h1, but not under h1 $ h2

Phase convention: wS real, w1 and/or w2 may be complex
DM can be stabilized by Z2 remnant of the S3 symmetry (h1 ! �h1)
Model preserves CP
States: h+, H+, �, ⌘, h, H, A
Model violates CP
States: h+, H+, '1, '2, H1, H2, H3
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Phase convention: wS real, w1 and/or w2 may be complex
DM can be stabilized by Z2 remnant of the S3 symmetry (h1 ! �h1)
Model preserves CP
States: h+, H+, �, ⌘, h, H, A
Model violates CP
States: h+, H+, '1, '2, H1, H2, H3

the inert doublet is associated with h1, here hh1i = 0
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2016, David Emmanuel-Costa, Odd Magne Ogreid, Gui Rebelo and P. O.:
11 real vacua, 16 complex vacua identified
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Phase convention: wS real, w1 and/or w2 may be complex
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Potential can have vacua with one or more vanishing vevs, interesting 
for DM modeling
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Phase convention: wS real, w1 and/or w2 may be complex

DM can be stabilized by Z2 remnant of the S3 symmetry (h1 ! �h1)

Model preserves CP
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+
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+
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Introduction

Vacuum terminology (examples):
R-II-1a: “R” - real

“II” - two constraints

C-III-a: “C” - complex

“III” - three constraints
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12 vacua have at least one vanishing vev, but some have
massless states. Others have no stabilising symmetry or non-
suitable Yukawa sectors. Left with two (or three).

Symmetry under h1 ! �h1, but not under h1 $ h2

Phase convention: wS real, w1 and/or w2 may be complex
DM can be stabilized by Z2 remnant of the S3 symmetry (h1 ! �h1)
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States: h+, H+, �, ⌘, h, H, A
Model violates CP
States: h+, H+, '1, '2, H1, H2, H3
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We have studied in some detail two cases, having a vanishing vev:
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both can accommodate 

Dark Matter

We choose the fermions to transform trivially under S3

DM studies
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12 vacua have at least one vanishing vev, but some have
massless states. Others have no stabilising symmetry or non-
suitable Yukawa sectors. Left with two (or three).

Symmetry under h1 ! �h1, but not under h1 $ h2

Phase convention: wS real, w1 and/or w2 may be complex
DM can be stabilized by Z2 remnant of the S3 symmetry (h1 ! �h1)
Model preserves CP
States: h+, H+, �, ⌘, h, H, A
Model violates CP
States: h+, H+, '1, '2, H1, H2, H3

the inert doublet is associated with h1, here hh1i = 0
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12 vacua have at least one vanishing vev, but some have
massless states. Others have no stabilising symmetry or non-
suitable Yukawa sectors. Left with two (or three).

Symmetry under h1 ! �h1, but not under h2 ! �h2

Phase convention: wS real, w1 and/or w2 may be complex
DM can be stabilized by Z2 remnant of the S3 symmetry (h1 ! �h1)
Model preserves CP
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Model violates CP
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the inert doublet is associated with h1, here hh1i = 0
fermions couple to hS, c.f. SM
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Gauge couplings R-II-1a
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Gauge couplings C-III-a
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R-II-1a

• h1: inert, physical states h
+
, ⌘ and � (opposite parity)

• h2: “active” member of S3 doublet, vev w2

• hS : S3 singlet, “active”, couples to fermions, vev wS

tan� =
w2

wS

(0.1)

1

DM studies

�1, �2, �3. (1.1)
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and an S3 singlet
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3
(�1 + �2 + �3), (1.3)

decomposed as
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.

Symmetry under h1 ! �h1, but not under h1 $ h2

Phase convention: wS real, w1 and/or w2 may be complex
DM can be stabilized by Z2 remnant of the S3 symmetry (h1 ! �h1,)
Model preserves CP
States: h+, H+, �, ⌘, h, H, A

1



C-III-a
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.

h1 $ h2

h1 ! �h1

�4 = 0

R-II-1a : {v1, v2, v3} = {0, w2, wS} (0.24)

C-III-a : {v1, v2, v3} = {0, w2e
i�
, wS} (0.25)

• h1: inert, physical states h
+
, '1 (DM) and '2

• h2, hS : “active” members of S3 doublet and singlet, mix,

physical states H
+
, H1, H2, H3. CP violated

• hS : S3 singlet, “active”, couples to fermions, vev wS

4

DM studies
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Symmetry under h1 ! �h1, but not under h1 $ h2

Phase convention: wS real, w1 and/or w2 may be complex
DM can be stabilized by Z2 remnant of the S3 symmetry (h1 ! �h1,)
Model preserves CP
States: h+, H+, �, ⌘, h, H, A
Model violates CP
States: h+, H+, '1, '2, H1, H2, H3
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DM studies
Note that the S3-symmetry-based models do not accommodate 
a high-mass (> 500 GeV) region

R-II-1a: m� 2 [52.5, 89] GeV

C-III-a: m'1 2 [6.5, 44.5] GeV

2

End up with

At high DM masses, the relic density becomes too low, due to
e�cient early-universe annihilation DM+DM ! Hi or HiHj

R-II-1a: m� 2 [52.5, 89] GeV

C-III-a: m'1 2 [6.5, 44.5] GeV

• Cut 1: perturbativity, stability, unitarity checks,
a selection of relevant LEP constraints;

• Cut 2: SM-like gauge and Yukawa sector, S and T variables,
B ! X(s)� decays;

• Cut 3: SM-like Higgs particle decays, DM relic density,
direct searches;

Either ⌘ or � could be the lighter one (DM).

Even if all constraints are satisfied for a certain mass, the
allowed regions need not overlap in other parameters.
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Figure 4. Regions in the tan β–mH+ plane that survive the B̄ → X(s)γ constraint. Left: loga-
rithmic representation out to larger tan β and mH+ . Right: linear representation of the small-tan β
region. The yellow region accommodates a 3-σ tolerance with respect to the experimental rate,
whereas in the green regions, the models are within a 2-σ bound. The vertical line at tan β = 0.26
is the lower bound on | tan β| compatible with |λ4| < 4π for R-II-1a.

contribution. The S and T parameters get the most sizeable contributions. Results are
compared against the experimental constraints provided by the PDG [95], assuming that
U = 0. The model-dependent rotation matrices, needed to evaluate the set of S and T ,
are presented in appendix C.2.

5.4 B physics constraints

The importance of a charged scalar exchange for the B̄ → X(s)γ rate has been known since
the late 1980’s [96–98]. The rate is determined from an expansion of the relevant Wilson
coefficients in powers of αs/(4π), starting with (1) the matching of these coefficients to the
full theory at some high scale (µ0 ∼ mW or mt), then (2) evolving them down to the low
scale µb ∼ mb (in this process the operators mix), and (3) determine the matrix elements
at the low scale [99–112].

We here follow the approach of Misiak and Steinhauser [113]. While the considered
S3-based models have two charged Higgs bosons, only one couples to fermions. This implies
that we may adopt the approach used for the 2HDM with relative Yukawa couplings of the
active charged scalar, eq. (4.41) (in the notation of ref. [113]),

Au = Ad = tan β. (5.4)

We show in figure 4 the regions in the tan β-mH+ parameter plane that are not excluded
by this constraint. The situation is quite different from that of the more familiar 2HDM
with Type II Yukawa couplings. According to eq. (5.4) the relevant couplings are the same
as those of the 2HDM Type I model, with the exception that we are here interested in small
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Two dark matter candidates in three-Higgs-doublet models with (3 symmetry Anton KunÃinas

5. Discussion

In the R-II-1a model due to no mixing between the inert neutral states there are potentially two
possible DM candidates. However, only one of these states is a possible DM candidate, namely j1,
see eq. (2). The state [1 with <2

[1
⇠ _4E2 does not satisfy Cut 3. In contrast to R-II-1a, there is a

single DM candidate in C-III-a due to mixing of the inert neutral fields. Moreover, there is mixing
among all neutral active scalars in C-III-a, and hence the SM-like Higgs boson is CP indefinite.

In figure 2 we present mass scatter plots after applying the previously discussed constraints. We
allowed for scalars to be as heavy as 1 TeV. However, after applying Cut 1 an upper bound of around
600-800 GeV develops. The allowed regions shrink after applying Cut 2 and Cut 3. Both models
favour light states of 200-400 GeV as indicated by the surviving grey regions. Such light states
are not completely ruled out by the LHC searches due to the suppressed couplings and imposed
constraints on the SM-like Higgs boson. While the active scalars of R-II-1a can in principle decay
into other active scalars, if kinematically allowed, in C-III-a the dominant decay channel for all of
the active scalars, except the SM-like Higgs, is into states with at least one DM candidate with the
second scalar coming from the same inert doublet. Such processes would be accompanied by large
missing transverse momentum in the detector.

Figure 2: Scatter plots of masses that satisfy di�erent sets of successive Cuts. Left column: the charged
sector. Middle column: the active heavy neutral sector. Right column: the inert neutral sector. The blue
region satisfies Cut 1. The yellow region accommodates a 3-f tolerance with respect to Cut 2, whereas the
green region accommodates the 2-f bound. The grey region is compatible with Cut 1, Cut 2 and Cut 3.

After applying all three cuts over the parameter space we found that the viable DM mass
regions di�er drastically from the multi-doublet DM models proposed earlier, see figure 1. There
is no high mass DM region in our models. In those the portal couplings grow fast with the DM
candidate mass. High portal couplings would lead to a DM candidate annihilating too fast in the
Early Universe. Heavy DM candidates in IDM-like models require the tuning of portal couplings
as well as near mass degeneracy between the inert scalars. In the C-III-a model near degeneracy is
impossible and we obtain a mass gap of around 70 GeV for the parameter region of interest for DM.
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Two dark matter candidates in three-Higgs-doublet models with (3 symmetry Anton KunÃinas

Another interesting property, particular to C-III-a, is that there are only DM candidates with
masses <DM < 50 GeV, a region that is ruled out for the other models, whereas masses above this
limit are excluded due to the strength of the portal couplings. Furthermore, in the C-III-a model the
direct DM detection criteria are satisfied for light DM states, presented in figure 3. There are points
for both models with spin-independent DM-nucleon cross section several orders of magnitudes
lower than what would be probed by future DM experiments.

Figure 3: The spin-independent
DM-nucleon cross section compat-
ible with XENON1T [15] data at
90% C.L. The points represent cases
that satisfy Cut 3. The red line cor-
responds to an approximate neutrino
floor.

Deciphering the nature of DM remains one of the most important challenges in both particle
physics and cosmology. After applying a selected set of constraints we determined possible DM
mass ranges. Those are [52.5, 89] GeV for R-II-1a and [6.5, 44.5] GeV for C-III-a. These models
look very promising, showing that the (3-symmetric 3HDM has a very rich structure.
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Other choice of doublet basis:

At high DM masses, the relic density becomes too low, due to
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• Cut 2: SM-like gauge and Yukawa sector, S and T variables,
B ! X(s)� decays;

• Cut 3: SM-like Higgs particle decays, DM relic density,
direct searches;
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ĥ1

ĥ2
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R-II-1a “curiosity” #1:
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Figure 11. Allowed mass regions of the DM candidate involving different Cut 3 constraints. Blue:
relic density satisfied together with direct detection. Purple: LHC Higgs constraints along with
direct detection constraints. Red: relic density and LHC Higgs constraints. Grey: all of the Cut 3
constraints are satisfied. Note that additional input parameters are not shown.

DM mass decreases. However, there are also cases when the dominant annihilation channel
is ϕiϕi → gg, which can contribute more than 50%.

Finally, in the DM mass region corresponding to values below mh/2, the primary
annihilation or loss mechanism is ϕiϕi → bb̄ trough a virtual h. This channel depends
critically on the portal, i.e., the trilinear coupling g(ϕiϕih).

6 Cut 3 discussion

It is convenient to discuss the low-mass DM situation in terms of the following four critical
constraints:

• a (Ωh2): DM relic density, eq. (5.17);

• b (LHC): h invisible branching ratio and Γh ≤ 6MeV;

• c (LHC): h di-photon rate, eq. (5.10);

• d (DD): DM direct detection.

6.1 The η case
For the case when the η scalar is the lightest (“η case”), from figure 10 it looks as if there
could be solutions for the range of mη ∈ [2, 120] GeV. However, in the low-mass range of
this interval, the h invisible branching ratio, together with the relic DM density constraint
becomes incompatible with the experimental data. In light of this fact, in the remainder of
the discussion presented in this paragraph we shall focus on η masses up to 120GeV since
we already know that criterion (a ) excludes higher masses. Both constraints, i.e., (a ) and
(b ), alongside with Cut 1 and Cut 2, are satisfied within the region mη ∈ [40, 120] GeV.
The final checks are then the di-photon (c ) and the direct detection constraints (d ). These
two constraints are very severe and eliminate a large region of the parameter space. When
imposed separately, the strongest constraint comes from the direct detection criteria, which
are satisfied in the mass region mη ∈ [43, 120]GeV and at values below mη ! 10 GeV.

We list different Cut 3 paired constraints in figure 11 after imposing cuts 1 and 2.
We work with 8 input parameters, 6 masses and 2 angles. After imposing Cut 3, there
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At high DM masses, the relic density becomes too low,
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Figure 11. Allowed mass regions of the DM candidate involving different Cut 3 constraints. Blue:
relic density satisfied together with direct detection. Purple: LHC Higgs constraints along with
direct detection constraints. Red: relic density and LHC Higgs constraints. Grey: all of the Cut 3
constraints are satisfied. Note that additional input parameters are not shown.

DM mass decreases. However, there are also cases when the dominant annihilation channel
is ϕiϕi → gg, which can contribute more than 50%.

Finally, in the DM mass region corresponding to values below mh/2, the primary
annihilation or loss mechanism is ϕiϕi → bb̄ trough a virtual h. This channel depends
critically on the portal, i.e., the trilinear coupling g(ϕiϕih).

6 Cut 3 discussion

It is convenient to discuss the low-mass DM situation in terms of the following four critical
constraints:

• a (Ωh2): DM relic density, eq. (5.17);

• b (LHC): h invisible branching ratio and Γh ≤ 6MeV;

• c (LHC): h di-photon rate, eq. (5.10);

• d (DD): DM direct detection.

6.1 The η case
For the case when the η scalar is the lightest (“η case”), from figure 10 it looks as if there
could be solutions for the range of mη ∈ [2, 120] GeV. However, in the low-mass range of
this interval, the h invisible branching ratio, together with the relic DM density constraint
becomes incompatible with the experimental data. In light of this fact, in the remainder of
the discussion presented in this paragraph we shall focus on η masses up to 120GeV since
we already know that criterion (a ) excludes higher masses. Both constraints, i.e., (a ) and
(b ), alongside with Cut 1 and Cut 2, are satisfied within the region mη ∈ [40, 120] GeV.
The final checks are then the di-photon (c ) and the direct detection constraints (d ). These
two constraints are very severe and eliminate a large region of the parameter space. When
imposed separately, the strongest constraint comes from the direct detection criteria, which
are satisfied in the mass region mη ∈ [43, 120]GeV and at values below mη ! 10 GeV.

We list different Cut 3 paired constraints in figure 11 after imposing cuts 1 and 2.
We work with 8 input parameters, 6 masses and 2 angles. After imposing Cut 3, there
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two diagrams associated with the di↵erent charge assignments

cancel.
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Example: perhaps charged scalar mass does not overlap



R-II-1a “curiosity” #1:
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Figure 11. Allowed mass regions of the DM candidate involving different Cut 3 constraints. Blue:
relic density satisfied together with direct detection. Purple: LHC Higgs constraints along with
direct detection constraints. Red: relic density and LHC Higgs constraints. Grey: all of the Cut 3
constraints are satisfied. Note that additional input parameters are not shown.

DM mass decreases. However, there are also cases when the dominant annihilation channel
is ϕiϕi → gg, which can contribute more than 50%.

Finally, in the DM mass region corresponding to values below mh/2, the primary
annihilation or loss mechanism is ϕiϕi → bb̄ trough a virtual h. This channel depends
critically on the portal, i.e., the trilinear coupling g(ϕiϕih).

6 Cut 3 discussion

It is convenient to discuss the low-mass DM situation in terms of the following four critical
constraints:

• a (Ωh2): DM relic density, eq. (5.17);

• b (LHC): h invisible branching ratio and Γh ≤ 6MeV;

• c (LHC): h di-photon rate, eq. (5.10);

• d (DD): DM direct detection.

6.1 The η case
For the case when the η scalar is the lightest (“η case”), from figure 10 it looks as if there
could be solutions for the range of mη ∈ [2, 120] GeV. However, in the low-mass range of
this interval, the h invisible branching ratio, together with the relic DM density constraint
becomes incompatible with the experimental data. In light of this fact, in the remainder of
the discussion presented in this paragraph we shall focus on η masses up to 120GeV since
we already know that criterion (a ) excludes higher masses. Both constraints, i.e., (a ) and
(b ), alongside with Cut 1 and Cut 2, are satisfied within the region mη ∈ [40, 120] GeV.
The final checks are then the di-photon (c ) and the direct detection constraints (d ). These
two constraints are very severe and eliminate a large region of the parameter space. When
imposed separately, the strongest constraint comes from the direct detection criteria, which
are satisfied in the mass region mη ∈ [43, 120]GeV and at values below mη ! 10 GeV.

We list different Cut 3 paired constraints in figure 11 after imposing cuts 1 and 2.
We work with 8 input parameters, 6 masses and 2 angles. After imposing Cut 3, there
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At high DM masses, the relic density becomes too low,

due to e�cient annihilation DM+DM ! HiHj

R-II-1a: m� 2 [52.5, 89] GeV

C-III-a: m'1 2 [6.5, 44.5] GeV

• Cut 1: perturbativity, stability, unitarity checks,

a selection of relevant LEP constraints;

• Cut 2: SM-like gauge and Yukawa sector, S and T variables,

B ! X(s)� decays;

• Cut 3: SM-like Higgs particle decays, DM relic density,

direct searches;

Either ⌘ or � could be the lighter one (DM).

Even if all constraints are satisfied for a certain mass, the

allowed regions need not overlap in other parameters.

The R-II-1a preserves CP both at the Lagrangian level

and by the vacuum.

The presence of both g (⌘h
±
H

⌥
) and g (�h

±
H

⌥
) couplings

suggests there might be mixing at the one-loop level, but the

two diagrams associated with the di↵erent charge assignments

cancel.

3

Grey region: overlap

At high DM masses, the relic density becomes too low,
due to e�cient annihilation DM+DM ! HiHj

R-II-1a: m� 2 [52.5, 89] GeV

C-III-a: m'1 2 [6.5, 44.5] GeV

• Cut 1: perturbativity, stability, unitarity checks,
a selection of relevant LEP constraints;

• Cut 2: SM-like gauge and Yukawa sector, S and T variables,
B ! X(s)� decays;

• Cut 3: SM-like Higgs particle decays, DM relic density,
direct searches;

Either ⌘ or � could be the lighter one (DM).

Even if all constraints are satisfied for a certain mass, the
allowed regions need not overlap in other parameters.

The R-II-1a preserves CP both at the Lagrangian level
and by the vacuum.

If experimental constraints (numbers) had been a little di↵erent,
both ⌘ and � could have been DM candidates, whichever is lighter.

The presence of both g (⌘h±
H

⌥) and g (�h±
H

⌥) couplings
suggests there might be mixing at the one-loop level, but the
two diagrams associated with the di↵erent charge assignments
cancel.
There is a mass gap between the two neutral states '1 and
'2 of the inert doublet.
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At high DM masses, the relic density becomes too low,

due to e�cient annihilation DM+DM ! HiHj

R-II-1a: m� 2 [52.5, 89] GeV

C-III-a: m'1 2 [6.5, 44.5] GeV

• Cut 1: perturbativity, stability, unitarity checks,

a selection of relevant LEP constraints;

• Cut 2: SM-like gauge and Yukawa sector, S and T variables,

B ! X(s)� decays;

• Cut 3: SM-like Higgs particle decays, DM relic density,

direct searches;

The R-II-1a preserves CP both at the Lagrangian level

and by the vacuum.

The presence of both g (⌘h
±
H

⌥
) and g (�h

±
H

⌥
) cou-

plings suggests there might be mixing at the one-loop

level, but the two diagrams associated with the di↵er-

ent charge assignments cancel.

3

+ = 0

R-II-1a “curiosity” #2:

At high DM masses, the relic density becomes too low,

due to e�cient annihilation DM+DM ! HiHj

R-II-1a: m� 2 [52.5, 89] GeV

C-III-a: m'1 2 [6.5, 44.5] GeV

• Cut 1: perturbativity, stability, unitarity checks,

a selection of relevant LEP constraints;

• Cut 2: SM-like gauge and Yukawa sector, S and T variables,

B ! X(s)� decays;

• Cut 3: SM-like Higgs particle decays, DM relic density,

direct searches;

The R-II-1a preserves CP both at the Lagrangian level

and by the vacuum.

The presence of both g (⌘h
±
H

⌥
) and g (�h

±
H

⌥
) couplings

suggests there might be mixing at the one-loop level, but the

two diagrams associated with the di↵erent charge assignments

cancel.

3

h+

H+

η χ
x −iy

H+

h+

η χ
x +iy

h+

H+

η χ
x −iy

H+

h+

η χ
x +iy



C-III-a “curiosity”:

At high DM masses, the relic density becomes too low,

due to e�cient annihilation DM+DM ! HiHj

R-II-1a: m� 2 [52.5, 89] GeV

C-III-a: m'1 2 [6.5, 44.5] GeV

• Cut 1: perturbativity, stability, unitarity checks,

a selection of relevant LEP constraints;

• Cut 2: SM-like gauge and Yukawa sector, S and T variables,

B ! X(s)� decays;

• Cut 3: SM-like Higgs particle decays, DM relic density,

direct searches;

Either ⌘ or � could be the lighter one (DM).

Even if all constraints are satisfied for a certain mass, the

allowed regions need not overlap in other parameters.

The R-II-1a preserves CP both at the Lagrangian level

and by the vacuum.

The presence of both g (⌘h
±
H

⌥
) and g (�h

±
H

⌥
) couplings

suggests there might be mixing at the one-loop level, but the

two diagrams associated with the di↵erent charge assignments

cancel.

There is a mass gap between the two neutral states '1 and

'2 of the inert doublet.
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Figure 4: The mass gap � vs. � in the neutral inert sector. The green region is allowed.
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Due to CP non-conservation, the physical scalars will be combinations of all fields
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3
2ŵS +

�
�b � 8�7 cos2 � � 2�8

�
ŵ2ŵ

3
S

⇤
, (3.35b)

(M2
�
)22 =

2

v2

⇥�
�1 + �3 � �b + 2�7 cos2 � + �8

�
ŵ
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S

�⇤
, (3.35c)

10

At high DM masses, the relic density becomes too low,
due to e�cient annihilation DM+DM ! Hi or HiHj

R-II-1a: m� 2 [52.5, 89] GeV

C-III-a: m'1 2 [6.5, 44.5] GeV

• Cut 1: perturbativity, stability, unitarity checks,
a selection of relevant LEP constraints;

• Cut 2: SM-like gauge and Yukawa sector, S and T variables,
B ! X(s)� decays;

• Cut 3: SM-like Higgs particle decays, DM relic density,
direct searches;

Either ⌘ or � could be the lighter one (DM).

Even if all constraints are satisfied for a certain mass, the
allowed regions need not overlap in other parameters.

The R-II-1a preserves CP both at the Lagrangian level
and by the vacuum.

If experimental constraints (numbers) had been a little di↵erent,
both ⌘ and � could have been DM candidates, whichever is lighter.

The presence of both g (⌘h±
H

⌥) and g (�h±
H

⌥) couplings
suggests there might be mixing at the one-loop level, but the
two diagrams associated with the di↵erent charge assignments
cancel.
There is a mass gap between the two neutral states '1 and
'2 of the inert doublet, given by �:
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Apology

We did not study any electric dipole moment



CONCLUSIONS

Symmetries play a crucial rôle in multi-Higgs models

Multi-Higgs models provide interesting scenarios for Dark Matter 

The R-II-1a model provides Dark Matter without imposing 

ad hoc symmetry for stability

Multi-Higgs Models have a rich phenomenology
Considered models have other particles which are relatively light

The C-III-a offers also CP violation and light DM

Symmetries are needed to stabilise Dark Matter

Discoveries at the LHC are eagerly awaited
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