S₃-based 3HDMs with Dark Matter

Per Osland

University of Bergen

Multi-Higgs 2022

Lisboa, Aug-Sep 2022

Wafaa Khater, Anton Kuncinas, Odd Magne Ogreid, Gui Rebelo, P.O.

2108.07026 2204.05684

2HDM's may provide additional CP violation or a DM candidate, not both

3HDM's have 46 linearly independent parameters (Olaussen et al, 2011), limited predictivity

Imposing some symmetry, get predictivity

This talk: S₃ symmetry

Robin Plantay: Weinberg's 3HDM

Initial basis, S₃ symmetry (under interchange of 3 objects)

$$\phi_1, \quad \phi_2, \quad \phi_3.$$

Irreducible representation:

$$h_S = \frac{1}{\sqrt{3}}(\phi_1 + \phi_2 + \phi_3) \qquad \left(\begin{array}{c} h_1 \\ h_2 \end{array}\right) = \left(\begin{array}{c} \frac{1}{\sqrt{2}}(\phi_1 - \phi_2) \\ \frac{1}{\sqrt{6}}(\phi_1 + \phi_2 - 2\phi_3) \end{array}\right)$$

decomposed as

$$h_i = \begin{pmatrix} h_i^+ \\ (w_i + \eta_i + i\chi_i)/\sqrt{2} \end{pmatrix}, \quad i = 1, 2, \quad h_S = \begin{pmatrix} h_S^+ \\ (w_S + \eta_S + i\chi_S)/\sqrt{2} \end{pmatrix}$$

Express S₃-symmetric 3HDM potential as [Das & Dey, 2014]

$$V = V_2 + V_4$$

$$\begin{split} V_2 &= \mu_0^2 h_S^{\dagger} h_S + \mu_1^2 (h_1^{\dagger} h_1 + h_2^{\dagger} h_2), \\ V_4 &= \lambda_1 (h_1^{\dagger} h_1 + h_2^{\dagger} h_2)^2 + \lambda_2 (h_1^{\dagger} h_2 - h_2^{\dagger} h_1)^2 + \lambda_3 [(h_1^{\dagger} h_1 - h_2^{\dagger} h_2)^2 + (h_1^{\dagger} h_2 + h_2^{\dagger} h_1)^2] \\ &+ \lambda_4 [(h_S^{\dagger} h_1) (h_1^{\dagger} h_2 + h_2^{\dagger} h_1) + (h_S^{\dagger} h_2) (h_1^{\dagger} h_1 - h_2^{\dagger} h_2) + \text{h.c.}] + \lambda_5 (h_S^{\dagger} h_S) (h_1^{\dagger} h_1 + h_2^{\dagger} h_2) \\ &+ \lambda_6 [(h_S^{\dagger} h_1) (h_1^{\dagger} h_S) + (h_S^{\dagger} h_2) (h_2^{\dagger} h_S)] + \lambda_7 [(h_S^{\dagger} h_1) (h_S^{\dagger} h_1) + (h_S^{\dagger} h_2) (h_S^{\dagger} h_2) + \text{h.c.}] \\ &+ \lambda_8 (h_S^{\dagger} h_S)^2. \end{split}$$

2 quadratic terms, 8 quartic ones (fewer than general 2HDM)
All parameters real, no explicit CP violation

Symmetry under $h_1 \to -h_1$, but not under $h_2 \to -h_2$

2016, David Emmanuel-Costa, Odd Magne Ogreid, Gui Rebelo and P. O.: 11 real vacua, 16 complex vacua identified

Phase convention: w_S real, w_1 and/or w_2 may be complex

Potential can have vacua with one or more vanishing vevs, interesting for DM modeling

DM can be stabilized by Z_2 remnant of the S_3 symmetry $(h_1 \rightarrow -h_1)$

Vacuum terminology (examples):

R-II-1a: "R" - real
"II" - two constraints

C-III-a: "C" - complex

"III" - three constraints

12 vacua have at least one vanishing vev, but some have massless states. Others have no stabilising symmetry or non-suitable Yukawa sectors. Left with two (or three).

We have studied in some detail two cases, having a vanishing vev:

R-II-1a:
$$\{v_1, v_2, v_3\} = \{0, w_2, w_S\}$$

both can accommodate
Dark Matter

C-III-a:
$$\{v_1, v_2, v_3\} = \{0, w_2 e^{i\sigma}, w_S\}$$

the inert doublet is associated with h_1 , here $\langle h_1 \rangle = 0$

We choose the fermions to transform trivially under S_3 fermions couple to h_S , c.f. SM

Gauge couplings R-II-1a

$$\mathcal{L}_{VVH} = \left[\frac{g}{2\cos\theta_W} m_Z Z_\mu Z^\mu + g m_W W_\mu^+ W^{\mu-} \right] \left[\sin(\alpha + \beta)h + \cos(\alpha + \beta)H \right]$$

$$\mathcal{L}_{VHH} = -\frac{g}{2\cos\theta_W} Z^\mu \left[\eta \overleftrightarrow{\partial_\mu} \chi - \cos(\alpha + \beta)h \overleftrightarrow{\partial_\mu} A + \sin(\alpha + \beta)H \overleftrightarrow{\partial_\mu} A \right] \quad \text{opposite CP}$$

$$-\frac{g}{2} \left\{ i W_\mu^+ \left[i h^- \overleftrightarrow{\partial^\mu} \chi + h^- \overleftrightarrow{\partial^\mu} \eta - \cos(\alpha + \beta)H^- \overleftrightarrow{\partial^\mu} h \right. \right.$$

$$\left. + \sin(\alpha + \beta)H^- \overleftrightarrow{\partial^\mu} H + i H^- \overleftrightarrow{\partial^\mu} A \right] + \text{h.c.} \right\}$$

$$+ \left[i e A^\mu + \frac{i g}{2} \frac{\cos(2\theta_W)}{\cos\theta_W} Z^\mu \right] \left(h^+ \overleftrightarrow{\partial_\mu} h^- + H^+ \overleftrightarrow{\partial_\mu} H^- \right)$$

 $\mathcal{L}_{VVHH} = \dots$

diagonalization of CP-even sector: α $\tan \beta = \frac{w_2}{w_3}$

Alignment: $\sin(\alpha + \beta) = 1$

Gauge couplings C-III-a

$$\mathcal{L}_{VVH} = \left[\frac{g}{2c_w} m_Z Z_\mu Z^\mu + g m_W W_\mu^+ W^{\mu-} \right] \sum_{i=1}^3 \mathcal{R}_{i1}^0 H_i$$

$$\mathcal{L}_{VHH} = -\frac{g}{2c_w} Z^\mu \left(\sum_{i < j=2}^3 \left(\mathcal{R}_{i2}^0 \mathcal{R}_{j3}^0 - \mathcal{R}_{i3}^0 \mathcal{R}_{j2}^0 \right) H_i \stackrel{\leftrightarrow}{\partial_\mu} H_j + \varphi_1 \stackrel{\leftrightarrow}{\partial_\mu} \varphi_2 \right)$$

$$-\frac{g}{2} \left\{ i W_\mu^+ \left(\sum_{i=1}^3 \left(\mathcal{R}_{i2}^0 + i \mathcal{R}_{i3}^0 \right) H^- \stackrel{\leftrightarrow}{\partial^\mu} H_i + h^- \stackrel{\leftrightarrow}{\partial^\mu} (\varphi_1 + i \varphi_2) \right) + \text{h.c.} \right\}$$

$$+ \left[i e A^\mu + \frac{i g}{2} \frac{c_{2w}}{c_w} Z^\mu \right] \left(H^+ \stackrel{\leftrightarrow}{\partial_\mu} H^- + h^+ \stackrel{\leftrightarrow}{\partial_\mu} h^- \right)$$

 $\mathcal{L}_{VVHH} = \dots$

three neutral H_i states (η 's and χ 's mix)

R-II-1a

- h_1 : inert, physical states h^+ , η and χ (opposite parity)
- h_2 : "active" member of S_3 doublet, vev w_2
- h_S : S_3 singlet, "active", couples to fermions, vev w_S

Model preserves CP

States: h^+ , H^+ , χ , η , h, H, A

C-III-a

- h_1 : inert, physical states h^+ , φ_1 (DM) and φ_2
- h_2, h_S : "active" members of S_3 doublet and singlet, mix, physical states H^+, H_1, H_2, H_3 . CP violated
- h_S : S_3 singlet, "active", couples to fermions, vev w_S

Model violates CP

States: $h^+, H^+, \varphi_1, \varphi_2, H_1, H_2, H_3$

Note that the S₃-symmetry-based models do not accommodate a high-mass (> 500 GeV) region

At high DM masses, the relic density becomes too low, due to efficient early-universe annihilation DM + DM $\rightarrow H_i$ or H_iH_j

End up with R-II-1a: $m_{\chi} \in [52.5, 89] \text{ GeV}$

C-III-a: $m_{\varphi_1} \in [6.5, 44.5] \text{ GeV}$

Important Early Universe annihilation mechanism:

Trilinear and quartic portal couplings

In the IDM this is a tuneable coupling Here, not an independent parameter

The couplings grow with DM mass

Scan over model parameters:

- Cut 1: perturbativity, stability, unitarity checks, a selection of relevant LEP constraints;
- Cut 2: SM-like gauge and Yukawa sector, S and T variables, $\overline{B} \to X(s) \gamma$ decays;
- Cut 3: SM-like Higgs particle decays, DM relic density, direct searches;

B->sy

The $\bar{B} \to s \gamma$ constraint is similar to that of the 2HDM (only one charged state couples to fermions), but note our definition of $\tan \beta = w_2/w_S$.

DM density vs **DM** mass

Scan over model parameters:

No solution above 120 GeV

micrOMEGAs 5.2.7

DM density vs **DM** mass

No solution above 70 GeV

Allowed mass ranges

Allowed mass ranges

Different scale!

On same scale

Spin-independent cross section brown points survive Xenon1T, red curve: neutrino floor

Other choice of doublet basis:

$$\begin{pmatrix} \hat{h}_1 \\ \hat{h}_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 1 \\ -i & 1 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$
$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \hat{h}_1 \\ \hat{h}_2 \end{pmatrix}$$
$$\langle h_1 \rangle = 0 \iff \langle \hat{h}_1 \rangle = \langle \hat{h}_2 \rangle$$

Same physics, book-keeping different

R-II-1a "curiosity" #1: colored bars: mass range allowed by pair of constraints

Either η or χ could be the lighter one (DM).

Grey region: overlap

R-II-1a "curiosity" #1:

Either η or χ could be the lighter one (DM).

Even if all constraints are satisfied for a certain mass, the allowed regions need not overlap in other parameters.

Example: perhaps charged scalar mass does not overlap

R-II-1a "curiosity" #1:

Either η or χ could be the lighter one (DM).

Grey region: overlap

If experimental constraints (numbers) had been a little different, both η and χ could have been DM candidates, whichever is lighter.

R-II-1a "curiosity" #2:

The R-II-1a preserves CP both at the Lagrangian level and by the vacuum.

The presence of both $g(\eta h^{\pm}H^{\mp})$ and $g(\chi h^{\pm}H^{\mp})$ couplings suggests there might be mixing at the one-loop level, but the two diagrams associated with the different charge assignments cancel.

C-III-a "curiosity":

There is a mass gap between the two neutral states φ_1 and φ_2 of the inert doublet, given by σ :

$$\delta = \frac{m_{\varphi_2}^2 - m_{\varphi_1}^2}{\sqrt{m_{\varphi_1}^2 m_{\varphi_2}^2}} > \frac{2}{3} |\tan \sigma|$$

Apology

We did not study any electric dipole moment

CONCLUSIONS

Symmetries play a crucial rôle in multi-Higgs models

Multi-Higgs models provide interesting scenarios for Dark Matter

Symmetries are needed to stabilise Dark Matter

The R-II-1a model provides Dark Matter without imposing ad hoc symmetry for stability

The C-III-a offers also CP violation and light DM

Multi-Higgs Models have a rich phenomenology

Considered models have other particles which are relatively light

Discoveries at the LHC are eagerly awaited

ACKNOWLEDGEMENTS

