Light States in Weinberg's Potential with Spontaneous CP Violation

Robin Plantey

August 30, 2022

Scalar spectrum of the Weinberg potential

Phenomenological study of a model of spontaneous CPV and Natural Flavour Conservation (NFC)

- How is the scalar spectrum of the model when basic experimental constraints are applied?
 - BSM Masses
 - CP Properties

Based on arxiv:4469302

Weinberg's 3HDM potential with spontaneous CP violation R. Plantey, O. M. Ogreid, P. Osland, M. N. Rebelo, M. Aa. Solberg.

The $\mathbb{Z}_2 \times \mathbb{Z}_2$ -symmetric 3HDM

- 3HDM with an exact $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry
- Can accomodate both Spontaneous CPV and NFC
- Scalar spectrum:
 - 5 Neutral scalars h_i (not CP eigenstates)
 - > 2 Charged scalars h_j^+

 $V = V_{U(1) imes U(1)} + V_{
hoh}$

- After minimization of V, only one independent coupling in V_{ph}
- ► → large fraction of parameter space yields a $U(1) \times U(1)$ symmetric model
- ► \rightarrow (pseudo-)Goldstone bosons when V is (approx.) $U(1) \times U(1)$ -invariant

CP content of the neutral scalars

Neutral physical scalars are not CP eigenstates

How to quantify how "close" a particle is from CP-even/odd in a CP violating model?

- Compare couplings with the corresponding CP-conserving model
- Two examples: Zh_ih_j and Yukawa couplings

Gauge couplings: *Zh_ih_j*

In a CP conserving model these vanish if the product $h_i h_j$ is CP-even Can be expressed in terms of the neutral scalar mixing matrix O

$$\kappa_{Zh_ih_j} = -\frac{g}{2\cos\theta_W} \left(O_{i2}O_{j4} + O_{i3}O_{j5} - (i \leftrightarrow j) \right) \equiv -\frac{g}{2\cos\theta_W} P_{ij}$$
(1)

 P_{ij} measures the relative CP of h_i and h_j

Yukawa couplings

$$\mathcal{L}_{Y} = Y^{u} \bar{Q}_{L} \tilde{\phi}_{1} u_{R} + Y^{d} \bar{Q}_{L} \phi_{2} d_{R} + Y^{e} \bar{E}_{L} \phi_{3} e_{R} + \text{h.c.}$$
(2)

CP violating theory \rightarrow Neutral scalars couple to both CP-even and CP-odd fermion currents

$$\mathcal{L}_{h_i ff} = \frac{m_f}{v} h_i (\kappa^{h_i ff} \bar{f} f + i \tilde{\kappa}^{h_i ff} \bar{f} \gamma_5 f)$$
(3)

The ratio $\frac{\tilde{\kappa}}{\kappa} \equiv \tan \alpha$ measures the absolute CP profile of h_i

$$\mathbf{a} = \mathbf{0} \quad \rightarrow \quad h_i \text{ CP-even}$$
$$\mathbf{a} = \frac{\pi}{2} \quad \rightarrow \quad h_i \text{ CP-odd}$$

$$\alpha^{h_i ff} = \arg(Z_i^{(k)}) \tag{4}$$

$$Z_{i}^{(k)} = \tilde{\mathcal{R}}_{1k}O_{i1} + \tilde{\mathcal{R}}_{2k}(O_{i2} + iO_{i4}) + \tilde{\mathcal{R}}_{3k}(O_{i3} + iO_{i5}).$$
(5)

Parameter space scans

How do experimental Higgs measurements constrain the scalar spectrum?

- Masses
- CP properties

Uniform parameter space scan (\approx 1M points)

 Discovered Higgs/alignment limit implemented numerically by uniform rescaling of the quartic couplings

Results

99.7% of the sampled viable parameter space contains lighter states than $m_h = 125 \text{ GeV}$

h_1	h_2	h ₃	h_4	h_5
0.3	38.1	28.2	22.8	10.6

Table: Fraction of occurence for each case $h_j = h_{SM}$, with the physical states h_j ordered by increasing mass $m_1 < m_2 < m_3 < m_4 < m_5$.

These light neutral scalars do not necessarily rule out the model

- Production via Bjorken mechanism suppressed
- Could have escaped detection at LEP

Results: Yukawa couplings $h_i \tau \tau$

Averages over parameter space

Figure: RMS of the angle $\alpha^{h_i \tau \tau}$ (in units of $\pi/2$) which measures the CP-odd content of the Yukawa couplings to $\tau \overline{\tau}$ for $h_2 = h_{SM}$ (left) and $h_3 = h_{SM}$ (right).

$$\mathcal{L}_{h_i\tau\tau} = \frac{m_\tau}{v} h_i (\kappa^{h_i\tau\tau} \bar{\tau}\tau + i\tilde{\kappa}^{h_i\tau\tau} \bar{\tau}\gamma_5 \tau) \qquad \qquad \frac{\tilde{\kappa}}{\kappa} \equiv \tan \alpha^{h_i\tau\tau}$$

In general, the states lighter than h_{SM} have large CP-odd couplings

Conclusion and Outlook

- Frequent light states in the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -symmetric 3HDM
 - mostly CP-odd nature
 - decouple from main production channel, could have gone undetected
- Improvement: relate VEVs phases to the CKM complex phase \rightarrow relax NFC

