Benchmarking di-Higgs production in extended scalar sectors at the LHC

Duarte Azevedo

In collaboration with: H. Abouabid, A. Arhrib, J. Falaki, P. Ferreira, M. M. Mühlleitner, R. Santos.

Institute for Theoretical Physics (ITP) Institute for Astroparticle Physics (IAP) Karlsruher Institut für Technologie Germany duarte.azevedo@kit.edu

Workshop on Multi-Higgs models - Lisbon 22

August 31st, 2022

< ロ > < 同 > < 回 > < 回 > < 回 > <

Overview

Introduction

- Intro and goals
- Experimental state-of-the-art
- Di-Higgs production in BSM

2 Main results

- Impact of resonant and non-res. searches
- Benchmarks

3 Conclusions

= 990

<ロ> <同> <同> < 同> < 同> < 同> <

Introduction	Intro and goals
Main results	Experimental state-of-the-art
Conclusions	Di-Higgs production in BSM

Introduction

イロン イヨン イヨン -

 \rightarrow Scalar particle discovered in 2012 with mass of \sim 125 GeV at the Large Hadron Collider (LHC).

Phys.Lett. B716 (2012), Phys. Lett. B 716 (2012)

- Observed channels contain one scalar, thus only *HXX* can be inferred from signal rates.
- Scalar potential and EWSB patterns \rightarrow processes with self-interactions, e.g. di-Higgs production (dominant at LHC).
- Problem: in the SM there is destructive interference between its box and triangle diagrams.
- ...we need new physics. Dark matter, baryon asymmetry, neutrino masses, among others. It can be provided by extended scalar sectors.
- BSM physics can enhance significantly di-Higgs production.

イロト イヨト イヨト -

э.

Introduction	Intro and goals
Conclusions	

 \rightarrow Impact of di-Higgs constraints on BSM

 \rightarrow How and by how much models with extended sectors can enhance di-Higgs production

 \rightarrow Provide interesting benchmarks for pair production:

- SM-like Higgs pairs
- SM-like + non-SM-like Higgs pairs
- Exotic di-scalar channels (with possible cascading)

The models:

Goals

- R2HDM CP-conserving (h, H, A, H[±])
- C2HDM CP-violation (*H*₁, *H*₂, *H*₃, *H*[±])
- N2HDM Singlet admixture $(H_1, H_2, H_3, A, H^{\pm})$
- NMSSM SUSY (H₁, H₂, H₃, A₁, A₂, H[±])¹

 \rightarrow We considered the \mathbb{Z}_2 symmetric versions (first three models) to inhibit FCNC.

イロト イポト イヨト イヨト

э.

¹Capitalization and subscript numbering refer to mass ordering.

Main codes: ScannerS Mühlleitner et al. (2007.02985) and NMSSMCALC Baglio et al. (1312.4788)

- Random parameter space scans
- Theoretical and experimental constraints
- We applied di-Higgs constraints manually

Cross-sections computations:

- Single Higgs rates w/ SusHi Harlander et al. (1605.03190) @13/14 TeV@NNLO_QCD.
- Double Higgs rates w/ HPAIR² (and variations):
 - NLO born-improved heavy top-quark mass limit.
 - Scans: 2 * (σ_{HH}^{LO} @14 TeV), approximate QCD correction.
 - K-factor around 2 for di-Higgs production Dawson et al. (hep-ph/9806304), Grober et al. (1705.05314), Dawson et al. (hep-ph/9806304), Buchalla et al. (1806.05162).

\rightarrow Benchmarks are presented at 14 TeV and NLO.

< ロ > < 同 > < 三 > < 三 >

²http://tiger.web.psi.ch/proglist.html

00 1

Experimental state-of-the-art ATLAS-CONF-2021-052

 \rightarrow Analyses are divided into non-resonant (SM) and resonant ones (SM + HR).

Non-resonant

k_{λ} lim.	Obs.	Exp.
$bar{b}\gamma\gamma$ $bar{b} auar{ au}$ $bar{b}bar{b}$ CMS-PAS-HIG-20-005	[-1.6, 6.7] [-2.4, 9.2] [-2.3, 9.4]	$\begin{bmatrix} -2.4, 7.7 \end{bmatrix} \\ \begin{bmatrix} -2.0, 9.0 \end{bmatrix} \\ \begin{bmatrix} -5.0, 12.0 \end{bmatrix}$

$$\rightarrow$$
 Non-resonant considers $y_t = y_t^{SM}$ fixed.

Resonant

- $b\bar{b}\gamma\gamma$ low mass region
- $b\bar{b}\tau\bar{\tau}$ intermediate mass region
- bbbb high mass region
- $b\bar{b}b\bar{b}$ very high (> 1 TeV) mass region CMS-PAS-B2G-20-004

イロト イボト イヨト イヨト

э

ion	
	Di-Higgs production in BSM

How to enhance di-Higgs production 1/2

SM cross-section recommendations by the LHCXSWG 3

Introduc

Conclus

<u>√s</u>	7 TeV	8 TeV	13 TeV	14 TeV	27 TeV	100 TeV
σ _{NNLO FTapprox} [fb]	6.572	9.441	31.05	36.69	139.9	1224

By varying the trilinear and Yukawa couplings

 3 FT approx: QCD@NNLO in the heavy-top limit, full LO and NLO mass effects and full mass dependence in the one-loop double real corrections at NNLO QCD $\leftarrow \Box \vdash \triangleleft \oslash \vdash \downarrow \oslash \vdash \downarrow \oslash$

 Introduction
 Intro and goals

 Main results
 Experimental state-of-the-art

 Conclusions
 Di-Higgs production in BSM

How to enchance di-Higgs production 2/2

From the existence of additional particles

New contributions and interferences will depend on:

- Trilinear couplings (many!)
- Masses
- Particle widths

(E)

< D > < A >

Impact of resonant and non-res. searches Benchmarks

メロト メロト メヨト メヨト

Main results

Impact of resonant and non-res, searches

Resonant production

N2HDM-I: H₁ is SM-like

- Resonant searches constrain $\sigma(gg \rightarrow H_i) * BR(H_i \rightarrow H_{SM}H_{SM})$
- Assume that non-resonant contribution is SM-like and no interferences
- Resonances can have $\Gamma(H_i)/m_i > 5\% \rightarrow NWA$ is not valid
- Cut points where $\Gamma(H_i)/m_i > 50\%$

< ロ > < 同 > < 三 > < 三 >

Impact of resonant and non-res. searches Benchmarks

イロト イボト イヨト イヨト

э

Impact of resonant searches

N2HDM-I: H_1 is SM-like

Impact of resonant and non-res. searches Benchmarks

イロト イロト イヨト イヨト

э

Impact of non-resonant searches

Definition: Resonant contribution is negligible with regards to the total XS

• Non-resonant region: $\sigma_{HH}^{\rm full} > 10 * \sigma_{HH}^{\rm res}$ (shaded area)

- Leading non-resonant constraint is $b\bar{b}\gamma\gamma$: $\sigma_{HH}^{\rm non-res} < 4.1*\sigma_{HH}^{\rm SM}$
- For the largest XS, linear correlation between resonant and full result

Main results

Impact of resonant and non-res, searches

Impact of all searches

N2HDM-I: H₁ is SM-like

- Single Higgs data constrains the Yukawa coupling.
- Additional bound $\lambda_{iik} < \lambda_{HHH}^{SM}(m_H = 700 \text{ GeV}) = 5975.6 \text{ GeV}$ cuts lower branch.
- Di-Higgs data is starting to constrain trilinears.

æ

< ロ > < 同 > < 回 > < 回 > < 回 > <

Main results

Impact of resonant and non-res. searches

< 口 > < 同 >

< E → < ∃→ э

Impact of all searches

N2HDM-I

Non-resonant

- In H_2 =SM-like case, large negative deviations from the SM
- Res. and non-res. searches needed to constrain BSM SM-like trilinear

Impact of resonant and non-res. searches Benchmarks

H_{SM}H_{SM} production benchmarks

All rates @NLO [fb]

Non-resonant

 $\sigma(H_i \rightarrow H_{SM}H_{SM}) < 0.1 * \sigma(H_{SM}H_{SM})$

	H_1	H_2	H_3
R2HDM-I	92	49	
R2HDM-II	59	-	
C2HDM-I	98	44	42
C2HDM-II	75	-	-
N2HDM-I	151	96	44
N2HDM-II	112	58	-
NMSSM	73	65	-

Resonai	۱t

	H_1	H_2
R2HDM-I	444	n.a.
R2HDM-II	81	n.a.
C2HDM-I	387	47
C2HDM-II	130	-
N2HDM-I	376	344
N2HDM-II	188	63
NMSSM	183	65

- Non-resonant: rates can be up to 4 times the SM expectation
- Resonant: rates can be up to 11 times the expectation

Benchmarks

Resonant production of R2HDM-I

 \rightarrow Input values:

<i>m</i> _{<i>H</i>1} [GeV]	<i>m</i> _{<i>H</i>₂} [GeV]	m_A [GeV]	$m_{H^{\pm}}$ [GeV]	α	aneta	$m_{12}^2 [\text{GeV}^2]$
125.09	267	512	516	-0.259	4.276	15020

\rightarrow Branching ratios:

$BR(H_2 \to H_1 H_1)$	=	0.544,	$BR(H_2 \to WW)$	=	0.280,	
$BR(H_2 \rightarrow ZZ)$	=	0.121,	$BR(A \rightarrow ZH_2)$	=	0.912,	(1)
$BR(A \to t\bar{t})$	=	0.086,	$BR(H^{\pm} \rightarrow W^{\pm}H_2)$	=	0.922,	

\rightarrow Production rates:

 $\sigma({\it H}_2) imes {\sf BR}({\it H}_2
ightarrow {\it H}_1 {\it H}_1) = 0.916 ~{\sf pb} imes 0.544 = 498 ~{\sf fb}$ (2) $\sigma(A) imes \mathsf{BR}(A o ZH_2 o ZH_1H_1) = 0.489 \ \mathsf{pb} imes 0.912 imes 0.544 = 243 \ \mathsf{fb}$

$\sigma_{H_1H_1}^{NLO}$ [fb]	K-factor	$\Gamma_{H_1}^{\text{tot}}$ [GeV]	$\Gamma_{H_2}^{\text{tot}}$ [GeV]	Γ_A^{tot} [GeV]	$\Gamma_{H^{\pm}}^{\text{tot}}$ [GeV]
444	2.06	4.029×10^{-3}	0.011	14.57	16.07
$\lambda_{3H_1}/\lambda_{3H}$	$y_{t,H_1}/y_{t,H}$	$\sigma_{H_1}^{NNLO}$ [pb]	$\sigma_{H_2}^{\text{NNLO}}$ [pb]	$\sigma_A^{\rm NNLO}$ [pb]	
0.993	0.993	48.56	0.916	0.489	

イロト イポト イヨト イヨト

= nar

Introduction Main results

Impact of resonant and non-res. searches Benchmarks

Mixed di-Higgs production into 4b final state

All rates @NLO! [fb]

 $\overline{gg \to H_{SM} H_j / A_j \to b \bar{b} } b \bar{b}$

Model	Mixed Higgs State	Rate [fb]	K-factor
R2HDM-I	$AH_1 (\equiv H_{SM})$	46	2.02
	$H_1H_2 (\equiv H_{\rm SM})$	35	1.97
C2HDM-I	$H_2H_1(\equiv H_{\rm SM})$	19	2.02
	$H_1H_2 (\equiv H_{\rm SM})$	14	2.01
	$H_1H_3 (\equiv H_{\rm SM})$	11	1.96
N2HDM-I	$H_2H_1(\equiv H_{\rm SM})$	105	2.01
	$AH_1 (\equiv H_{SM})$	830	2.06
	$H_1H_2 (\equiv H_{\rm SM})$	2110	2.09
	$AH_2 (\equiv H_{SM})$	277	2.04
	$H_1H_3 (\equiv H_{SM})$	44	1.97
	$H_2H_3 (\equiv H_{\rm SM})$	30	1.97
	$AH_3 (\equiv H_{SM})$	19	2.01
N2HDM-II	$H_1H_2(\equiv H_{\rm SM})$	18	1.86
NMSSM	$A_1H_1(\equiv H_{\rm SM})$	201	1.92
	$H_2H_1(\equiv H_{\rm SM})$	43	1.91
	$A_1H_2(\equiv H_{\rm SM})$	40	1.94
	$H_1H_2 (\equiv H_{\rm SM})$	59	1.90

• Details on these points can be provided on request.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Conclusions

メロト メロト メヨト メヨト

∃ < n < 0</p>

Conclusions

- A first perspective of the application and impact of di-Higgs constraints on BSM models
- Resonant searches already constrain all our models
- We need both resonant and non-resonant searches to constrain the SM-like trilinear
- Limits are beginning to constrain trilinear on the N2HDM
- Large XS: possibility for model exclusion
- Exotic channels might help with model distinction

 \rightarrow We provide on request benchmarks for di-scalars production (inc. non-SM-like) and cascading scalar processes (multiple scalars final state).

Check our paper at: <u>2112.12515</u> Thank you!

Backup

Duarte Azevedo Di-Higgs@BSM

≡ ∽ へ (~

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Mixed-state full-table 4b

Model	Mixed Higgs State	m _{res.} [GeV]	res. rate [fb]	m_{Φ} [GeV]	Rate [fb]	K-factor
R2HDM-I	$AH_1 (\equiv H_{SM})$	—	—	82	46	2.02
	$H_1H_2 (\equiv H_{\rm SM})$	_	_	68	35	1.97
C2HDM-I	$H_2H_1(\equiv H_{\rm SM})$	266	9	128	19	2.02
	$H_1 H_2 (\equiv H_{\rm SM})$		_	122	14	2.01
	$H_1H_3 (\equiv H_{SM})$	_	—	99	11	1.96
N2HDM-I	$H_2H_1(\equiv H_{SM})$	360	109	146	105	2.01
	$AH_1 (\equiv H_{SM})$	_	_	75	830	2.06
	$H_1H_2 (\equiv H_{\rm SM})$	229	2260	54	2110	2.09
	$AH_2 (\equiv H_{SM})$		—	101	277	2.04
	$H_1H_3 (\equiv H_{\rm SM})$	—	—	73	44	1.97
	$H_2H_3 (\equiv H_{\rm SM})$	_	_	83	30	1.97
	$AH_3 (\equiv H_{\rm SM})$	—	—	69	19	2.01
N2HDM-II	$H_1H_2(\equiv H_{SM})$	640	18	103	18	1.86
NMSSM	$A_1H_1(\equiv H_{\rm SM})$	553	210	113	201	1.92
	$H_2H_1 \equiv H_{SM}$	535	42	167	43	1.91
	$A_1H_2 (\equiv H_{\rm SM})$	511	42	87	40	1.94
	$H_1H_2 (\equiv H_{\rm SM})$	714	58	80	59	1.90

Table: Maximum rates at NLO QCD in the 4b final state for different mixed Higgs pair final states in the investigated models; the corresponding K-factor is given in the last column. In case of resonantly enhanced production, we give in the third and fourth column, respectively, the mass of the resonant Higgs boson and the resonant cross section as defined in the text. The fifth column contains the mass of the non-SM-like final state Higgs boson. More details on these points can be provided on request. イロト イポト イヨト イヨト э.

Mixed-state full-table 2b2W

Model	Mixed Higgs State	m _{res.} [GeV]	res. rate [fb]	m_{Φ} [GeV]	Rate [fb]	K-factor
N2HDM-I	$H_2H_1(\equiv H_{\rm SM})$	406	497	179	498	1.98
	$H_1H_2 (\equiv H_{\rm SM})$	304	615	113	590	2.04
NMSSM	$H_2H_1(\equiv H_{\rm SM})$	531	45	205	47	1.92

Table: Maximum rates at NLO QCD in the $(b\bar{b})(WW)$ final state for different mixed Higgs pair final states in the investigated models with the non-SM-like Higgs decaying into WW; the corresponding K-factor is given in the last column. In case of resonantly enhanced production, we give in the third and fourth column, respectively, the mass of the resonant Higgs boson and the resonant cross section as defined in the text. The fifth column contains the mass of the non-SM-like final state Higgs boson. More details on these points can be provided on request.

< ロ > < 同 > < 三 > < 三 >

Mixed-state full-table 2b2t

Model	Mixed Higgs State	m _{res.} [GeV]	res. rate [fb]	m_{Φ} [GeV]	Rate [fb]	K-factor
R2HDM-I	$AH_1 (\equiv H_{SM})$	—	—	346	11	1.94
N2HDM-I	$H_2H_1(\equiv H_{\rm SM})$	634	81	444	88	1.86
	$AH_1 (\equiv H_{SM})$	_	_	363	15	1.90
N2HDM-II	$H_2H_1(\equiv H_{\rm SM})$	813	23	511	34	1.79
NMSSM	$A_1H_1(\equiv H_{\rm SM})$	_	_	53	82	1.88
	$H_2H_1(\equiv H_{\rm SM})$	535	19	371	19	1.91

Table: Maximum rates at NLO QCD in the $(b\bar{b})(t\bar{t})$ final state at NLO for different mixed Higgs pair final states in the investigated models with the non-SM-like Higgs decaying into $t\bar{t}$; the corresponding K-factor is given in the last column. In case of resonantly enhanced production, we give in the third and fourth column, respectively, the mass of the resonant Higgs boson and the resonant cross section as defined in the text. The fifth column contains the mass of the non-SM-like final state Higgs boson. More details on these points can be provided on request.

< ロ > < 同 > < 三 > < 三 >

Introduction Main results

Mixed state full-table (6b)

Model	Mixed Higgs State	<i>m</i> φ ₁ [GeV]	m _{Φ2} [GeV]	Rate [fb]	K-factor
N2HDM-I	$H_2H_3 (\equiv H_{SM}) \rightarrow H_1H_1(b\bar{b}) \rightarrow (b\bar{b})(b\bar{b})(b\bar{b})$	98	41	15	1.95
	$H_2 H_1 (\equiv H_{SM}) \rightarrow H_1 H_1 (b\bar{b}) \rightarrow (b\bar{b}) (b\bar{b}) (b\bar{b})$	282	-	40	1.96
	$H_2H_1 (\equiv H_{SM}) \rightarrow AA(b\bar{b}) \rightarrow (b\bar{b})(b\bar{b})(b\bar{b})$	157	73	33	2.05
	$H_1 H_2 (\equiv H_{SM}) \rightarrow (b\bar{b}) H_1 H_1 \rightarrow (b\bar{b}) (b\bar{b}) (b\bar{b})$	54	-	111	2.09
	$H_3 H_2 (\equiv H_{SM}) \rightarrow H_1 H_1 (b\bar{b}) \rightarrow (b\bar{b}) (b\bar{b}) (b\bar{b})$	212	83	8	1.93
N2HDM-II	$H_2H_1 (\equiv H_{SM}) \rightarrow H_1H_1(b\bar{b}) \rightarrow (b\bar{b})(b\bar{b})(b\bar{b})$	271	-	3	1.87
NMSSM	$H_2H_1 (\equiv H_{SM}) \rightarrow H_1H_1(b\bar{b}) \rightarrow (b\bar{b})(b\bar{b})(b\bar{b})$	319	-	11	1.90
	$H_2H_1(\equiv H_{SM}) \rightarrow A_1A_1(b\bar{b}) \rightarrow (b\bar{b})(b\bar{b})(b\bar{b})$	253	116	26	1.92

Model	Mixed Higgs State	m _{res.} [GeV]	res. rate [fb]
N2HDM-I	$H_2H_3(\equiv H_{SM}) ightarrow H_1H_1(bar{b}) ightarrow (bar{b})(bar{b})(bar{b})$		
	$H_2H_1(\equiv H_{SM}) ightarrow H_1H_1(bar{b}) ightarrow (bar{b})(bar{b})(bar{b})$	441	39
	$H_2H_1(\equiv H_{ m SM}) ightarrow AA(bar{b}) ightarrow (bar{b})(bar{b})(bar{b})$	294	37
	$H_1H_2(\equiv H_{SM}) ightarrow (bar{b})H_1H_1 ightarrow (bar{b})(bar{b})(bar{b})$	229	119
	$H_3H_2(\equiv H_{ m SM}) ightarrow H_1H_1(bar b) ightarrow (bar b)(bar b)(bar b)$	—	—
N2HDM-II	$H_2H_1(\equiv H_{SM}) ightarrow H_1H_1(bar{b}) ightarrow (bar{b})(bar{b})(bar{b})$	615	2
NMSSM	$H_2H_1(\equiv H_{SM}) ightarrow H_1H_1(bar{b}) ightarrow (bar{b})(bar{b})(bar{b})$	560	11
	$H_2H_1(\equiv H_{SM}) o A_1A_1(bar{b}) o (bar{b})(bar{b})(bar{b})$	518	26

Table: Upper: Maximum rates for multi-Higgs final states given at NLO QCD. The *K*-factor is given in the last column. In the third and fourth column we also give the mass values m_{Φ_1} and m_{Φ_2} of the non-SM-like Higgs bosons involved in the process, in the order of their appearance. Lower: In case of resonantly enhanced production the mass of the resonantly produced Higgs boson is given together with the NNLO QCD production rate. More details on these points can be provided on request.

Multi-Higgs final state 1/2

Model	SM-like Higgs	Signature	m_{Φ} [GeV]	Rate [fb]	K-factor
N2HDM-I	H ₃	$H_1 H_1 \rightarrow (b\bar{b})(b\bar{b})$	41	14538	2.18
	H ₃	$H_1H_1 \rightarrow (4b); (4\gamma)$	41	4545 ; 700	2.24
	H_1	$AA \rightarrow (b\bar{b})(b\bar{b})$	75	6117	2.11
	H1	$H_2H_2 \rightarrow (b\bar{b})(b\bar{b})$	146	73	2.01
	H ₂	$AA \rightarrow (b\bar{b})(b\bar{b})$	80	2875	2.13
	H ₂	$AH_1 \rightarrow (b\bar{b})(b\bar{b})$	m _A : 87	921	2.09
			m _{H1} : 91		
	H ₂	$H_1H_1 \rightarrow (b\bar{b})(b\bar{b})$	47	8968	2.17
N2HDM-II	H ₂	$H_1H_1 \rightarrow (b\bar{b})(b\bar{b})$	44	1146	2.18
C2HDM-I	H ₁	$H_2H_2 \rightarrow (b\bar{b})(b\bar{b})$	128	475	2.07
	H ₂	$H_1H_1 \rightarrow (b\bar{b})(b\bar{b})$	66	814	2.16
	H ₃	$H_1H_1 \rightarrow (b\bar{b})(b\bar{b})$	84	31	2.09
NMSSM	Н1	$A_1A_1 \rightarrow (b\bar{b})(b\bar{b})$	166	359	1.95
	H ₁	$A_1A_1 \rightarrow (\gamma\gamma)(\gamma\gamma)$	179	34	1.96
	H ₂	$H_1 H_1 \rightarrow (b\bar{b})(b\bar{b})$	48	3359	2.18
	H ₂	$A_1A_1 \rightarrow (b\bar{b})(b\bar{b})$	54	1100	2.18
	H_1	$A_1A_1 \rightarrow (t\bar{t})(t\bar{t})$	350	20	1.82

イロト イロト イヨト イヨト

Multi-Higgs final state 1/2

Model	Signature	mres. [GeV]	res. rate [fb]	m _{res.} 2 [GeV]	res. rate 2 [fb]
N2HDM-I	$H_1 H_1 \rightarrow (b\bar{b})(b\bar{b})$	125.09	621	98	17137
	$H_1 H_1 \rightarrow (4b); (4\gamma)$	125.09	126; 19	94	5445;839
	$AA \rightarrow (b\bar{b})(b\bar{b})$	1535	< 0.1	323	482
	$H_2H_2 \rightarrow (b\bar{b})(b\bar{b})$	360	76	-	-
	$AA \rightarrow (b\bar{b})(b\bar{b})$	178	3191	_	-
	$AH_1 \rightarrow (b\bar{b})(b\bar{b})$	-	—	_	-
	$H_1 H_1 \rightarrow (b\bar{b})(b\bar{b})$	588	22	125.09	997
N2HDM-II	$H_1 H_1 \rightarrow (b\bar{b})(b\bar{b})$	520	< 0.1	125.09	1330
C2HDM-I	$H_2H_2 \rightarrow (b\bar{b})(b\bar{b})$	266	497	—	—
	$H_1 H_1 \rightarrow (b\bar{b})(b\bar{b})$	151	598	_	-
	$H_1H_1 \rightarrow (b\bar{b})(b\bar{b})$	-	-	_	-
NMSSM	$A_1A_1 \rightarrow (b\bar{b})(b\bar{b})$	552	31	453	332
	$A_1 A_1 \rightarrow (\gamma \gamma)(\gamma \gamma)$	796	< 0.01	444	34
	$\bar{H}_1\bar{H}_1 \rightarrow (b\bar{b})(b\bar{b})$	882	< 0.1	125.59	4173
	$A_1A_1 \rightarrow (b\bar{b})(b\bar{b})$	676	< 0.1	122.99	1353
	$A_1 A_1 \rightarrow (t\bar{t})(t\bar{t})$	741	7	705	14

Table: Upper: Selected rates for non-SM-like Higgs pair final states at NLO QCD. We specify the model, which of the Higgs bosons is the SM-like one, the signature and its rate as well as the *K*-factor. In the fourth column we also give the mass value m_{Φ} of the non-SM-like Higgs boson involved in the process. Lower: In case of resonantly enhanced cross sections, the mass of the resonantly produced Higgs boson is given together with the NNLO QCD production rate. Some scenarios contain two heavier Higgs bosons that can contribute to resonant production. All benchmark details can be provided on request.

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Resonant production R2HDM

< ロ > < 回 > < 回 > < 回 > < 回 >

Resonant production C2HDM

Duarte Azevedo

æ

Resonant production N2HDM

æ

Resonant production NMSSM

ATLAS-CONF-NOTE-2021-030 bbr7

- - ATLAS-CONF-NOTE-2021-035 bbbb

< ロ > < 回 > < 回 > < 回 > < 回 >

Non-resonant production

Non-resonant production NMSSM

イロト イヨト イヨト イヨト

æ