Electroweak baryogenesis in aligned two Higgs doublet model

Yushi Mura (Osaka U. PhD student)
Kazuki Enomoto (U. of Tokyo.) and Shinya Kanemura (Osaka U.)
2022/8/31 Workshop on Multi Higgs Models 2022 in Lisboa

Based on

K. Enomoto, S. Kanemura, and Y.M, JHEP 01 (2022) 104, arXiv: 2111.13079 [hep-ph] and

K. Enomoto, S. Kanemura, and Y.M, arXiv: 2207.00060 [hep-ph] (to appear in JHEP)

Introduction

Standard Model cannot explain the Baryon Asymmetry of the Universe.

Observed baryon asymmetry from Big Bang Nucleosynthesis,

$$\eta_B^{obs} = \frac{n_B}{n_\gamma} = 5.8 - 6.5 \times 10^{-10}$$
 PDG (2020)

This asymmetry is generated at the early Universe → Baryogenesis

For Baryogenesis,

Sakharov's Conditions Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967)

- ① Baryon number violation
- 2 C and CP violation
- ③ Out of thermal equilibrium

must be satisfied.

Some possibilities

- · Affleck-Dine mechanism
- Electroweak baryogenesis
- Leptogenesis etc.

Affleck and Dine, Nucl. Phys. B 249 (1985)

Kuzmin, Rubakov and Shaposhnikov, Phys Lett. B 155 (1985)

Fukugita and Yanagida, Phys. Lett. B 174 (1986)

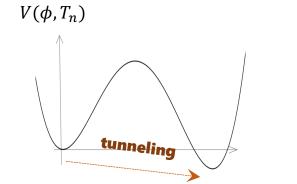
Electroweak baryogenesis

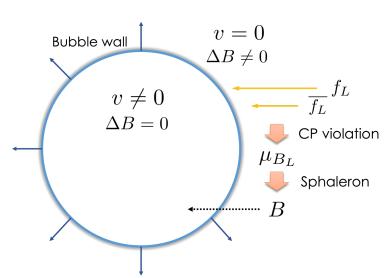
Electroweak Baryogenesis (EWBG)

- Sphaleron process
- ② C violation in chiral theory, CP violation in Higgs sector
- 3 Strongly first order electroweak phase transition

Sakharov's Conditioins

- Baryon number violation
- 2 C and CP violation
- 3 Out of thermal equilibrium





baryon number is created around the wall.

To decouple sphaleron process

$$\Gamma^{brk}_{sph}(T_n) < H(T_n) \implies \frac{v_n}{T_n} \gtrsim 1$$

 \rightarrow "Strongly" first order PT

However, EWBG in the SM is not realized.

- Insufficient CPV
- Not occur first order EWPT
- ⇒ Extended Higgs sector is needed!
- ⇒ EWBG can be tested by the future Higgs precision experiments!

Ex) Two Higgs Doublet Model

Fromme, Huber and Seniuchi, JHEP 11 (2006); Cline, Kainulainen and Trott, JHEP 11 (2011); Dorsch et al. JCAP 05 (2017); and more

After the discovery of Higgs boson in 2012,

· LHC exp.

Aad et al. [ATLAS] Phys. Rev. D 101 (2020); SM like Higgs couplings Sirunyan et al. [CMS] Eur. Phys. J. C 79 (2019)

Electric Dipole Moment exp. Severe constraints on additional CPV

Andreev et al. [ACME] Nature 562 (2018)

In such situation,

Kanemura, Kubota and Yagyu, JHEP 08 (2020)

- SM like Higgs boson
- Destructive interference between CPV phases

Todays talk about...

We show some benchmarks can explain BAU under current data in THDM. Also discuss some phenomenological consequences.

Aligned Two Higgs Doublet Model

The most general potential

$$\begin{split} \text{The most general potential} & \Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h_1+iG^0) \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(h_2+ih_3) \end{pmatrix} \\ V = -\mu_1^2(\Phi_1^{\dagger}\Phi_1) - \mu_2^2(\Phi_2^{\dagger}\Phi_2) - \left(\mu_3^2(\Phi_1^{\dagger}\Phi_2) + h.c.\right) & \text{Higgs basis Davidson and Haber, Phys. Rev. D 72 (2005)} \\ + \frac{1}{2}\lambda_1(\Phi_1^{\dagger}\Phi_1)^2 + \frac{1}{2}\lambda_2(\Phi_2^{\dagger}\Phi_2)^2 + \lambda_3(\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_2) + \lambda_4(\Phi_2^{\dagger}\Phi_1)(\Phi_1^{\dagger}\Phi_2) \\ + \left\{ \left(\frac{1}{2}\lambda_5\Phi_1^{\dagger}\Phi_2 + \lambda_6\Phi_1^{\dagger}\Phi_1 + \lambda_7\Phi_2^{\dagger}\Phi_2\right)\Phi_1^{\dagger}\Phi_2 + h.c. \right\}, \quad (\mu_3,\lambda_5,\lambda_6,\lambda_7 \in \mathbb{C}) \end{split}$$

Mass spectrum

$$m_{H^\pm}^2 = M^2 + \frac{1}{2}\lambda_3 v^2 \qquad M^2 \equiv -\mu_2^2$$
 Neutral scalar
$$\mathcal{M}^2 = v^2 \begin{pmatrix} \lambda_1 & \text{Re}\lambda_6 & -\text{Im}\lambda_6 \\ \text{Re}\lambda_6 & \frac{M^2}{v^2} + \frac{\lambda_3 + \lambda_4 + \text{Re}\lambda_5}{2} & \frac{1}{2}\text{Im}\lambda_5 \\ -\text{Im}\lambda_6 & \frac{M^2}{v^2} + \frac{\lambda_3 + \lambda_4 + \text{Re}\lambda_5}{2} & \frac{M^2}{v^2} + \frac{\lambda_3 + \lambda_4 - \text{Re}\lambda_5}{2} \end{pmatrix}$$

By phase redefinition

Experimental fact "mixing angle among neutral scalars is small"

For simplicity, we set $\lambda_6=0$ (Higher loop corrections are non-zero)

$$= \begin{pmatrix} m_h^2 & 0 \\ 0 & m_{H_2}^2 \\ 0 & 0 & r \end{pmatrix}$$

 $=\begin{pmatrix} m_h^2 & 0 & 0 \\ 0 & m_{H_2}^2 & 0 \\ 0 & 0 & m_{H_3}^2 \end{pmatrix}$ Coupling consts. coincide with SM ones Higgs alignment

Finally, only the CP phase $arg[\lambda_7] \equiv \theta_7$ remains.

Aligned Two Higgs Doublet Model

The most general Yukawa interaction

$$-\mathcal{L}_{y} = \sum_{k=1}^{2} \left(\overline{Q}'_{L}(y_{u}^{k})^{\dagger} \tilde{\Phi}_{k} u_{R}' + \overline{Q}'_{L} y_{d}^{k} \Phi_{k} d_{R}' + \overline{L}'_{L} y_{e}^{k} \Phi_{k} e_{R}' + h.c. \right)$$

Experimental fact "Flavor Changing Neutral Current must be suppressed"

We assume
$$y_f^2 = \zeta_f y_f^1$$
 $(f = u, d, e)$ Yukawa alignment

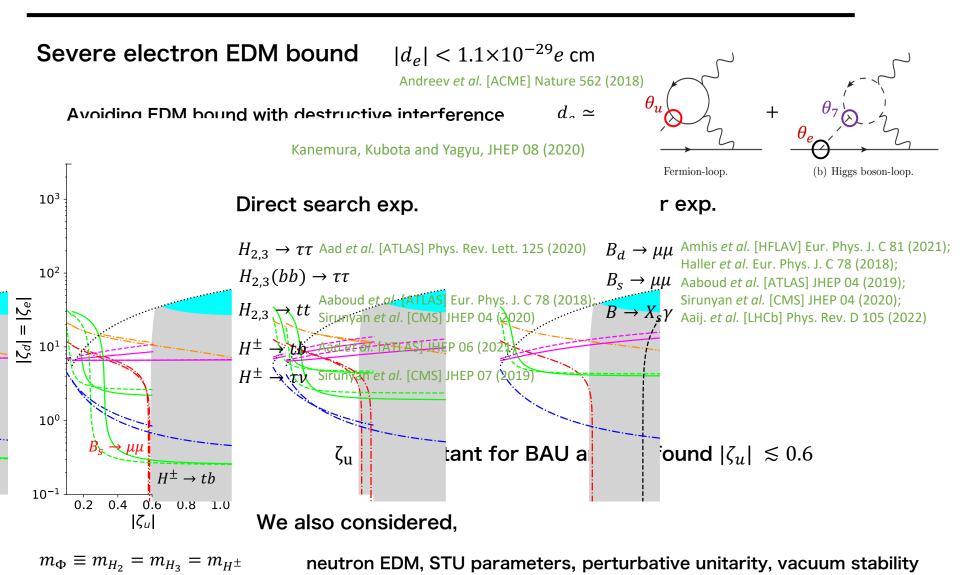
Pich and Tuzon, Phys. Rev. D 80 (2009)

Summary of CP phases in the model

Potential
$$\arg[\lambda_7] \equiv \theta_7$$

Yukawa $\arg[\zeta_u] \equiv \theta_u$, $\arg[\zeta_d] \equiv \theta_d$, $\arg[\zeta_e] \equiv \theta_e$

Constraints on the model



7

Baryogenesis

Inputs

$$M = 30 \text{ GeV}, \ \lambda_2 = 0.1, \ |\lambda_7| = 0.8, \ \theta_7 = -0.9,$$

 $|\zeta_u| = |\zeta_d| = |\zeta_e| = 0.18, \ \theta_u = -2.7, \ \delta_d = 0, \ \delta_e = -0.04.$

relate to.. BAU eEDM both

Baryon asymmetry in the relativistic bubble wall velocity

Cline and Kainulainen, Phys. Rev. D 101 (2020)

The observed BAU (pink) $\eta_{obs}^{\rm BBN} \equiv \frac{n_B}{\epsilon} = 8.2 - 9.2 \times 10^{-11}$

Electron EDM (blue dotted)

We set two benchmarks:

▼ BP1: strongly PT

OBP2: weakly PT

First order PT and non-decoupling effect

Deviation of triple Higgs coupling

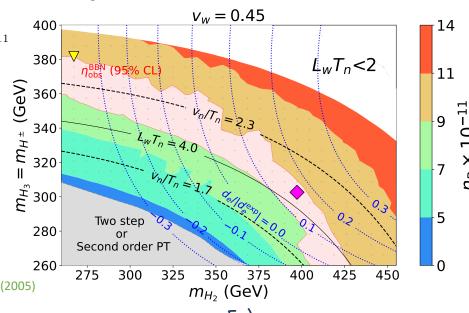
Kanemura, Okada and Senaha, Phys. Lett. B 606 (2005)

$$(\Delta R \equiv \delta \lambda_{hhh} / \lambda_{hhh}^{SM})$$

Strongly PT (BP1) $\Delta R = 61\%$

 $\Delta R = 44\%$ Weakly PT (BP2)

→ Detectable in future colliders



HL-LHC: 50%

ILC (500 GeV): 27% ILC (1 TeV): 10%

Capeda et al. CERN Yellow Rep. Monogr. 7 (2019);

Fujii et al. [1506.05992]; Bambade et al. [1903.01629]

Higgs to di-photon decay

Ellis, Gaillard and Nanopoulos, Nucl. Phys. B 106 (1976); Shifman et al. Sov. J. Nucl. Phys. 30 (1979); and more works

In each BP.

$$\sigma Br(H_1 \rightarrow \gamma \gamma) = 104 \pm 5 \text{ fb}$$

Observed: $\sigma Br(H_1 \rightarrow \gamma \gamma)_{obs} = 127 \pm 10$ fb

At HL-LHC, uncertainty ~3%

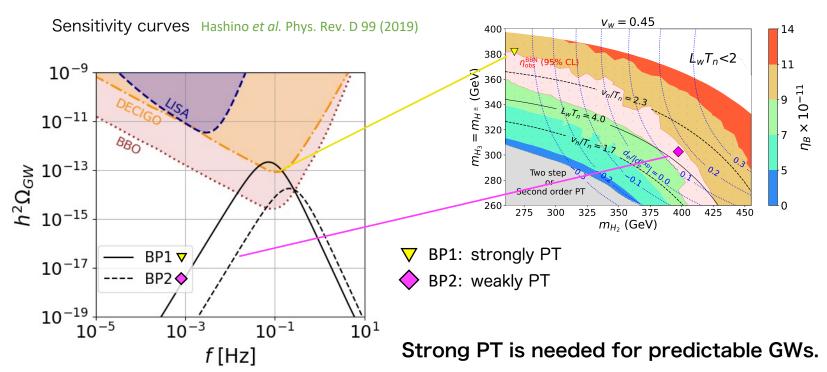
SM: $\sigma Br(H_1 \rightarrow \gamma \gamma)_{SM} = 116 \pm 5$ fb

Capeda et al. CERN Yellow Rep. Monogr. 7 (2019)

Gravitational waves

Gravitational wave spectra

Grojean and Servant, Phys. Rev. D 75 (2007); Kakizaki, Kanemura and Matsui, Phys. Rev. D 92 (2015); and more



BP1 and BP2 can also be tested by GW observation.

Phenomenology of CP violation

various EDM, flavor and collider exp. (see back up)

Summary

- ◆ SM cannot explain the Baryon asymmetry of the universe EWBG as a solution of BAU is Higgs physics thus it is testable.
- ◆ Aligned Two Higgs Doublet Model
 - SM like 125 GeV Higgs boson
 - We showed the BAU can be explained under current data.
 - · Additionally, some of BPs can be tested using GW signal.
- ◆ Phenomenology
 - Higgs triple coupling ⇒ HL-LHC, ILC (500GeV, 1TeV)
 - Higgs to di-photon ⇒ HL-LHC
 - Gravitational waves ⇒ LISA, DECIGO, BBO
 - Additional CPV ⇒ EDM, Flavor, ILC (see back up)

Back up

Predictions of CP violation

CPV in the future flavor experiments

Benzke et al. Phys. Rev. Lett. 106 (2011); Watanuki et al. [Belle] Phys. Rev. D 99 (2019); and more

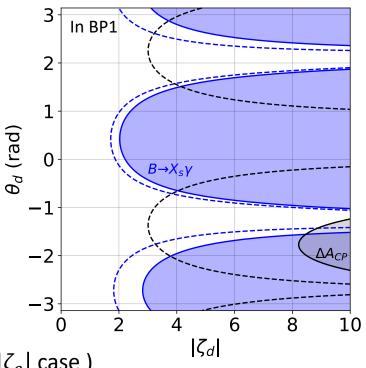
$$\Delta A_{CP} = A_{CP}(B^+ \to X_S^+ \gamma) - A_{CP}(B^0 \to X_S^0 \gamma)$$

$$A_{CP}(X \to Y) \equiv \frac{\Gamma(\bar{X} \to \bar{Y}) - \Gamma(X \to Y)}{\Gamma(\bar{X} \to \bar{Y}) + \Gamma(X \to Y)}$$

Solid: current excluded

Dashed: future excluded (Belle II)

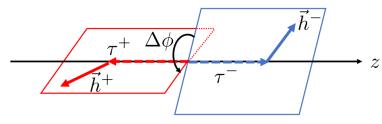
 ζ_d can be constrained from the future flavor exp.



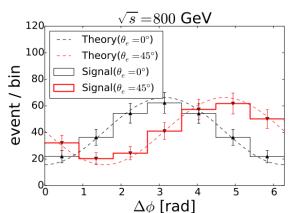
CPV in the decays of the neutral scalar bosons ($|\zeta_d| \ll |\zeta_e|$ case)

Azimuth angle dependence in $H_{2,3} \to \tau^+ \tau^- \to X^+ \overline{\nu} X^- \nu$

Kanemura, Kubota and Yagyu, JHEP 04 (2021)



Detectability of the phase of ζ_e in ILC

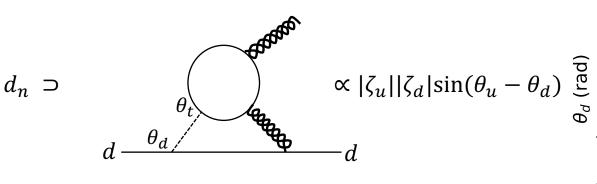


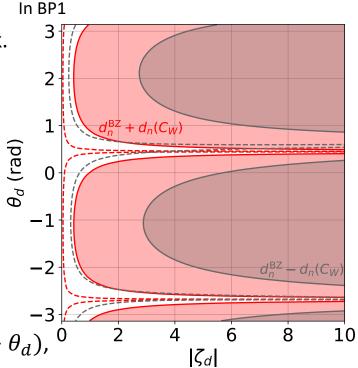
Neutron EDM

Experimental bound: $|d_n| < 1.8 \times 10^{-26} e$ cm Abel et al. [nEDM] Phys. Rev. Lett. 124 (2020)

 ζ_d is restricted from neutron EDM.

The leading graph is chromo Barr-Zee type of down quark.

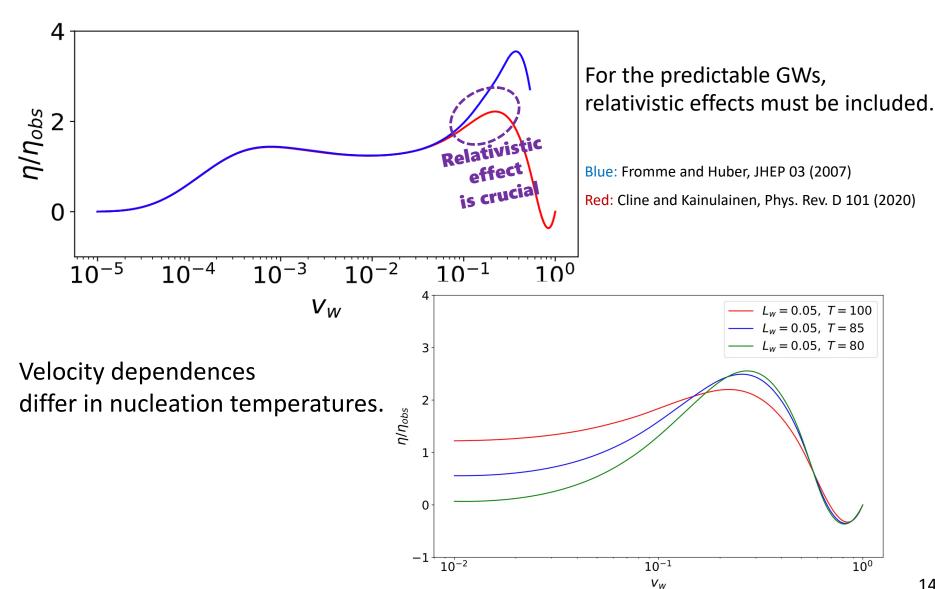




Also, from Weinberg operator $d_n(C_W) \propto |\zeta_u| |\zeta_d| \sin(\theta_u - \theta_d)$, $0 \qquad 2 \qquad 4 \qquad 6 \qquad 8 \qquad 1$ but the sign of $d_n(C_W)$ is not determined.

Solid: current Red: $d_n^{BZ} + d_n(C_W)$ case Dashed: expected Gray: $d_n^{BZ} - d_n(C_W)$ case

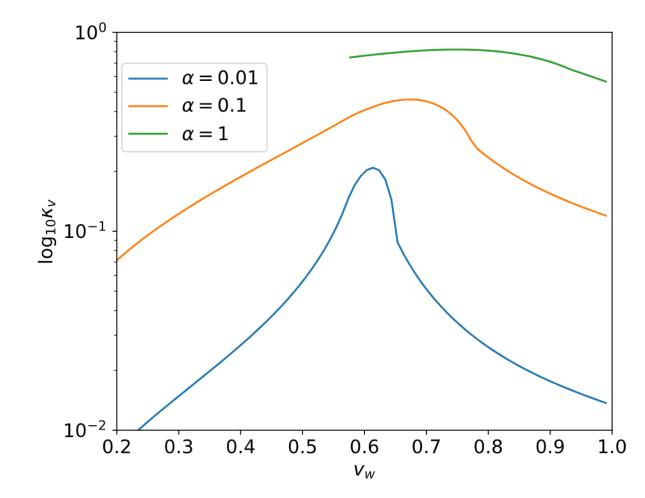
Velocity dep. of baryon density



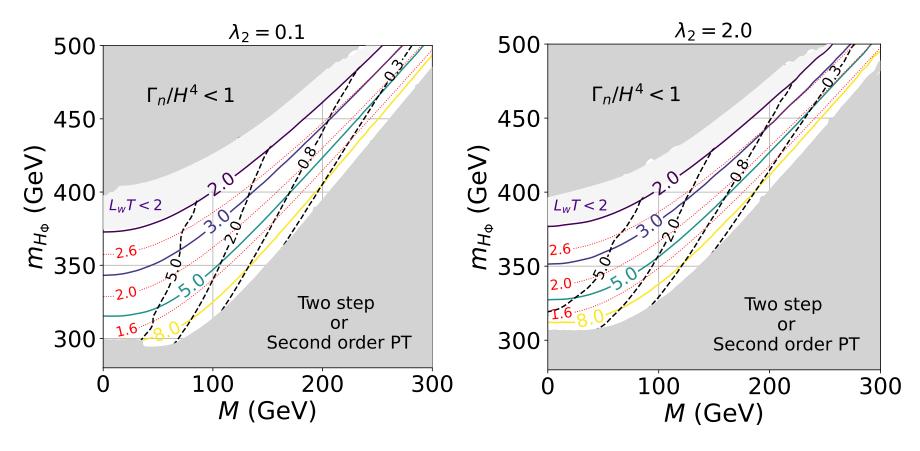
Velocity dep. of efficiency factor

Efficiency $\kappa_v(\alpha, \nu_w)$ means how much the latent heat is converted to the sound waves.

No hydrodynamical eq. exists when $\alpha \sim 1$, $v_w \lesssim c_s$. Espinosa et al. JCAP 06 (2010)



EW Phase transition



When M and λ_2 are large, $\partial_z \theta|_{max}$ becomes small.

Source term $S_{\theta} = -v_w K_8(m^2 \theta')' + v_w K_9 \theta' m^2 (m^2)'$

Red dotted : v_n/T_n

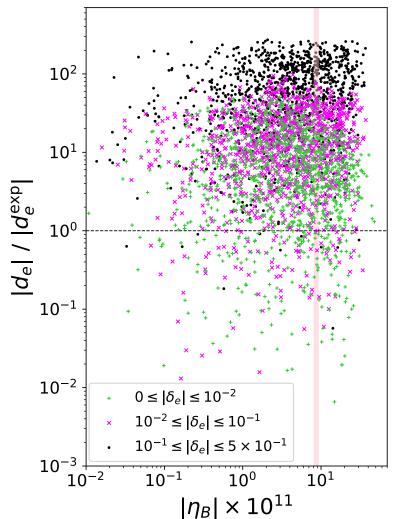
 $\mathsf{Color}\,\mathsf{solid}: L_wT$

Black dashed : $\partial_z \theta|_{max}$

Scatter plot for eEDM and BAU

$$\lambda_2 = 0.1, \ m_{\Phi} = 350 \text{ GeV}, \ M = 30 \text{ GeV}, \ v_w = 0.1,$$

$$\theta_u = \theta_d = [0, 2\pi), \ |\zeta_d| = |\zeta_e| = [0, 10], \ |\lambda_7| = [0.5, 1.0], \ \theta_7 = [0, 2\pi).$$



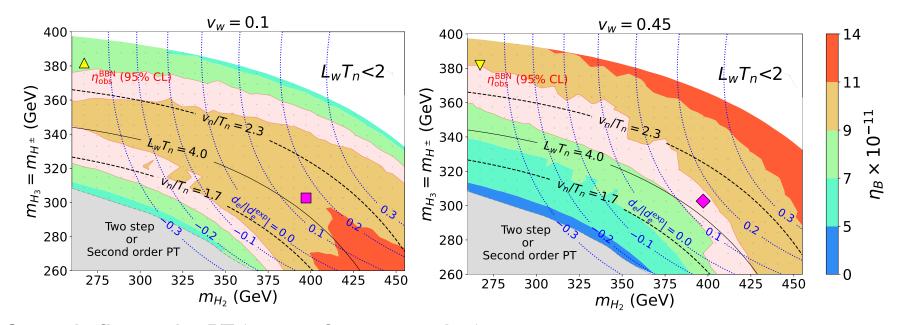
These points are allowed from various constraints.

Fermion loop contributions are proportional to $|\zeta_u||\zeta_e|\sin\delta_e$. $(\delta_e \equiv \theta_u - \theta_e)$

Many points are satisfied from eEDM data and they generate sufficient BAU.

Velocity dependence of BAU

Baryon asymmetry in the relativistic bubble wall velocity Cline and Kainulainen, Phys. Rev. D 101 (2020) Assuming the velocity as a free parameter



Strongly first order PT (except for gray region)

$$M = 30 \text{ GeV}, \ \lambda_2 = 0.1, \ |\lambda_7| = 0.8, \ \theta_7 = -0.9,$$

blue: relate to the eEDM

purple: relate to the both

The observed BAU (pink)
$$\eta_{obs}^{\rm BBN} \equiv \frac{n_B}{s} = 8.2 - 9.2 \times 10^{-11}$$
 $|\zeta_u| = |\zeta_d| = |\zeta_e| = 0.18, \; \theta_u = -2.7, \; \delta_d = 0, \; \delta_e = -0.04.$

Electron EDM (blue dotted)

$$|d_e^{\rm exp}| < 1.1 \times 10^{-29} e {
m \ cm}$$

Andreev et al. [ACME] Nature 562 (2018)

We set four benchmarks:

△ BP1a: small velo. + strongly PT ☐ BP2a: small velo. + weakly PT

BP1b: large velo. + strongly PT 🔷 BP2b: large velo. + weakly PT

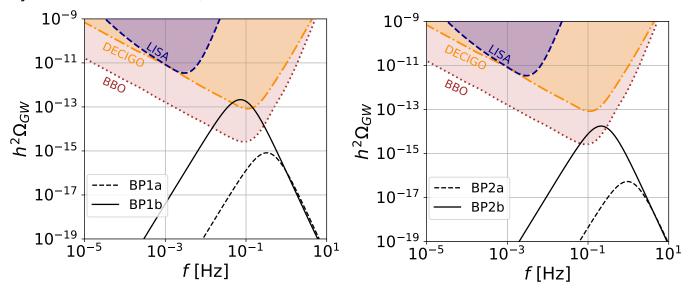
Gravitational waves from EWPT

			v_w	m_{H_2}	m_{H_3,H^\pm}	M	v_n/T_n	L_wT_n	η_B	ΔR	$\sigma \mathcal{B}(H_1 o \gamma \gamma)$
Strongly PT	small velo. 🛆	BP1a	0.1	267 GeV	381 GeV	30 GeV	2.4	2.6	7.8×10^{-11}	0.61	$104\pm 5~\mathrm{fb}$
	large velo. ▽	BP1b	0.45						9.1×10^{-11}		
Weakly PT	small velo.	BP2a	0.1	397 GeV	$302~{ m GeV}$	30 GeV	2.0	4.1	10.8×10^{-11}	0.44	
	large velo. 🔷	BP2b							9.0×10^{-11}		

Gravitational wave spectra

Grojean and Servant, Phys. Rev. D 75 (2007); Kakizaki, Kanemura and Matsui, Phys. Rev. D 92 (2015); and more

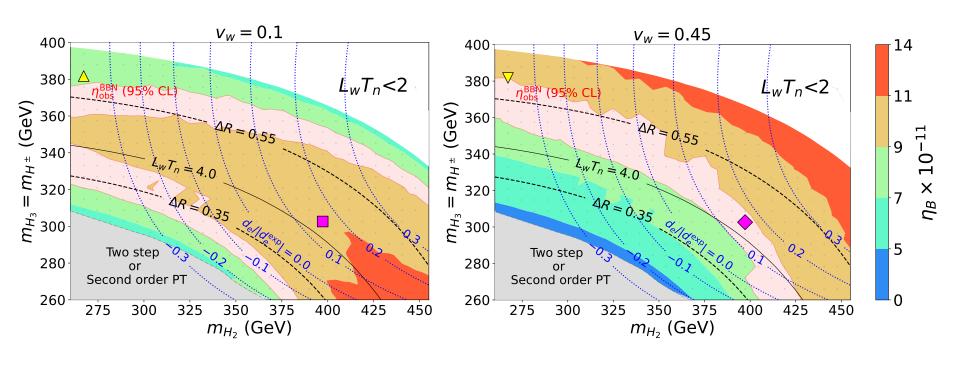
Sensitivity curves Hashino et al. Phys. Rev. D 99 (2019)



Strong PT and large velocity are needed.

BP1b and BP2b can also be tested by GW observation.

Triple Higgs couplings



Destructive interference

Dimension 5 effective operator

$$H_{ ext{EDM}} = -d_f rac{oldsymbol{S}}{|oldsymbol{S}|} \cdot oldsymbol{E}$$

$$H_{\mathrm{EDM}} = -d_f rac{oldsymbol{S}}{|oldsymbol{S}|} \cdot oldsymbol{E} \qquad \mathcal{L}_{\mathrm{EDM}} = -rac{d_f}{2} \overline{f} \sigma^{\mu
u} (i \gamma_5) f F_{\mu
u}$$

Time reversal

$$\mathcal{T}(oldsymbol{E}) = oldsymbol{E}, \mathcal{T}(oldsymbol{S}) = -oldsymbol{S}$$

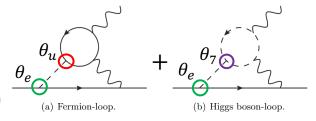
 $\mathcal{T}(m{E}) = m{E}, \mathcal{T}(m{S}) = -m{S}$ T violation ightarrow From CPT theorem, CP is violated.

Two diagrams contribute to the electron EDM in our model.

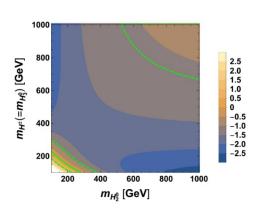
Experimental bound $|d_e| < 1.1 \times 10^{-29} e$ cm

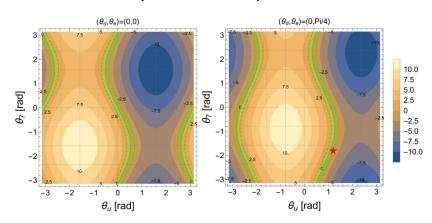
 $d_e \simeq$

Andreev et al. [ACME] Nature 562 (2018)



Destructive interference between two independent CP phase Kanemura, Kubota and Yagyu, JHEP 08 (2020)





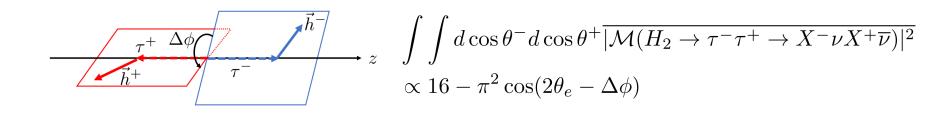
 θ_7 and θ_u are important to generate BAU.

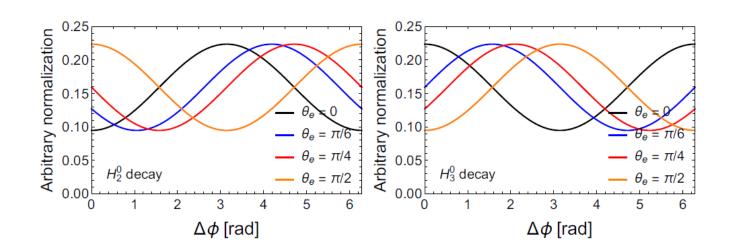
Angular distribution

Detection of CP phase θ_e in ILC

Decay process of the heavy neutral scalars $H_{2,3} \to \tau^+ \tau^- \to X^+ \overline{\nu} X^- \nu$

Kanemura, Kubota and Yagyu, JHEP 04 (2021)





Prospects

More general Yukawa structure

Ex) Down type quark couplings to the heavy scalars

$$y_{d,2} = \zeta_d y_{d,1} \quad \zeta_d \delta_{ij}
ightarrow egin{pmatrix} \zeta_d & & & \ & \zeta_s & \ & & \zeta_b \end{pmatrix}_{ij}$$

Various possibilities about CPV

Top

Top-charm mixing

Bottom

Tau

Tau-mu mixing

• ..

Restrict each scenario

Belle II
KOTO
Neutron EDM
Electron EDM
Muon EDM
Tau EDM

Chiang *et al.* (2016) Fuyuto *et al.* (2018) ...

Chung (2010)

Ex) Bottom EWBG and *B* physics

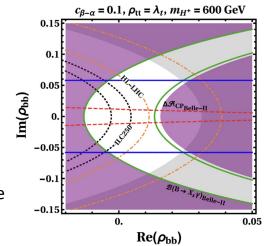
Modak and Senaha, Phys. Rev. D 99 (2019)

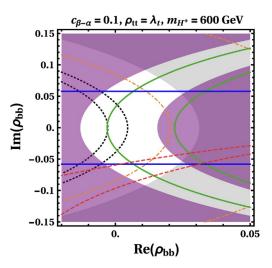
Blue: $\eta_B/\,\eta_B^{obs}=1$

Red: ΔA_{CP} (Belle ${
m I\hspace{-.1em}I}$)

Green: $B \rightarrow s \gamma$ (Belle II)

Left (Right): Central value is the SM (Current) one





Effective potential

Thermal resummation \rightarrow Parwani scheme 1 loop potential \rightarrow Landau gauge ($\xi = 0$)

Renormalization condition

 \rightarrow MS-bar scheme ($\lambda_{2,7}$, M) + On-shell scheme (other parameters)

$$\left. \frac{\partial V}{\partial h_i} \right|_{h_1=v} = 0$$
 We used cutoff $m_{NG} = m_{IR} \sim 1$ GeV to avoid IR divergence.

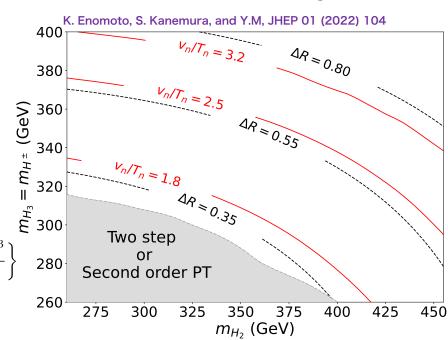
$$\frac{\partial^2 V}{\partial h_i \partial h_j} \bigg|_{\substack{h_1 = v \\ h_2 = h_3 = 0}} = \mathcal{M}_{ij}^2$$

Higgs triple coupling at 1 loop level

$$\Delta R \equiv \frac{\lambda_{hhh} - \lambda_{hhh}^{SM}}{\lambda_{hhh}^{SM}}$$

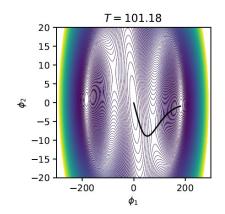
$$\simeq \frac{1}{12\pi^2 v^2 m_{H_1}^2} \left\{ 2 \frac{(m_{\pm}^2 - M^2)^3}{m_{\pm}^2} + \frac{(m_{H_2}^2 - M^2)^3}{m_{H_2}^2} + \frac{(m_{H_3}^2 - M^2)^3}{m_{H_3}^2} \right\}$$

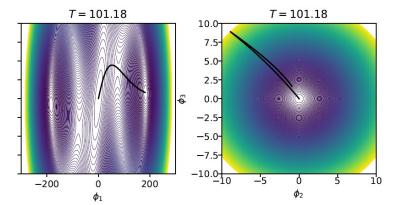
Relation between ϕ/T and ΔR (right figure)



CP violating bubble

Order parameter $h_1 = h, h_2 = H\cos\varphi_H, h_3 = H\sin\varphi_H$





Black line is the path of PT.

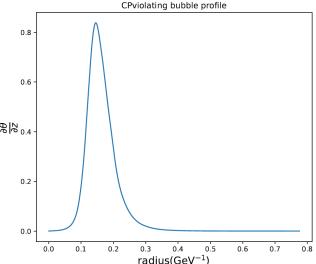
Vertical: Heavy scalar mode Horizontal: Light scalar mode

Large VEVs $\phi_{2,3}$ during PT are needed for BAU.

Localized top phase

$$\partial_z \theta(z) = -\frac{\varphi_H^2}{\varphi_{H_1}^2 + \varphi_H^2} \partial_z \theta_H - \partial_z \arctan\left(\frac{|\zeta_u| \varphi_H \sin(\theta_H + \theta_u)}{\varphi_{H_1} + |\zeta_u| \varphi_H \cos(\theta_H + \theta_u)}\right),$$

$$\varphi_H \equiv \sqrt{\varphi_{H_2}^2 + \varphi_{H_3}^2}, \quad \theta_H = \arctan(\varphi_{H_2}/\varphi_{H_3}),$$



We used CosmoTransitions to calculate the bubble wall profile.

Estimation of baryon density

Top transport scenario Fromme and Huber, JHEP 03 (2007)

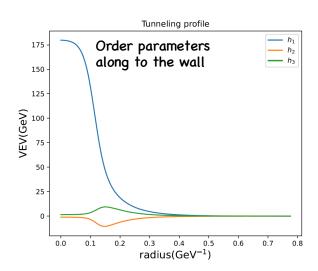
CP violating source is the top quark which has large yukawa coupling.

Localized top quark mass

$$m_t(z) = \frac{y_t}{\sqrt{2}}v(z)e^{i\theta(z)}$$

Higgs potential at finite temperature determines the bubble profile.





Cline, Joyce and Kainulainen, JHEP 07 (2000); "Semi classical force mechanism" (WKB method) Cline and Kainulainen Phys. Rev. D 101 (2020)

Boltzmann equation
$$(\partial_t + \boldsymbol{v}_g \cdot \partial_{\boldsymbol{x}} + \boldsymbol{F} \cdot \partial_{\boldsymbol{p}}) f_i = C[f_i, f_j, \ldots]$$

$$v_g = \frac{p_z}{E_0} \left(1 \pm s \frac{\theta'}{2} \frac{m^2}{E_0^2 E_{0z}} \right)$$

$$F_z = -\frac{(m^2)'}{2E_0} \pm s \frac{(m^2\theta')'}{2E_0E_{0z}} \mp s \frac{\theta'm^2(m^2)'}{4E_0^3E_{0z}}$$

Overall signs are flipped between particles and anti-particles.

WKB wave packet

Particle distributions are small away from its equilibrium form

$$f_i = \frac{1}{e^{\beta[\gamma_w(E_i + v_w p_z) - \mu_i]} \pm 1} + \delta f_i$$

Transport equations

Boltzmann equation

$$(\partial_t + \boldsymbol{v}_g \cdot \partial_{\boldsymbol{x}} + \boldsymbol{F} \cdot \partial_{\boldsymbol{p}}) f_i = C[f_i, f_j, \ldots]$$

$$v_g = \frac{p_z}{E_0} \left(1 \pm s \frac{\theta'}{2} \frac{m^2}{E_0^2 E_{0z}} \right)$$

$$F_z = -\frac{(m^2)'}{2E_0} \pm s \frac{(m^2 \theta')'}{2E_0 E_{0z}} \mp s \frac{\theta' m^2 (m^2)'}{4E_0^3 E_{0z}}$$

Particle distributions are small away from its equilibrium form

$$f_i = \frac{1}{e^{\beta[\gamma_w(E_i + v_w p_z) - \mu_i]} \pm 1} + \delta f_i$$

Overall signs are flipped between particle and anti-particle.

Boltzmann equation can be expanded by small wall velocity, and after integrated in momentum,

$$v_w K_1 \mu' + v_w K_2(m^2)' \mu + u' - \langle \boldsymbol{C}[f] \rangle = 0 \qquad \text{(K series are z-dependent functions)}$$

$$-K_4 \mu' + v_w \tilde{K_5} u' + v_w \tilde{K_6}(m^2)' u - \left\langle \frac{p_z}{E_0} \boldsymbol{C}[f] \right\rangle = S_\theta \qquad S_\theta = -v_w K_8(m^2 \theta')' + v_w K_9 \theta' m^2(m^2)'$$

Plasma flame

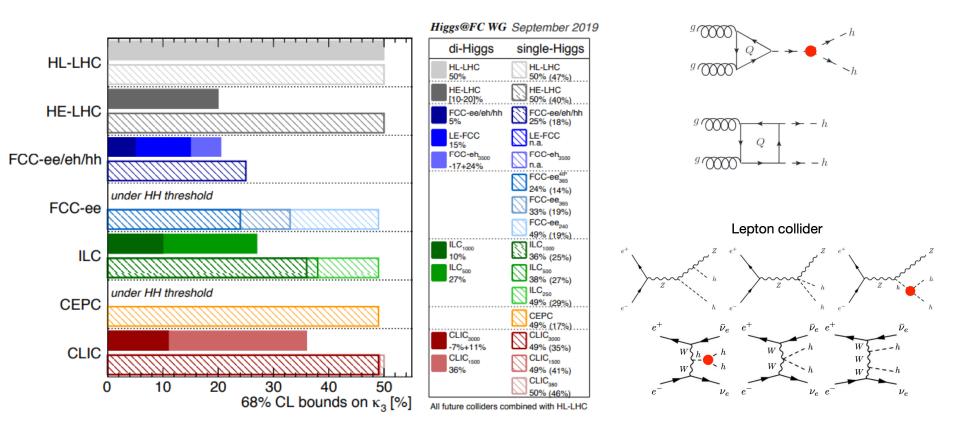
$$\frac{\partial n_B}{\partial t} = \frac{3}{2} \Gamma_{\rm sph} \left(3\mu_{B_L} - \frac{A}{T^3} n_B \right)$$

Integrated in wall flame

$$\eta_B = \frac{405\Gamma_{\rm sph}}{4\pi^2 v_w g_* T} \int_0^\infty dz \; \mu_{B_L} f_{\rm sph} e^{-45\Gamma_{\rm sph} z/(4v_w)}$$
$$f_{\rm sph}(z) = \min\left(1, \frac{2.4T}{\Gamma_{\rm sph}} e^{-40v(z)/T}\right)$$

Higgs triple coupling

de Blas et al. JHEP 01(2020)



Hadron collider

Higgs to di-photon decay

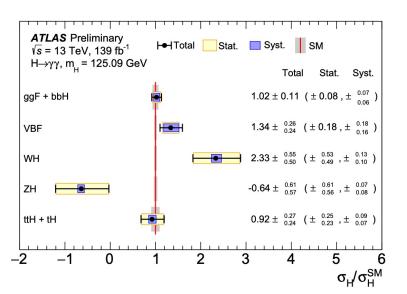
Non decoupling effect in $H_1 \rightarrow \gamma \gamma$

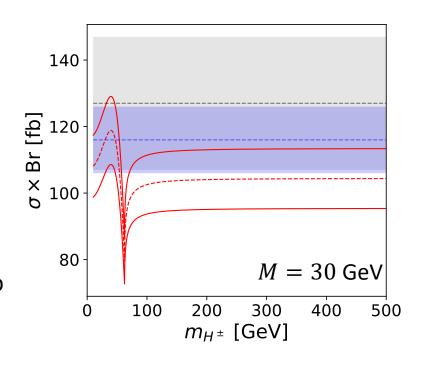
The constraints on the coupling $H_1H^{\pm}H^{\pm}$

$$m_{H^{\pm}}^2 = M^2 + \frac{1}{2}\lambda_3 v^2$$

Red line is prediction in the case of M=30 GeV.

SM expected (blue): $\sigma Br(H_1 \rightarrow \gamma \gamma) = 116 \pm 5$ fb





Observed (gray): $\sigma Br(H_1 \rightarrow \gamma \gamma) = 127 \pm 10$ fb

 σ is inclusive production cross section of H_1 .

ATLAS-CONF-2020-026

Other constraints

STU parameter

Considering Higgs alignment and $m_{H_3}=m_{H^\pm}$, our potential has custordial symmetry at 1 loop level.

$$\begin{split} V &= -\frac{1}{2} \mu_1^2 \mathrm{Tr}(M_1^\dagger M_1) - \frac{1}{2} \mu_2^2 \mathrm{Tr}(M_2^\dagger M_2) - \mu_{3R}^2 \mathrm{Tr}(M_1^\dagger M_2) + \mu_{3I}^2 \mathrm{Tr}(M_1^\dagger M_2 \tau_3) \\ &+ \frac{1}{8} \lambda_1 \mathrm{Tr}^2(M_1^\dagger M_1) + \frac{1}{8} \lambda_2 \mathrm{Tr}^2(M_2^\dagger M_2) + \frac{1}{4} \lambda_3 \mathrm{Tr}(M_1^\dagger M_1) \mathrm{Tr}(M_2^\dagger M_2) \\ &+ \frac{1}{2} \lambda_{5R} \mathrm{Tr}^2(M_1^\dagger M_2) + \frac{1}{4} (\lambda_4 - \lambda_{5R}) \left(\mathrm{Tr}^2(M_1^\dagger M_2) - \mathrm{Tr}^2(M_1^\dagger M_2 \tau_3) \right) + \frac{1}{2} \lambda_{5I} \mathrm{Tr}(M_1^\dagger M_2) \mathrm{Tr}(M_1^\dagger M_2 \tau_3) \\ &+ \lambda_{6R} \mathrm{Tr}(M_1^\dagger M_1) \mathrm{Tr}(M_1^\dagger M_2) + \lambda_{6I} \mathrm{Tr}(M_1^\dagger M_1) \mathrm{Tr}(M_1^\dagger M_2 \tau_3) \\ &+ \lambda_{7R} \mathrm{Tr}(M_2^\dagger M_2) \mathrm{Tr}(M_1^\dagger M_2) + \lambda_{7I} \mathrm{Tr}(M_2^\dagger M_2) \mathrm{Tr}(M_1^\dagger M_2 \tau_3) \end{split} \qquad \boldsymbol{\rightarrow} \mathbf{T} = \mathbf{0} \end{split}$$

S and U parameter in general CPV 2HDM Haber and Neil, Phys. Rev. D 83 (2011)

S and U are very small in our benchmark scenario.

Bounded from below

Unitarity bound (M = 30 GeV)

Kanemura and Yagyu, Phys. Lett. B 751 (2015)

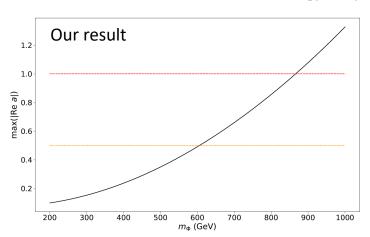
Ferreira, Santos and Barroso, Phys. Lett. B 603 (2004)

$$\lambda_1 \ge 0, \ \lambda_2 \ge 0$$

$$\lambda_3 \ge -\sqrt{\lambda_1 \lambda_2}, \ \lambda_3 + \lambda_4 \mp \lambda_{5R} \ge -\sqrt{\lambda_1 \lambda_2}$$

$$|\lambda_{7R}| \le \frac{1}{4}(\lambda_1 + \lambda_2) + \frac{1}{2}(\lambda_3 + \lambda_4 + \lambda_{5R})$$

$$|\lambda_{7I}| \le \frac{1}{4}(\lambda_1 + \lambda_2) + \frac{1}{2}(\lambda_3 + \lambda_4 - \lambda_{5R})$$



Shape of the chemical potential

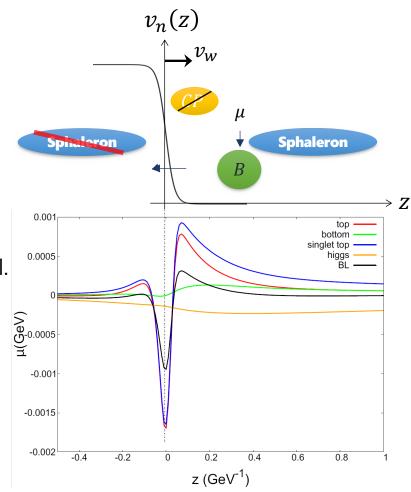
When the top transport scenario, θ_7 and θ_u are important for the BAU.

Localized mass around the wall

$$m_t(z) = \frac{y_t}{\sqrt{2}}v(z)e^{i\theta(z)}$$

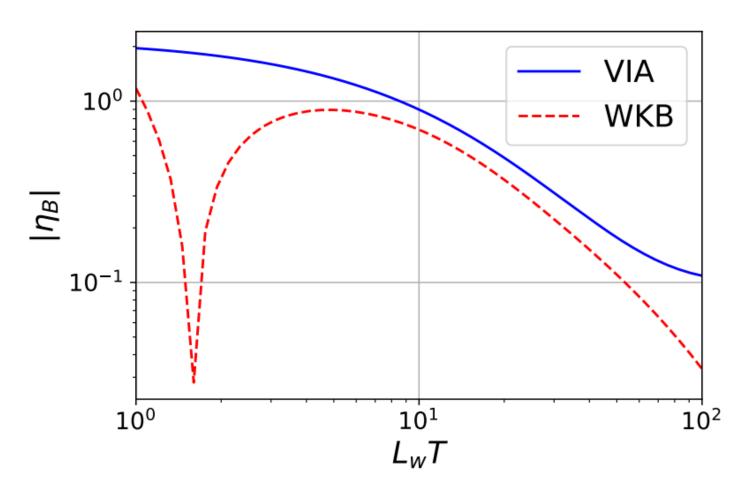
makes chemical potential.

v(z), $\theta(z)$, T_n , etc. depend on models and dynamics of PT.



Wall width dependence of BAU

Cline and Laurent, Phys. Rev. D 104 (2021)



WKB formalism has accidental zero-crossing behavior.

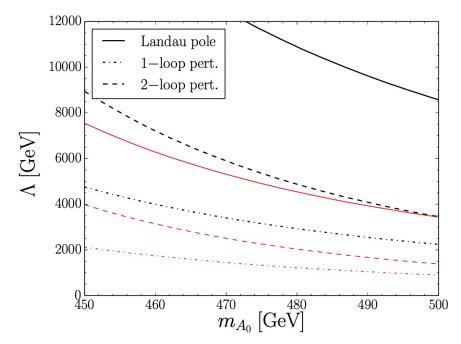
Triviality bound 1

Scalar coupling often diverge by non-decoupling effect. $m_H \simeq \lambda v^2 + M^2 \gg M^2$

In BP, the largest coupling $\lambda \sim 3$, Landau pole appears around 1-3 TeV when couplings are run from Z boson scale.

Cline, Kainulainen and Trott, JHEP 11 (2011)

However, the scale of Landau pole depends on whether threshold effects are considered.



The largest coupling $\lambda \sim 7$

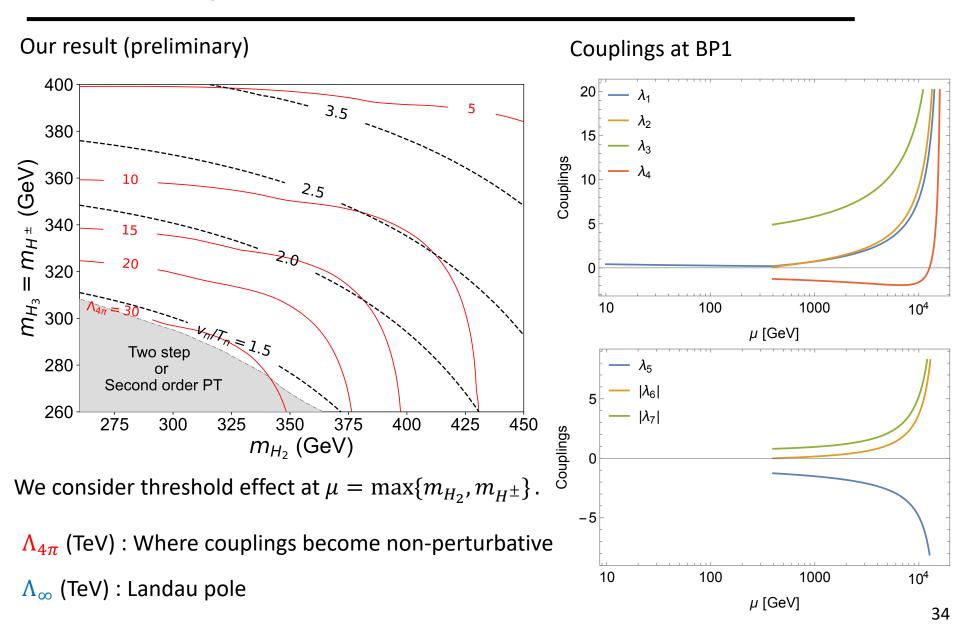
Effects of heavy particles are included at

$$\mu \sim 200 \text{ GeV (black)}$$

 $\mu \sim 500 \text{ GeV (red)}$

Dorsch, Huber, Konstandin and No, JCAP 05 (2017)

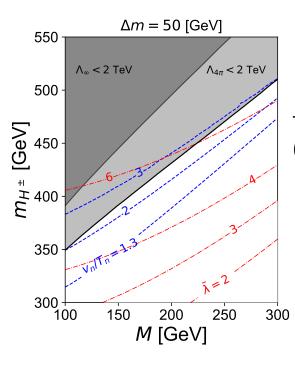
Triviality bound 2



Triviality bound 3

Our result (preliminary)

We set matching scale $\mu = M$.



$$\Delta m \equiv m_{H_2} - m_{H^{\pm}}$$

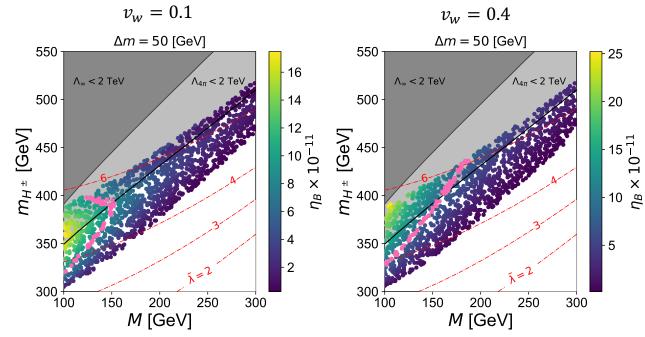
$$\tilde{\lambda} \equiv \lambda_3 + \lambda_4$$

Below 2 TeV, couplings...

become non-perturbatively (gray) has Landau pole (dark gray)

Upper bound $m_{H^\pm} \lesssim 400~{\rm GeV}$

To obtain sufficient BAU, small M is needed! (see the slide "CP-violating bubble")



Inputs : same as BP1 and BP2 except for $|\zeta_u|=0.5, |\lambda_7|=1.2$

Mass dep. beta function

Consider Gell-Man-Low renormalization group equation.

Ex.) $\lambda \phi^4$ theory

Renormalization conditions

$$\Gamma^{(2)}(p^2=m^2,m^2,\lambda;Q^2)=0, \qquad \Rightarrow {\sf Parameter}\ m\ {\sf become}\ {\sf physical}\ {\sf mass}$$

$$\frac{\partial}{\partial p^2} \Gamma^{(2)}(p^2, m^2, \lambda; Q^2)_{p^2 = -Q^2} = 1,$$

$$\Gamma^{(4)}(p_i, m^2, \lambda; Q^2)_{p_i \cdot p_i = -Q^2 \delta_{ij} + \frac{1}{2}Q^2(1 - \delta_{ij})} = -\lambda.$$

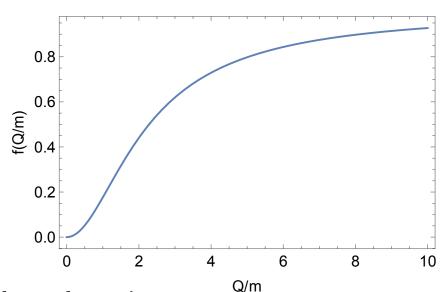
⇒ Momentum subtraction scheme

Mass dependent beta function

$$\beta(\lambda, m/Q) = \frac{3\lambda^2}{16\pi^2} \cdot \frac{4}{3} \frac{Q^2}{m^2} \int_0^1 dx \, \frac{x(1-x)}{1 + \frac{4}{3} \frac{Q^2}{m^2} x(1-x)}, \quad \stackrel{\text{form}}{\underbrace{}} 0.4$$

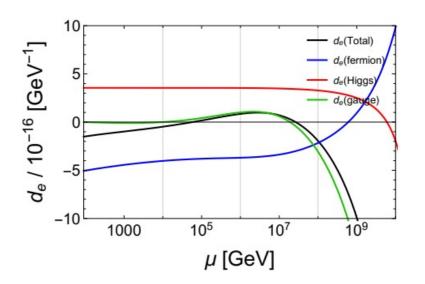
$$\equiv f(Q/m)$$

 $\equiv f(Q/m)$ (right figure)



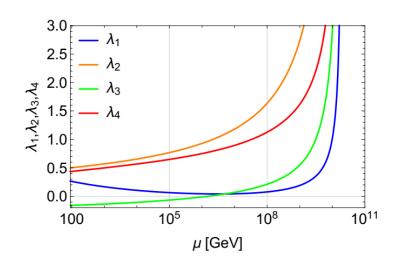
Threshold effects should be included at $\mu \sim (2 \times \text{physical mass})$

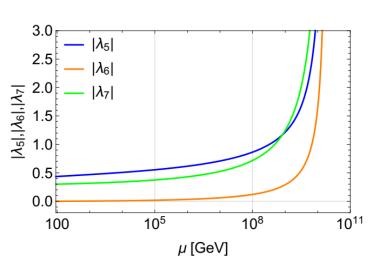
RGE analysis in previous work



M = 240,	$m_{H_2^0} = 280,$	$m_{H_3^0} = 230,$	$m_{H^{\pm}} = 230$	(in GeV).
$ \zeta_u = 0.01,$	$ \zeta_d = 0.1,$	$ \zeta_e = 0.5,$	$ \lambda_7 = 0.3,$	$\lambda_2 = 0.5.$
		$\theta_e = \pi/4,$		

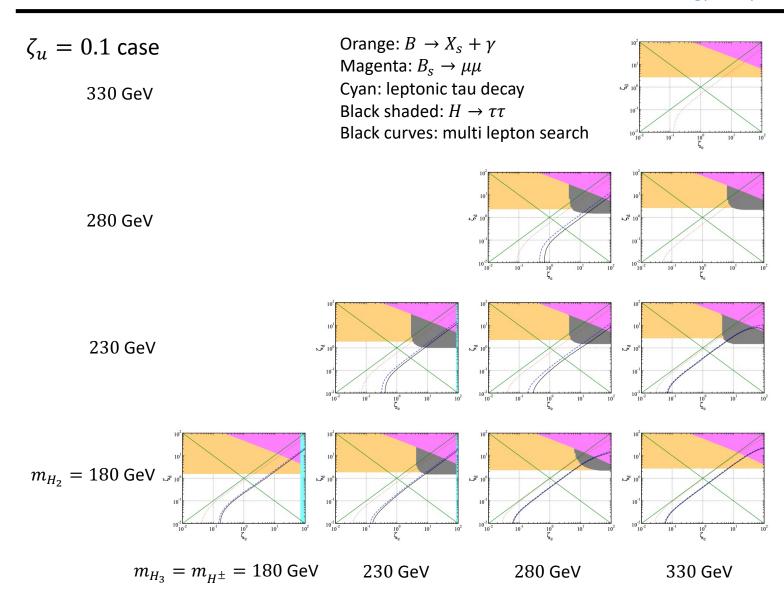
Kanemura, Kubota and Yagyu, JHEP 08 (2020)



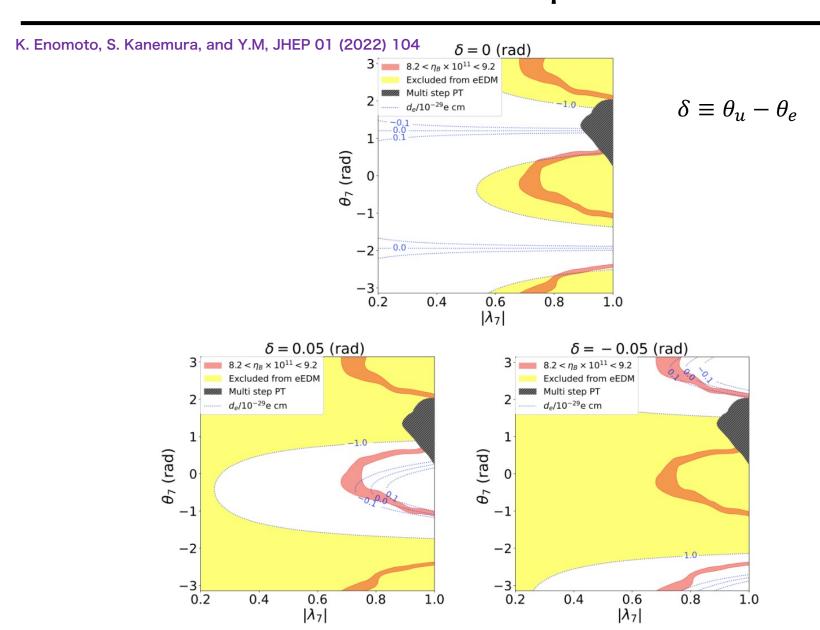


Direct detections

Kanemura, Takeuchi and Yagyu, Phys. Rev. D 105 (2022)



eEDM and BAU in L7 plane



Flavor constrarints

Model	ς_d	ς_u	Sı
Type I	$\cot \beta$	$\cot \beta$	$\cot \beta$
Type II	$-\tan\beta$	$\cot \beta$	$-\tan \beta$
Type X	$\cot \beta$	$\cot \beta$	$-\tan\beta$
Type Y	$-\tan\beta$	$\cot \beta$	$\cot eta$
Inert	0	0	0

Type I like

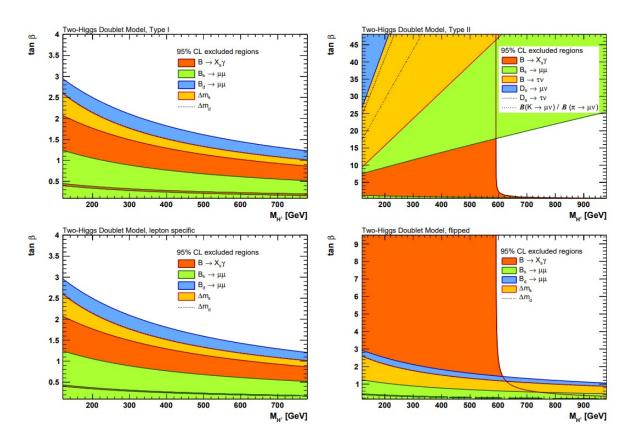
$$|\zeta_u| = |\zeta_d| = |\zeta_e| = \cot \beta$$

Type X like

$$|\zeta_u| = |\zeta_d| = \cot \beta$$

$$|\zeta_e| = -\tan \beta$$

Haller et al. Eur. Phys. J. C 78 (2018);



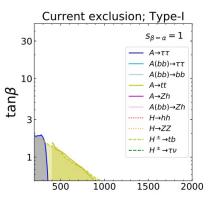
$$m_{H^\pm} \simeq 300 {\rm GeV}, |\zeta_u| \lesssim 0.4$$

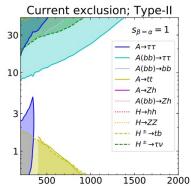
Collider constraints

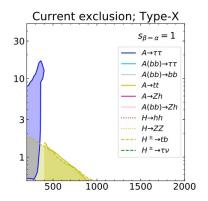
Aiko, Kanemura, Kikuchi, Mawatari, Sakurai and Yagyu, Nucl. Phys. B 966 (2020)

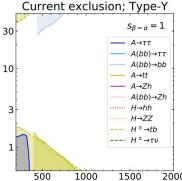
Model	ς_d	ς_u	ς_l
Type I	$\cot \beta$	$\cot \beta$	$\cot \beta$
Type II	$-\tan\beta$	$\cot \beta$	$-\tan\beta$
Type X	$\cot \beta$	$\cot \beta$	$-\tan\beta$
Type Y	$-\tan\beta$	$\cot \beta$	$\cot \beta$
Inert	0	0	0

Current



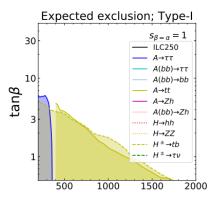


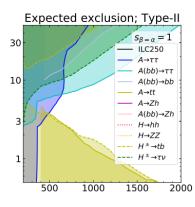


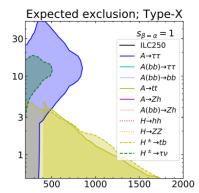


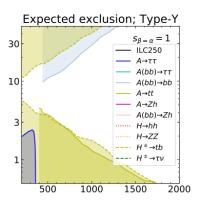
$$\begin{split} H_{2,3} &\to \tau\tau \\ H_{2,3} &\to tt \\ H^{\pm} &\to tb \end{split}$$

HL-LHC









Other EDMs

Current

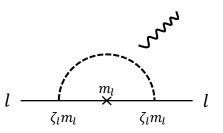
$$\begin{split} |d_e| &< 1.1 \times 10^{-29} \text{ (ThO)} \\ |d_\mu| &< 1.5 \times 10^{-19} \text{(g-2)} \\ |d_\tau| &< O(10^{-17}) \text{ (Belle)} \\ |d_\tau| &< 1.6 \times 10^{-18} \text{(from eEDM)} \end{split}$$

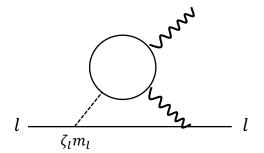
Expected

$$egin{aligned} |d_e| &< O(10^{-30}) \ |d_\mu| &< O(10^{-21}) \ |d_ au| &< O(10^{-18}) ext{(Belle II)} \end{aligned}$$

Theory

$$\begin{array}{ll} d_e(1loop) = O(10^{-34}) & \kappa = O(1), 1 \, \text{loop contributions are proportional to} \ m_e^3. \\ d_\mu(1loop) = O(10^{-27}) & m_\mu \sim 200 m_e \\ d_\tau(1loop) = O(10^{-24}) & m_\tau \sim 3600 m_e \\ \\ d_e(BZ) = O(10^{-28}) & |\zeta| = O(10^{-1}) \, \text{, BZ contributions are proportional to} \ m_e \\ d_\mu(BZ) = O(10^{-26}) & m_\mu \sim 200 m_e \\ d_\tau(BZ) = O(10^{-25}) & m_\tau \sim 3600 m_e \end{array}$$





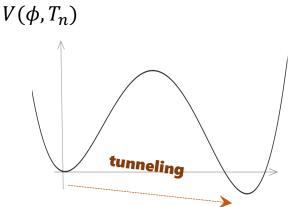
1 loop contributions include $\zeta^2 \to \text{ with no lepton universality, } |\zeta_{\tau}|, |\zeta_{\mu}| \gtrsim O(10^3)$ are excluded.

Electroweak baryogenesis

EWPT is occurred at the temperature T_n ,

 T_n determined by the condition

(The possibility of tunneling per Hubble) $\sim O(1)$.



Sphaleron process ($\Delta B \neq 0$) frequently occurs in symmetric phase.

Left-handed baryons outside the wall are converted into baryon number.

Sphaleron process decouple in broken phase. (Baryon number is conserved)

Sphaleron decoupling condition

$$\Gamma_{sph}^{brk}(T_n) < H(T_n) \implies \frac{v_n}{T_n} \gtrsim 1$$

→ "Strongly" first order PT

