How can top quarks help probing the Higgs sector, DM and BSM?

A. Onofre

in coll. R.Santos, J.Aguilar-Saavedra, M.C.N. Fiolhais, A.Ferroglia, R.Capucha, D.Azevedo, P. Martin-Ramiro, J. M. Moreno, J.Martins, P.Chaves (antonio.onofre@cern.ch)

Workshop on Multi-Higgs Models, IST, 30th August - 2nd September 2022, Lisbon - Portugal

Outline

The *t*-quark and Higgs boson (ϕ) have a quite rich phenomenology. In Understanding the couplings and the connection to BSM, DM etc., is quite important @ LHC

- List of Topics Covered
- all about couplings and spin correlations
 - Many processes available impossible to cover all concentrate on new results
 - a *Template Method* to measure *tt* spin correlations, Interferences... [Eur.Phys.J.C 82 (2022) 2]
 - $t\bar{t}\phi$ production @ LHC CP-violation, asymmetries and Interferences in $t\bar{t}\phi$ [arXiv:2208.04271, 8 Aug 2022]
 - The $t\bar{t}\phi$ DM searches via simplified models

The top quark

• The top quark was discovered (CDF,D0)

almost 30 years ago

PRL74 2626-2631 (1995);

PRL74 2632-2637 (1995).

- Properties:
 - heaviest known fundamental fermion $m_t \sim 173 {\rm GeV}$
 - dominant decay mode: $t \rightarrow bW$ $BR(t \rightarrow sW) \leq 0.18\%$ $BR(t \rightarrow dW) \leq 0.02\%$
 - $\Gamma_t^{SM} = 1.42 \text{ GeV}$ (including m_b , m_W , α_s , EW corr.)
 - $\tau_t \sim 10^{-25} \text{s} \ \ll \Lambda_{QCD}^{-1} \sim (100 \text{ MeV})^{-1} \sim 10^{-23} \text{s}$

 \Rightarrow top decays before hadronization takes place

• Double Production at the LHC:

Antonio Onofre

$t\bar{t}$ Production: Top spin correlations

Although produced unpolarised, the *t* spins are correlated in $t\bar{t}$ events

$$\sigma = \sigma_{RR} + \sigma_{LL} + \sigma_{RL} + \sigma_{LR}$$

$$\xrightarrow{s_{\mathcal{R}}}_{\overline{I}} \xrightarrow{t}_{\mathcal{U}} \xrightarrow{t}_{\mathcal{R}} \xrightarrow{s_{\mathcal{R}}} OR \xrightarrow{s_{\mathcal{R}}}_{\overline{I}} \xrightarrow{t}_{\mathcal{R}} \xrightarrow{t}_{\mathcal{R}} \xrightarrow{t}_{\mathcal{R}}$$

quantum interference effects between polarisation states exist

Probe spin correlations using the ℓ^{\pm} i.e, $\cos \theta_{\ell^{\pm}}$ ($t\bar{t}$ dileptonic decays) $pp \rightarrow t + \bar{t} + X \rightarrow \ell^{+}\ell^{\prime-} + \text{ jets} + E_{T}^{\text{miss}}$ $\theta_{\ell^{+}}$ ℓ^{+} $\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{\ell}} = \frac{1}{2}(1 + \kappa_{\ell}\cos\theta_{\ell})$ $\kappa_{\ell^{+}} = -\kappa_{\ell^{-}} = 1 \text{ in the SM at leading order (LO)}$ $t \approx \text{ The } \Delta \Phi_{\ell^{+}\ell^{-}}$ also used in LAB frame (does not require $t\bar{t}$ reconstruction) $t \approx \frac{1}{\sigma} \frac{d\sigma}{d\cos\Phi_{\ell^{+}}} = \frac{1}{2}(1 - D\cos\Phi_{\ell^{+}})$

4/25

$t\bar{t}$ Production: Top spin correlations

Measurements with respect to $\{\hat{r}_t, \hat{k}_t, \hat{n}_t\}$ axis [JHEP12(2015)026]

The (four-fold) normalised cross section distribution:

$$\frac{1}{\sigma d\Omega_1 d\Omega_2} = \frac{1}{(4\pi)^2} (1 + \mathbf{B_1} \cdot \hat{\ell}_1 + \mathbf{B_2} \cdot \hat{\ell}_2 - \hat{\ell}_1 \cdot \mathbf{C} \cdot \hat{\ell}_2)$$

$$d\Omega = d \cos \theta d\phi \quad \mathbf{B}(\mathbf{B}_2) = \text{top (anti-top) vector spin polarisations} \quad \mathbf{C} = \text{spin correlation matrix}$$

$$\hat{\ell}_1(\hat{\ell}_2) = \text{the } \hat{\ell}^+ (\hat{\ell}^-) \text{ directions in the } t(\hat{t}) \text{ system}$$

Different polar axes $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ can be used, and particles defined with respect to them:

 $z_1 = \cos \theta_+ = \hat{\ell}^+ \hat{\mathbf{a}}$ $z_2 = \cos \theta_- = \hat{\ell}^- \hat{\mathbf{b}}$

Why these axis choice								
Correlation		sensitive to						
C(n, n)	c_{nn}^I	P-, CP-even						
C(r, r)	c_{rr}^{I}	P-, CP-even						
C(k, k)	c_{kk}^I	P-, CP-even						
C(r, k) + C(k, r)	c_{rk}^{I}	P-, CP-even						
C(n, r) + C(r, n)	c_{rn}^{I}	P-odd, CP-even, absorptive						
C(n, k) + C(k, n)	c_{kn}^I	P-odd, CP-even, absorptive						
C(r, k) - C(k, r)	c_n^I	P-even, CP-odd, absorptive						
C(n, r) - C(r, n)	c_k^I	P-odd, CP-odd						
C(n, k) - C(k, n)	$-c_r^I$	P-odd, CP-odd						
$B_1(n) + B_2(n)$	$b_n^{I+} + b_n^{I-}$	P-, CP-even, absorptive						
$B_1(n) - B_2(n)$	$b_n^{I+} - b_n^{I-}$	P-even, CP-odd						
$B_1(r) + B_2(r)$	$b_{r}^{I+} + b_{r}^{I-}$	P-odd, CP-even						
$B_1(r) - B_2(r)$	$b_{r}^{I+} - b_{r}^{I-}$	P-odd, CP-odd, absorptive						
$B_1(k) + B_2(k)$	$b_{k}^{I+} + b_{k}^{I-}$	P-odd,CP-even						
$B_1(k) - B_2(k)$	$b_{k}^{I+} - b_{k}^{I-}$	P-odd, CP-odd, absorptive						
$B_1(k^*) + B_2(k^*)$	$b_{k}^{I+} + b_{k}^{I-}$	P-odd,CP-even						
$B_1(k^*) - B_2(k^*)$	$b_{k}^{I+} - b_{k}^{\bar{I}-}$	P-odd, CP-odd, absorptive						
$B_1(r^*) + B_2(r^*)$	$b_{r}^{I+} + b_{r}^{I-}$	P-odd, CP-even						
$B_1(r^*) - B_2(r^*)$	$b_r^{I+} - b_r^{I-}$	P-odd, CP-odd, absorptive						

Antonio Onofre Workshop on Multi-Higgs Models, 30 Aug-2 Sep. 2022, I.S.T.

tt Production: Top spin correlations

CMS Measurements [Phys. Rev. D 100 (2019) no.7, 072002] for each 15 coefficient B₁, B₂, C single differential distributions are used

Integrating over the azimuthal angles (for each axis *i*, *j*)

$$\frac{1}{\sigma d \cos \theta_1^i d \cos \theta_2^j} = \frac{1}{4} (1 + \frac{B_1}{C} \cos \theta_1^i + \frac{B_2^j \cos \theta_2^j - C_{ij} \cos \theta_1^i \cos \theta_2^j}{1 - C_{ij} \cos \theta_2^i \cos \theta_2^j})$$

 $\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_1^i} = \frac{1}{2}(1+B_1^i\cos\theta_1^i),$ $\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_2^i} = \frac{1}{2}(1+B_2^i\cos\theta_2^i),$ $\frac{1}{\sigma}\frac{d\sigma}{dx} = \frac{1}{2}(1 - C_{ij}x)\ln\left(\frac{1}{|\mathbf{x}|}\right),$ $\theta_1^i(\theta_2^j) = \ell^+(\ell^-)$ directions in the $t(\bar{t})$ system, with respect to $i(\bar{t})$ axis $(\hat{r}, \hat{k}, \hat{n})$ $x = \cos \theta_1^i \cos \theta_2^j$.

Antonio Onofre

$t\bar{t}$ Production: Top spin correlations

ATLAS and CMS data compared to calculations at NNLO on the left, and different MC simulations on the right.

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

Antonio Onofre Workshop on Multi-Higgs Models, 30 Aug-2 Sep. 2022, I.S.T.

Double Differential Normalized Distributions [Eur.Phys.J.C 82 (2022) 2]

Defining (with respect to any of the axis *i,j={r,k,n}*)

 $\frac{1}{\sigma d \cos \theta_1^i d \cos \theta_2^i} = \frac{1}{\sigma} \frac{d\sigma}{dz_1 dz_2} = f(z_1, z_2) \text{ and } f_{XX'}(z_1, z_2) = \frac{1}{\sigma_{XX'}} \frac{d\sigma_{XX'}}{dz_1 dz_2} \text{ with } X, X' = L, R$ $\theta_1^i (\theta_2^j) = \ell^+ (\ell^-) \text{ directions in the } t(\hat{t}) \text{ system, with respect to } i(\hat{j}) \text{ axis } (\hat{t}, \hat{k}, \hat{n})$

the Normalised Double Differential Distribution can be defined (at parton level)

 $f(z_1, z_2) = \sum_{XX'} a_{XX'} f_{XX'}(z_1, z_2)$ with $\sum_{XX'} a_{XX'} = 1$ Phase Space cuts (p_T, η, etc.) affect the <u>Polarizations</u> differently $\frac{d\bar{\sigma}}{dz_1 dz_2} = \sum_{X \in Y} \frac{d\bar{\sigma}_{XX'}}{dz_1 dz_2} + \dots$ (the **bar** = quantities after cuts) which implies $\varepsilon \overline{f}(z_1, z_2) = \sum_{XX'} a_{XX'} \varepsilon_{XX'} \overline{f}_{XX'}(z_1, z_2) + \Delta_{int}(z_1, z_2)$ with $\varepsilon = \overline{\sigma}/\overline{\sigma}$ $\varepsilon_{XX'} = \overline{\sigma}_{XX'}/\sigma_{XX'}$ $\overline{f}(z_1, z_2)$ $\overline{f}(z_1, z_2)$ Interference Term (small but not zero!) 2D Templates after cuts $a_{xx'} = a_{RR}, a_{LL}, a_{RL}$ and a_{LR} are the Parton Level spin correlation fractions (no need for unfolding!) Workshop on Multi-Higgs Models, 30 Aug-2 Sep. 2022, I.S.T. Antonio Onofre

Dileptonic Signal Reconstruction: $\mathbb{I} \otimes gg, q\bar{q} \to t\bar{t} \to (b\ell^+\nu_\ell)(\bar{b}\ell^-\bar{\nu}_\ell)$ PROTOS signal samples for SM and pure $t_R\bar{t}_R$, $t_L\bar{t}_L, t_R\bar{t}_L, t_L\bar{t}_R$ (all r,k,n axes) \oplus DELPHES

Constrained Kinematic fit

I- Mass constraints:

(1)
$$(p_{W^+} + p_b)^2 = m_t^2$$

(2)
$$(p_{W^-} + p_{\bar{b}})^2 = m_{\bar{t}}^2$$

(3)
$$(p_{\ell+} + p_{\nu})^2 = m_{W^+}^2$$

(4)
$$(p_{\ell-} + p_{\bar{\nu}})^2 = m_{W^-}^2$$

II- Missing Transverse Energy:

III- χ^2 Minimization:

m_{w*} [GeV]

 $m_W = 80.4 \text{ GeV}, m_t = 173 \text{ GeV}, \Gamma_t = 11.5 \text{ GeV}, \Gamma_W = 7.5 \text{ GeV}, \sigma_p^T = 20 \text{ GeV}$

[™] 0.3 mp/Np 0.3

0.15

0.

0.05

x=cos(θ, ,*)

Solution Double Differential Normalized Templates in $\{\hat{r}, \hat{k}, \hat{n}\}$ axes

LL (N-axis)

0.027

0.0158

0.0042

Antonio Onofre

Template 2D fit example in \hat{k} axis (from linearity tests)

イロト イポト イヨト イヨト

臣

Interference effects can also be measured in all axes $\{\hat{r}, \hat{k}, \hat{n}\}$

$$\varepsilon \overline{f}(z_1, z_2) = \sum_{XX'} a_{XX'} \varepsilon_{XX'} \overline{f}_{XX'}(z_1, z_2) + \Delta_{\text{int}}(z_1, z_2)$$

BSM interference effects are different from the SM in all $\{\hat{r}, \hat{k}, \hat{n}\}$ axes

Antonio Onofre Workshop on Multi-Higgs Models, 30 Aug-2 Sep. 2022, I.S.T.

◆□ → ◆ 臣 → ◆ 臣 → ○ ● ○ ○ ○ 12/25

Results for the SM and CMDM in all $\{\hat{r}, \hat{k}, \hat{n}\}$ axes

2D Template Fit Results

Spin correlations parameter C_{II}

 $C_{ii} = a_{RR} + a_{LL} - a_{RL} - a_{LR}$

Top quark Polarizations

 $P_t = a_{RR} + a_{RL} - a_{LR} - a_{LL}$

 $P_{t}^{-} = a_{RR} + a_{LR} - a_{RL} - a_{LL}$

Sample with large top quark anomalous chromomagnetic dipole moment (CMDM) d_V =0.036 also used as a test

$$\mathcal{L} = -rac{g_s}{m_t} ar{t} \sigma^{\mu
u} (d_V + i d_A \gamma_5) rac{\lambda^a}{2} t G^{\mu u}_a$$

 $(d_A \text{ set to zero})$

take home message:

Fits are very sensitive to Interference terms in Spin Correlations

may be probed @ LHC (RUN3) without unfolding!

K	SM	CMDM				
	Prediction Fit	Prediction Fit				
a_L	0.335 ± 0.001 0.337 ± 0.006	0.349 ± 0.001 0.350 ± 0.006				
a_{RI}	$_{\rm R}$ 0.336 ± 0.003 0.330 ± 0.005	0.349 ± 0.001 0.339 ± 0.005				
a_{LI}	$_{R} 0.165 \pm 0.003 0.167 \pm 0.007$	0.151 ± 0.001 0.175 ± 0.007				
a_{RI}	$1.0.165 \pm 0.002$ 0.160 ± 0.004	0.151 ± 0.001 0.131 ± 0.004				
C_{kl}	$_{\rm s}$ 0.340 \pm 0.002 0.340 \pm 0.019	0.394 ± 0.004 0.383 ± 0.019				
P_t	$0.001 \pm 0.002 - 0.014 \pm 0.008$	$0.000 \pm 0.001 - 0.058 \pm 0.008$				
$P_{\bar{t}}$	0.001 ± 0.002 0.000 ± 0.008	0.001 ± 0.002 0.033 ± 0.008				
-						
R	SM	CMDM				
	Prediction Fit	Prediction Fit				
a_{LL}	0.258 ± 0.001 0.254 ± 0.006	0.290 ± 0.002 0.291 ± 0.006				
a_{RR}	0.259 ± 0.002 0.264 ± 0.006	0.289 ± 0.002 0.290 ± 0.006				
a_{LR}	0.242 ± 0.001 0.236 ± 0.006	0.210 ± 0.001 0.210 ± 0.006				
a_{RL}	0.241 ± 0.002 0.241 ± 0.006	0.211 ± 0.001 0.201 ± 0.006				
$C_{\rm rr}$	0.036 ± 0.002 0.041 ± 0.019	0.159 ± 0.002 0.170 ± 0.019				
P_t	$0.0004 \pm 0.0005 \ 0.015 \pm 0.010$	$-0.001 \pm 0.004 \ -0.011 \pm 0.010$				
$P_{\bar{t}}$	0.002 ± 0.002 0.006 ± 0.010	-0.001 ± 0.003 0.008 ± 0.009				
	00 f	00 CD 1				
N	SM	CMDM				
	Prediction Fit	Prediction Fit				
a_{LL}	$0.333 \pm 0.001 0.329 \pm 0.004$	$0.358 \pm 0.001 0.363 \pm 0.004$				
a_{RR}	$0.334 \pm 0.002 0.329 \pm 0.004$	$0.358 \pm 0.001 0.352 \pm 0.004$				
a_{LR}	0.166 ± 0.001 0.164 ± 0.004	0.142 ± 0.0003 0.138 ± 0.004				
a_{RL}	0.167 ± 0.002 0.169 ± 0.004	0.142 ± 0.001 0.136 ± 0.004				
C_{nn}	0.336 ± 0.002 0.325 ± 0.010	0.433 ± 0.002 0.442 ± 0.010				
P_t	0.002 ± 0.001 0.005 ± 0.009	$-0.001 \pm 0.002 -0.014 \pm 0.009$				
$P_{\bar{t}}$	$0.000 \pm 0.002 - 0.005 \pm 0.008$	$0.000 \pm 0.001 -0.009 \pm 0.009$				

TABLE III. Theory predictions and best-fit values for various polarisation coefficients in the SM and CMDM data samples. For the theory predictions, the quoted uncertainty corresponds to the Monte Carlo statistical uncertainty.

tt Production: Loop corrections sensitive to top Yukawa couplings

EW Loop corrections in $t\bar{t}$ Production @ the LHC [Phys. Rev. D 104, 055045 (2021)]

Antonio Onofre Workshop on Multi-Higgs Models, 30 Aug-2 Sep. 2022, I.S.T.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ○ 의 () ●

14/25

tt Production: Loop corrections sensitive to top Yukawa couplings

EW loops in $t\bar{t}$ production are sensitive to the Higgs CP nature (k, \tilde{k}) Phys. Rev. D 104, 055045 (2021)

Effective Lagrangian for top quark Higgs boson interaction

$$\mathcal{L}(Htt) = -\frac{m_t}{v} \bar{\psi}_t (\mathbf{k} + i \mathbf{\hat{k}}_{75}) \psi_t H, \quad (\mathbf{k} \mathbf{\hat{k}}) = \text{CP-even (CP-odd) components}$$
SM (pure CP-even): **k=1** and **k=0**
BSM, pure CP-odd: **k=0** and **k=1**

Interference terms of the tree level with Higgs-loop diagrams

proportional to: (B + B) or (B - B)no sensitivity to mixed terms or signs CP-odd roughly 40% of CP-even $\sigma(\kappa, \tilde{\kappa})_{t\bar{t}H} = \sigma_{SM}^{t\bar{t}H} (|\kappa|^2 + 0.39|\tilde{\kappa}|^2)$

Antonio Onofre Workshop on Multi-Higgs Models, 30 Aug-2 Sep. 2022, I.S.T.

□ ▶ ▲ 王 ▶ ▲ 王 ▶ 王 • • ○ ९ ○ • 15/25

tt Production: Loop corrections sensitive to top Yukawa couplings

EW loops in $t\bar{t}$ production are sensitive to the Higgs CP nature (k, \tilde{k}) Phys. Rev. D 104, 055045 (2021)

FIG. 7: Two dimensional likelihood scans of κ and $\tilde{\kappa}$ in the $pp \rightarrow t\bar{t}$ (left) and $pp \rightarrow tWH$ (middle) and $pp \rightarrow tqH$ (right) processes at a luminosity of 300 fb⁻¹. The expected 68% and 95% CL regions are presented as contours with dashed and solid black lines, respectively.

ttH, tH Production

Solution Experimental results on the Higgs CP nature (k, \tilde{k})

Effective Lagrangian for top quark Higgs boson interaction

Mixing angle (α) parametrisation: $k=k_t \cos(\alpha)$ and $k=\widetilde{k_t} \sin(\alpha)$

▲□▶▲酃▶▲壹▶▲壹▶ 壹 少�? 17/25

ttH.tH. H→multilepton

138 fb⁻¹ (13 TeV)

2A InL

45

40

CMS

- 68% CL - 95% CL + Best fit ♦ SM exp

Can we probe CP violation and Interference Effects in associated Higgs production @ the LHC ? [arXiv:2208.04271, JHEP 4 (2014), JHEP 01 (2022) 158]

Antonio Onofre Workshop on Multi-Higgs Models, 30 Aug-2 Sep. 2022, I.S.T.

▲母▶▲臣▶▲臣▶ 臣 のく(?)

$t\bar{t}H$, tH Production @ the LHC

Probing the top quark - Higgs boson vertex CP nature

Effective Lagrangian for top quark Higgs boson interaction

$$\mathcal{L}(Htt) = -\frac{m_t}{v} \bar{\psi}_t (\kappa + i \bar{\kappa} \gamma_5) \psi_t H, \quad k(\bar{k}) = \text{CP-even (CP-odd) components}$$

SM (pure CP-even): $k=1$ and $\bar{k} = 0$ BSM, pure CP-odd: $k=0$ and $\bar{k} = 0$

Mixing angle (α) parametrisation: $k = k_t \cos(\alpha)$ and $k = \tilde{k}_t \sin(\alpha)$

(r) The role of ttH CM system is quite important [Phys. Rev. D100, 075034 (2019)]

Antonio Onofre Workshop on Multi-Higgs Models, 30 Aug-2 Sep. 2022, I.S.T.

$t\bar{t}H, tH$ Production @ the LHC

Probing the top quark - Higgs boson vertex CP nature

Pheno study with $t\bar{t}\phi$ 2 ℓ events i.e., $t\bar{t}\phi \rightarrow (b\ell^+\nu_\ell)(\bar{b}\ell^-\bar{\nu_\ell})(b\bar{b})$

Event Generation+Simulation @ 13 TeV (RUN2)

- MadGraph5_aMC@NLO for $t\bar{t}\phi, \phi = A, H$ and $t\bar{t}b\bar{b}$ (@ NLO) Backgrounds @ LO with MLM: $t\bar{t} + jets, t\bar{t}V + jets$, Single $t, W(Z)+jets, W(Z)b\bar{b}+jets, VV+jets$ $t\bar{t}\phi$ signals for: $\alpha = 0^{\circ}, 22.5^{\circ}, 45^{\circ}, 67.5^{\circ}, 90^{\circ}, 135^{\circ}$ and 180°
- MadSpin ⊕ Pythia ⊕ DELPHES
- MadAnalysis5, N_{jets} ≥4 ⊕ N_{lep} ≥2 (p_T ≥20 GeV, |η| ≤2.5)

CP-observables [arXiv:2208.04271]

(1)
$$b_{2}^{tt\phi} = (\vec{p}_{t} \times \hat{k}_{z}).(\vec{p}_{\bar{t}} \times \hat{k}_{z})/(|\vec{p}_{t}|.|\vec{p}_{\bar{t}}|)$$

(2) $b_{4}^{\bar{t}t\phi} = (\vec{p}_{t}^{z}.\vec{p}_{\bar{t}}^{z})/(|\vec{p}_{t}|.|\vec{p}_{\bar{t}}|)$

(3)
$$\sin(heta_{\phi}^{tt\phi}) * \sin(heta_{\overline{t}}^{tt})$$

(4) $\sin(\theta_{\phi}^{t\bar{t}\phi}) * \sin(\theta_{\bar{b}_{\bar{t}}}^{\bar{t}})$ (seq. boost)

Solution of the sensitive to mixing Solution of the sensitive to m

(5)
$$\Delta \phi_{ll}^{l\bar{t}} = \text{sgn}[\hat{p}_{l} \cdot (\hat{p}_{l^+} \times \hat{p}_{l^-})] \operatorname{arccos}[(\hat{p}_{l} \times \hat{p}_{l^+}) \cdot (\hat{p}_{l} \times \hat{p}_{l^-})]$$

Differential cross section and Interference term

$$d\sigma_{t\bar{t}\phi} = \kappa^2 \ d\sigma_{\text{CP-even}} + \tilde{\kappa}^2 \ d\sigma_{\text{CP-odd}} + \kappa \tilde{\kappa} \ d\sigma_{\text{int}}$$

ttH, tH Production @ the LHC

Probing the top quark - Higgs boson vertex CP nature (Interf. Terms)

Reconstructed Differential Distributions w/Int. compared to NLO parton level distributions

ttH, tH Production @ the LHC

Probing the top quark - Higgs boson vertex CP nature (Interf. Terms)

Expected Interference Differential Distributions (after cuts+Kin.Rec.)

Expected Exclusion CLs using Differential Distributions w/Interference

Antonio Onofre

$t\bar{t}H, tH$ Production @ the LHC

Probing the top quark - Higgs boson vertex CP nature using Asymmetries

Asymmetries from angular distributions, defined as:

$$A \propto \int_{x_c}^{+1} d\sigma_{\text{CP-even}} - \int_{-1}^{x_c} d\sigma_{\text{CP-even}} \text{ and } B \propto \int_{x_c}^{+1} d\sigma_{\text{CP-odd}} - \int_{-1}^{x_c} d\sigma_{\text{CP-odd}}$$

Choose x_c when ttH/ttA $A_c[z]$ differences are maximum:

Asymmetries	x_c	MadGraph5 @ NLO+Shower (no cuts applied $t\bar{t}\phi$ signal mixing angle α (deg.)							
		0.0°	22.5°	45.0°	67.5°	90.0°	135.0°	180.0°	$t\bar{t}b\bar{b}$
$A_c[b_2^{t\bar{t}\phi}]$	-0.30	-0.35	-0.31	-0.15	+0.15	+0.34	-0.14	-0.36	-0.17
$A_c[b_4^{t\bar{t}\phi}]$	-0.50	+0.41	+0.37	+0.22	-0.04	-0.22	+0.22	+0.41	+0.33
$A_c[\sin(\theta_{\phi}^{t\bar{t}\phi}) * \sin(\theta_{\bar{t}}^{t\bar{t}})]$	+0.70	-0.27	-0.26	-0.20	-0.09	-0.03	-0.20	-0.27	-0.56
$A_c[\sin(\theta_{\phi}^{t\bar{t}\phi}) * \sin(\theta_{\bar{b}_{\bar{t}}}^{\bar{t}})]$ (seq. boost)	+0.60	+0.05	+0.05	+0.07	+0.09	+0.11	+0.06	+0.05	-0.38

Table 1: Asymmetries for the $t\bar{b}$ signal as a function of the mixing angle α , as well as for the dominant background tib at NLO-45 hower (without any cuts), are shown for several observables. Significant differences between the asymmetries for the pure scalar ($\alpha = 0.0^\circ$) and pseudo-scalar ($\alpha = 90.0^\circ$) cases are observed for several asymmetries.

CLs change with x_c (200 fb⁻¹)

CLs using Asym. vs Ang.Dist. (200 fb⁻¹)

Antonio Onofre

DM in $t\bar{t}$ Production @ LHC

DM Effects in tt Spin Observables

Normalized Differential Distributions

Spin Correlations Observables in tt Events @ LHC

Antonio Onofre

Workshop on Multi-Higgs Models, 30 Aug-2 Sep. 2022, I.S.T.

ا_ې کا

Conclusions

- RUN 2 I top quark + Higgs boson precision physics (spin, parity, spin correlations in *t*t, BSM...) quite remarkable for an Hadronic Collider ...RUN 3 data will improve the situation; sensitivity to small contributions (NNLO, interferences, etc.) will (progressively) be more and more important
- Need to measure the nature of the top quark Higgs boson couplings and search for additional sources of CP-violation (direct *t̄tφ* measurements are crucial)
- This search can indeed be extend to DM with the significant amount of luminosity expected at RUN3
- But spin physics requires: monitoring the parameter space and finding CP-even and CP-odd angular distributions that can help distinguishing background from signal and also between different signals (probably a combination of those would be best....)
- CP Asymmetries play an important role at RUN3

▲御▶▲唐▶▲唐▶ 唐 の�� 25/25