

Run: 280464 Event: 517140616 2015-09-28 04:21:57 CEST

Higgs Physics Results from ATLAS

$$\mathscr{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H - (y_{ij}H\bar{\psi}_{i}\psi_{j} + h.c.) + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}(H^{\dagger}H)^{2}$$

Bosons

Fermions

Higgs potential

$$(m_W^2 W^{\mu +} W^{-}_{\mu} + \frac{1}{2} m_Z^2 Z^{\mu 0} Z^0_{\mu}) (1 + \frac{h}{v})^2$$

 $(\frac{h}{r})^2 - \sum_f m_f \bar{f} f(1 + \frac{h}{v}) = \frac{1}{2}$

$$\frac{1}{2}m_{h}^{2}h^{2} + \lambda_{3}vh^{3} + \frac{1}{4}\lambda_{4}h^{4}$$

$$\mathscr{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H - (y_{ij}H\bar{\psi}_{i}\psi_{j} + h.c.) + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}(H^{\dagger}H)^{2}$$

Bosons

Fermions

Higgs potential

$$\frac{1}{2}m_{h}^{2}h^{2} + \lambda_{3}vh^{3} + \frac{1}{4}\lambda_{4}h^{4}$$

ATLAS and LHC operation

 $139~{\rm fb^{-1}}$ of good quality pp collisions at 13 TeV

Average pile-up: 33.7 interactions/BX

Mean Number of Interactions per Crossing

ATLAS pp Run-2: July 2015 – October 2018

Inner Tracker		Calorimeters		Muon Spectrometer				Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.5	99.9	99.7	99.6	99.7	99.8	99.6	100	100	99.8	98.8
Good for physics: 95.6% (139 fb ⁻¹)										

$$\begin{aligned} \mathscr{L}_{SM} &= D_{\mu} H^{\dagger} D_{\mu} H - (y_{ij} H \bar{\psi}_{i} \psi_{j} + h \,.\, c.) + \mu^{2} H^{\dagger} H - \frac{\lambda}{2} (H^{\dagger} H)^{2} \\ \text{Bosons} & \text{Fermions} & \text{Higgs potential} \\ (m_{W}^{2} W^{\mu +} W_{\mu}^{-} + \frac{1}{2} m_{Z}^{2} Z^{\mu 0} Z_{\mu}^{0}) (1 + \frac{h}{v})^{2} & -\sum_{f} m_{f} \bar{f} f (1 + \frac{h}{v}) & \frac{1}{2} m_{h}^{2} h^{2} + \lambda_{3} v h^{3} + \frac{1}{4} \lambda_{4} h^{4} \end{aligned}$$

Higgs mass measurements

Higgs boson mass

- Fundamental parameter
 - Higgs couplings calculations
 - Precision global fit of the Standard Model
- ATLAS
 - ▶ Run I combination: 0.33% precision
 - Run 1+ partial Run 2 analysis: 0.23%
 precision

Phys. Lett. B 784 (2018) 345 Stat. only ⊷Total ATLAS Run 1: \sqrt{s} = 7-8 TeV, 25 fb⁻¹, Run 2: \sqrt{s} = 13 TeV, 36.1 fb⁻¹ (Stat. only) Total **Run 1** $H \rightarrow 4l$ 124.51 ± 0.52 (± 0.52) GeV **Run 1** $H \rightarrow \gamma \gamma$ 126.02 ± 0.51 (± 0.43) GeV **Run 2** *H*→4*l* 124.79 ± 0.37 (± 0.36) GeV **Run 2** $H \rightarrow \gamma \gamma$ 124.93 ± 0.40 (± 0.21) GeV **Run 1+2** $H \rightarrow 4l$ 124.71 ± 0.30 (± 0.30) GeV **Run 1+2** $H \rightarrow \gamma \gamma$ 125.32 ± 0.35 (± 0.19) GeV Run 1 Combined 125.38 ± 0.41 (± 0.37) GeV Run 2 Combined 124.86 ± 0.27 (± 0.18) GeV Run 1+2 Combined 124.97 ± 0.24 (± 0.16) GeV ATLAS + CMS Run 1 125.09 ± 0.24 (± 0.21) GeV 123 124 125 126 127 128 *т*_н [GeV]

arXiv:2207.00320

$H \rightarrow ZZ^* \rightarrow 4\ell$ new measurement 139 fb⁻¹

Improvements

- µ momentum scale precision down to 0.05%
- μ momentum resolution precision down to 0.1%
- ML discriminant, $m_{4\ell}$ resolution estimated per-event (quantile regression NN)
- Combined profile likelihood fit of $m_{4\ell}$ and

 D_{NN}

- $m_H = 124.99 \pm 0.18 \text{ (stat.)} \pm 0.04 \text{ (syst.) } GeV$
 - ► 0.15% accuracy!

$H \rightarrow ZZ^* \rightarrow 4\ell' \operatorname{Run} 1$ and Run 2 Combination

• $m_H = 124.94 \pm 0.17 \text{ (stat.)} \pm 0.03 \text{ (syst.) } GeV$

0.14% accuracy (limited by statistics)

Higgs couplings to bosons & fermions

Higgs boson couplings combination

Long list of channels used

Nature 607, 52–59 (2022)

 \mathcal{L} [fb⁻¹] Decay mode Targeted production processes Ref. Fits deployed in 31 $qqF, VBF, WH, ZH, t\bar{t}H, tH$ 139 All $H \rightarrow \gamma \gamma$ 28 $H \rightarrow ZZ$ ggF, VBF, WH + ZH, $t\bar{t}H + tH$ 139 All 39 All but fit of kinematics $t\overline{t}H + tH$ (multilepton) 36.1 29 All $H \rightarrow WW$ aaF, VBF 139 30 WH, ZH36.1All but fit of kinematics 39 $t\overline{t}H + tH$ (multilepton) 36.1 All but fit of kinematics 32 $H \rightarrow Z\gamma$ inclusive 139 All but fit of kinematics 33,34 $H \rightarrow b\bar{b}$ All WH, ZH139 35 VBF All 126 36 All $t\overline{t}H + tH$ 139 37 inclusive 139 Only for fit of kinematics 38 $H \rightarrow \tau \tau$ All $qqF, VBF, WH + ZH, t\bar{t}H + tH$ 139 39 $t\overline{t}H + tH$ (multilepton) 36.1 All but fit of kinematics 40 $H \rightarrow \mu \mu$ $agF + t\overline{t}H + tH$, VBF + WH + ZH 139 All but fit of kinematics 41 $H \rightarrow c\bar{c}$ WH + ZH139 Only for free-floating κ_c 42 $H \rightarrow \text{invisible}$ VBF 139 κ models with $B_{\rm H}$ & $B_{\rm inv}$ 43 ZH139 κ models with $B_{\rm II} \& B_{\rm inv}$ Higgs boson couplings combination

Direct measurement of $\sigma imes BR$

Good agreement with SM expectations (p-value 72%) Improved precision: Cross section: 7-12% Branching fractions:10-12%

Higgs Couplings Combination

K-framework

Best ATLAS limits in the BR to invisible modes

- $B_{inv.} < 0.13 @ 95\%$ CL
- (expected 0.08)

Cross section different kinematic regions

Proving larger kinematic region at high pT! Combined p-value:

▶ 94%

Higgs Rare Decays

Eur. Phys. J. C 82 (2022) 717

Second generation: $H \rightarrow c \bar{c}$

- Rate could be enhanced by BSM physics
- Extremely challenging: huge backgrounds
- 3 different channels: $WH \rightarrow \ell \nu c \bar{c}, ZH \rightarrow \ell \ell c \bar{c}, ZH \rightarrow \nu \nu c \bar{c}$
- Observed (expected) 95% CL limit: 26 (31^{+12}_{-8})
- VW(cq) observed (expected) significance 3.8 (4.6)σ
- $VZ(c\bar{c})$ observed (expected) significance 2.6 (2.2) σ

$Hc\bar{c}$ and $Hb\bar{b}$ vertices

- Rare decays sensitive to Hcc or Hbb vertex
 - Direct and indirect contributions
- Could be enhanced due to BSM physics
- No signal observed →imposed limits on BR

BR ($H \rightarrow Y\gamma$) ~9×10⁻⁸

BR (H \rightarrow J/ $\Psi\gamma$) ~3×10⁻⁶

	95% CL _s upper limits							
		Branchin	g fraction	$\sigma \times \mathcal{B}$				
Decay	Higgs boson [10 ⁻⁴]		Z boson [10 ⁻⁶]		Higgs boson [fb]	Z boson [fb]		
channel	Expected	Observed	Expected	Observed	Observed	Observed		
$J/\psi \gamma$	$1.9^{+0.8}_{-0.5}$	2.1	$0.6^{+0.3}_{-0.2}$	1.2	12	71		
$\psi(2S) \gamma$	$8.5^{+3.8}_{-2.4}$	10.9	$2.9^{+1.3}_{-0.8}$	2.3	61	135		
$\Upsilon(1S) \gamma$	$2.8^{+1.3}_{-0.8}$	2.6	$1.5^{+0.6}_{-0.4}$	1.0	14	59		
$\Upsilon(2S) \gamma$	$3.5^{+1.6}_{-1.0}$	4.4	$2.0^{+0.8}_{-0.6}$	1.2	24	71		
$\Upsilon(3S) \gamma$	$3.1^{+1.4}_{-0.9}$	3.5	$1.9^{+0.8}_{-0.5}$	2.3	19	135		

Second generation: $H \rightarrow \mu^+ \mu^-$

- Very small BR and large backgrounds
- Dedicated BDTs trained for different production modes (20 categories)
 - Using muon and jet kinematics
- Simultaneous fit to $m_{\mu\mu}$ in all categories
- Signal strength:
 - $\mu = 1.2 \pm 0.6 \ (stat.)^{+0.2}_{-0.1} \ (syst.)$
- Observed (expected) significance: 2σ (1.7σ).
- Upper limit:

• $BR(H \to \mu\mu) < 4.7 \times 10^{-4} = 2.2 \times SM$

 $H \rightarrow Z\gamma$

- Ratio $BR(H \rightarrow Z\gamma)/BR(H \rightarrow \gamma\gamma) = 0.69 \pm 0.04$ sensitive to new physics (composite Higgs, SUSY, ...)
- Improved lepton/photon identification
- Constrained kinematic fit $Z \to \ell \ell \ell$ improves invariant mass resolution by 10-14%
- 6 exclusive events categories depending on lepton flavour and event kinematics
 - BDT to separate VBF events
- Combined fit for all event categories to $m_{Z\gamma}$

 $\mu = 2.0 \pm 0.9 \ (stat.)^{+0.4}_{-0.3} \ (syst.) = 2.0^{+1.0}_{-0.9}$ Obs (expect) significance: 2.2σ (1.2 σ)

Phys. Lett. B 819 (2021) 136412

 $H \to \gamma^* \gamma \to \ell \ell \gamma$

- Sensitive to CP violation in the Higgs sector
- Dedicated trigger and reconstruction techniques for low $\ensuremath{p_T}$ lepton pairs
- 9 event categories with different S/B
- First evidence observed:

^{d:} Obs(exp): 3.2 σ (2.1 σ)

 $\mu = 1.5 \pm 0.5 = 1.5 \pm 0.5$ (stat.)^{+0.2}_{-0.1} (syst.)

23

Search for exotic & LFV decays

• Limits in cross section/BR as a function of $m_{\tilde{\chi}_1}^{}, m_{\tilde{\chi}_2}^{}$

 $H \rightarrow aa \rightarrow bb\mu\mu$

Intermediate pseudo-scalars

• 3.3 σ (1.7 σ) local (global) excess observed at $m_a = 52 \text{ GeV}$

HDBS-2018-55

 $H \cdots \overset{\mathcal{K}}{\odot}_{s}$

 Z_d

Exotic decays

 $H \to Z_d Z_d \to 4\ell$

 $H \to ZZ_d \to 4\ell$

 $H \cdots$

 Z_d

Lepton flavour violating Higgs decays searches

Limits on the Yukawa couplings

Phys. Lett. B 800 (2020) 135069

Phys. Lett. B 801 (2020) 135148

Searches for Higgs decaying to invisible particles

- ZH associated production searches
 - Interpretations for different models

$$\begin{aligned} \mathscr{L}_{SM} &= D_{\mu} H^{\dagger} D_{\mu} H - (y_{ij} H \bar{\psi}_{i} \psi_{j} + h . c.) + \mu^{2} H^{\dagger} H - \frac{\lambda}{2} (H^{\dagger} H)^{2} \\ \text{Bosons} & \text{Fermions} & \text{Higgs potential} \\ (m_{W}^{2} W^{\mu +} W_{\mu}^{-} + \frac{1}{2} m_{Z}^{2} Z^{\mu 0} Z_{\mu}^{0}) (1 + \frac{h}{v})^{2} & -\sum_{f} m_{f} \bar{f} f (1 + \frac{h}{v}) & \frac{1}{2} m_{h}^{2} h^{2} (1 + \lambda_{3} v h^{3} + \frac{1}{4} \lambda_{4} h^{4} \end{aligned}$$

Di-Higgs production

Higgs self coupling

Determine the shape of the Higgs potential

$$\frac{1}{2}m_h^2h^2 + \lambda_3vh^3 + \frac{1}{4}\lambda_4h^4$$

Di-Higgs production

ATLAS HH combination

- Using $b\bar{b}b\bar{b}, b\bar{b}\gamma\gamma, b\bar{b}\tau\tau$

Channel	Integrated luminosity (fb ⁻¹)
$HH ightarrow b ar{b} \gamma \gamma$	139
$HH ightarrow b ar{b} au ar{ au}$	139
$HH \rightarrow b \bar{b} b \bar{b}$	126

- 95% CL observed (expected) upper limit on HH production: $\mu_{HH} = \frac{\sigma_{ggF+VBF}^{HH}}{\sigma_{ggF+VBF}^{HH}|_{SM}} = 2.4 (2.9)$
- Using VBF channel extracted 95% CL limits on k_{2V} : $0.1 < k_{2V} < 2.0$

Higgs self-coupling

• Single Higgs production affected by k_{λ} via NLO EW corrections

ATLAS HH+H combination

• Using $b\bar{b}b\bar{b}$, $b\bar{b}\gamma\gamma$, $b\bar{b}\tau\tau$ and single Higgs measurements

Channel	Integrated luminosity (fb ⁻¹)
$HH ightarrow b ar{b} \gamma \gamma$	139
$HH \rightarrow b \bar{b} \tau \bar{\tau}$	139
$HH \rightarrow b \bar{b} b \bar{b}$	126
$H \rightarrow \gamma \gamma$	139
$H \to ZZ^* \to 4\ell$	139
$H \rightarrow \tau^+ \tau^-$	139
$H \rightarrow WW^* \rightarrow e\nu\mu\nu$ (ggF,VBF)	139
$H \rightarrow b\bar{b}$ (VH)	139
$H \rightarrow b\bar{b}$ (VBF)	126
$H \rightarrow b\bar{b}$ $(t\bar{t}H)$	139

ATLAS HH+H combination

95% CL observed (expected) limits

Assuming all other SM

couplings:

 $-0.4 < \kappa_{\lambda} < 6.3$ $(-1.9 < \kappa_{\lambda} < 7.5)$

No assumptions in other couplings

 $-1.3 < \kappa_{\lambda} < 6.1$ ($-2.1 < \kappa_{\lambda} < 7.6$)

$$\begin{aligned} \mathscr{L}_{SM} &= D_{\mu} H^{\dagger} D_{\mu} H - (y_{ij} H \bar{\psi}_{i} \psi_{j} + h . c.) + \mu^{2} H^{\dagger} H - \frac{\lambda}{2} (H^{\dagger} H)^{2} \\ \text{Bosons} & \text{Fermions} & \text{Higgs potential} \\ (m_{W}^{2} W^{\mu +} W_{\mu}^{-} + \frac{1}{2} m_{Z}^{2} Z^{\mu 0} Z_{\mu}^{0}) (1 + \frac{h}{v})^{2} & -\sum_{f} m_{f} \bar{f} f (1 + \frac{h}{v}) & \frac{1}{2} m_{h}^{2} h^{2} + \lambda_{3} v h^{3} + \frac{1}{4} \lambda_{4} h^{4} \end{aligned}$$

CP Structure of Higgs Couplings

Searching for CP Violation in the Higgs sector

- Barion asymmetry of the Universe: still a mystery
- Combined results demonstrated H to be mainly CP-even scalar
 - There is still room for CP violation in the Higgs couplings
- Extend SM Lagrangian
- Effects:
 - Rates: don't allow to separate CP-even/odd
 - Identify CP-odd observables
 - Angular variables
 - Optimal observables

$$DO = \frac{2Re(\mathcal{M}_{SM}^*\mathcal{M}_{CP-odd})}{|\mathcal{M}_{SM}|^2}$$

 $\mathscr{L} = \mathscr{L}_{SM} + \sum \frac{C_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$

$$\sigma \sim |\mathcal{M}_{SM} + \mathcal{M}_{CP-odd}|^2 =$$
$$= |\mathcal{M}_{SM}|^2 + |\mathcal{M}_{CP-odd}|^2$$
$$+ 2Re(\mathcal{M}^*_{SM}\mathcal{M}_{CP-odd})$$

Vector Boson Fusion $H \rightarrow \gamma \gamma$

- VVH coupling
- Combination with $H \rightarrow \tau \tau$ (36.1 fb⁻¹, 00)
- Results compatible with SM
 - Most stringent limits in HVV CP-violating couplings

		Firs	t time	× ∆NLL	25 ATLAS ···· Exp. Comb — Obs. Comb
	95% (exp.)	95% (obs.)	>	ŝ	$20 \qquad \qquad$
\tilde{d} (inter. only)	[-0.055, 0.055]	[-0.032, 0.059]	- HIGZ basis		
\tilde{d} (inter.+quad.)	[-0.061, 0.060]	[-0.034, 0.071]			
\tilde{d} from $H \to \tau \tau$	_	-	_		10
Combined \tilde{d}	[-0.046, 0.045]	[-0.034, 0.057]	-		
$c_{H\tilde{W}}$ (inter. only)	[-0.94, 0.94]	[-0.53, 1.02]	-	95% 68%	s CL
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.95, 0.95]	[-0.55, 1.07]	Warsaw basi: -	S	0

VBF (SM) Total bkg. m,, [GeV Svst. Uncer. VBF (SM) VBF (d=0.06) VBF (d=-0.06) 00

arXiv:2208.02338

Sig. + bkg.

Continuum bka

- - - Total bkg.

ATLAS

Data

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

m_{γγ} ∈ [118, 132] GeV TT + TL + LT

events /

In(1+S/B) weighted

Data - bkg.

30

20

10

d

$\mathbf{CP} \text{ in } H \to \tau\tau \text{ coupling}$

- Probe Yukawa coupling H au au
 - CP-odd contribution can be present at tree level
- Parametrisation $\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{v} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau) H$
 - CP mixing angle ϕ_{τ} reflected in the directions of the decay products $d\Gamma_{H\to\tau^+\tau^-} \approx 1 - b(E_+)b(E_-)\frac{\pi^2}{16}\cos(\varphi_{CP}^* - 2\phi_{\tau})$
- Signed acoplanarity φ_{CP}^{*}
- Several analysis regions per channel

ATLAS-CONF-2022-032

$\mathbf{CP} \text{ in } H \to \tau\tau \text{ coupling}$

- Disfavour pure CP-odd signal at 3.4σ
 - Results statistically limited

• Observed: $\phi_{\tau} = 9 \pm 16^{\circ}$

Spin/CP in associated $t\bar{t}H/tH$ production ($H \rightarrow \gamma\gamma$)

$$\mathcal{L} = -\frac{m_t}{v} \left\{ \bar{\psi}_t \kappa_t \left[\cos(\alpha) + i \sin(\alpha) \gamma_5 \right] \psi_t \right\} H$$
CP-even (SM)

- Semileptonic and hadronic channels
- Event categories based on background rejection BDT and CP BDT trained to separate CP-even/CP-odd components
- Simultaneous fit to all event categories
- Measured ttH rate:
- $\mu = 1.43^{+0.33}_{-0.31}(stat.)^{+0.21}_{-0.15}(sys.)$
- |α| < 43° @95% CL
- $\alpha = 90^{\circ}$ excluded at 3.9σ (2.5 σ) observed (expected)

Spin/CP in associated $t\bar{t}H/tH$ production ($H \rightarrow b\bar{b}$)

- Signal regions defined based on jet multiplicity, b-tagging conditions, number of boosted top candidates
 - Reconstruction and background rejection BDTs trained per region
- CP observables $b_2 = \frac{(\vec{p}_1 \times \hat{n}) \cdot (\vec{p}_2 \times \hat{n})}{|\vec{p}_1||\vec{p}_2|}$ $b_4 = \frac{p_1^z p_2^z}{|\vec{p}_1||\vec{p}_2|}$
- Results:
 - Assuming SM BR:

$$\alpha = 11^{\circ+55^{\circ}}_{-77^{\circ}} \quad \kappa'_t = 0.83^{+0.30}_{-0.46}$$

 ${\scriptstyle
m P}$ Data disfavours pure CP-odd at 1.2 σ

Conclusions

- The Higgs boson provides an optimal ground to probe the SM predictions and search for new physics
- Outstanding performance of the LHC and the ATLAS detectors allows for an extensive Higgs Physics programme
- Selected recent results on the measurement of the Higgs couplings were presented
 - Increased precision and refined Run-2 data analysis
 - Overall agreement with the SM prediction

Acknowledgments

CERN/FIS-PAR/0010/2021

Backup

arXiv:2207.00320

$H \rightarrow ZZ^* \rightarrow 4\ell$ new measurement 139 fb⁻¹

- Run 2 measurement, 139 fb⁻¹
- Improvements
 - μ momentum scale precision down to 0.05%
 - + μ momentum resolution precision down to 0.1%
 - ML discriminant to separate signal/background
 - p_T , η of the four leptons, kinematic discriminant $(ln(|\mathcal{M}_{HZZ^*}|^2 / |\mathcal{M}_{ZZ^*}|^2))$
 - $m_{4\ell}$ resolution estimated per-event (quantile regression NN)

$H \rightarrow ZZ^* \rightarrow 4\ell$ new measurement 139 fb⁻¹

- Combined profile likelihood fit of $m_{4\ell}$ and D_{NN}
- $m_H = 124.99 \pm 0.18 \text{ (stat.)} \pm 0.04 \text{ (syst.) } GeV$
 - ► 0.15% accuracy!

Systematic Uncertainty	Contribution [MeV]
Muon momentum scale	±28
Electron energy scale	±19
Signal-process theory	±14

Second generation: $H \rightarrow \mu^+ \mu^-$

- Very small BR and large backgrounds
- Dedicated BDTs trained for different production modes (20 categories)
 - Using muon and jet kinematics

Second generation: $H \rightarrow c \bar{c}$

- Observed (expected) 95% CL limit: $26 (31^{+12}_{-8})$
- VW(cq) observed (expected) significance 3.8 (4.6) σ
- $VZ(c\bar{c})$ observed (expected) significance 2.6 (2.2) σ

$Hc\bar{c}$ and $Hb\bar{b}$ vertices

- Rare decays sensitive to Hcc or Hbb vertex
 - Direct and indirect contributions
- Could be enhanced due to BSM physics
- No signal observed →imposed limits on BR

Phys. Lett. B 809 (2020) 135754

Category	μ	Significance
VBF-enriched	$0.5^{+1.9}_{-1.7}\;(1.0^{+2.0}_{-1.6})$	0.3 (0.6)
High relative $p_{\rm T}$	$1.6^{+1.7}_{-1.6} \ (1.0^{+1.7}_{-1.6})$	1.0 (0.6)
High $p_{\mathrm{T}t} \ ee$	$4.7^{+3.0}_{-2.7}\ (1.0^{+2.7}_{-2.6})$	1.7 (0.4)
Low $p_{\mathrm{T}t} \ ee$	$3.9^{+2.8}_{-2.7}\;(1.0^{+2.7}_{-2.6})$	1.5 (0.4)
High $p_{\mathrm{T}t} \ \mu\mu$	$2.9^{+3.0}_{-2.8}\;(1.0^{+2.8}_{-2.7})$	1.0 (0.4)
Low $p_{\mathrm{T}t} \ \mu\mu$	$0.8^{+2.6}_{-2.6}\ (1.0^{+2.6}_{-2.5})$	0.3 (0.4)
Combined	$2.0^{+1.0}_{-0.9}(1.0^{+0.9}_{-0.9})$	2.2 (1.2)

 $\mu = 2.0 \pm 0.9 \ (stat.)^{+0.4}_{-0.3} \ (syst.) = 2.0^{+1.0}_{-0.9}$ Obs (expect) significance: 2.2σ (1.2 σ)

 $H \rightarrow Z \gamma$

- Ratio $BR(H \rightarrow Z\gamma)/BR(H \rightarrow \gamma\gamma) = 0.69 \pm 0.04$ sensitive to new physics (composite Higgs, SUSY, ...)
- Improved lepton/photon identification
- Constrained kinematic fit $Z \to \ell \ell$ improves invariant mass resolution by 10-14%
- 6 exclusive events categories depending on lepton flavour and event kinematics
 - BDT to separate VBF events
- Combined fit for all event categories to $m_{Z\gamma}$

$H \rightarrow ZZ^* \rightarrow 4\ell$ new measurement 139 fb⁻¹

(b)

Higgs width

On-shell and off-shell signal strength

$$\mu_{\text{off-shell}} = \frac{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}}{\sigma_{\text{off-shell},\text{SM}}^{gg \to H^* \to ZZ}} = \kappa_{g,\text{off-shell}}^2 \cdot \kappa_{Z,\text{off-shell}}^2$$

$$\mu_{\text{on-shell}} = \frac{\sigma_{\text{on-shell}}^{gg \to H \to ZZ^*}}{\sigma_{\text{on-shell},\text{SM}}^{gg \to H \to ZZ^*}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{Z,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{\text{SM}}}$$

- Includes $H \to 4\ell'$ and $H \to 2\ell' 2\nu$
- 95% CL observed (expected) upper limit: $\mu_{off-shell} < 3.8$ (3.4)
- 95% CL observed (expected) upper limit: $\Gamma_H < 14.4~(15.2)~{
 m MeV}$

				Category	μ	Significance
				VBF-enriched	$0.5^{+1.9}_{-1.7} (1.0^{+2.0}_{-1.6})$	0.3 (0.6)
$H \rightarrow Z$		Sources		High relative $p_{\rm T}$	$1.6^{+1.7}_{-1.6}(1.0^{+1.7}_{-1.6})$	1.0 (0.6)
		Total cross-section and efficiency [%]	High $p_{\mathrm{T}t} \ ee$	$4.7^{+3.0}_{-2.7}$ $(1.0^{+2.7}_{-2.6})$	1.7 (0.4)
Sources	$H \rightarrow Z\gamma$	ggF Underlying event	1.3 4.7–9.6	Low $p_{\mathrm{T}t} \ ee$	$3.9^{+2.8}_{-2.7}$ $(1.0^{+2.7}_{-2.6})$	1.5 (0.4)
Luminosity [%]		PDF and α_s	1.8-2.8	II: h	2.7 = 2.0	10(01)
Luminosity	1.7	$B(H \to Z\gamma)$	5.7	Hign $p_{Tt} \mu \mu$	$2.9^{+5.6}_{-2.8} (1.0^{+2.6}_{-2.7})$	1.0 (0.4)
Signal efficiency [%]		- Total (total cross-section and efficiency)	7.5–11	Low nr 111	$0.8^{+2.6}$ (1.0 ^{+2.6})	0.3(0.4)
Modelling of pile-up interactions	0.0-0.2	Category acceptance [%]		$-$ Low $p_{Tt} \mu \mu$	$0.0_{-2.6}(1.0_{-2.5})$	0.3 (0.4)
Photon identification efficiency	0.8-1.8	ogF Underlying event	0.1–11	Combined	$2 0^{+1.0} (1 0^{+0.9})$	2.2(1.2)
Electron identification efficiency	0.7 - 1.9	$ggEH p_{T}$ perturbative order	$0.3_{-0.4}$	Comonieu	2.0 - 0.9 (1.0 - 0.9)	2:2 (1:2)
Electron isolation efficiency	0.0-2.3	ggE in VDE anniabad astagamu	27			
Electron reconstruction efficiency	0.0-0.5	ggr III v Br-ellitched category	21			
Electron trigger efficiency	0.0-0.1	ggF in high relative $p_{\rm T}$ category	21			
Muon selection efficiency	0.0-0.6	ggF in other categories	10–15			
Muon trigger efficiency	0.0-1.6	Other production modes	1.0 - 15			
Jet energy scale	0.0-3.5	PDF and $\alpha_{\rm s}$	0.4–3.5			
Jet resolution	0.0–15	Total (category acceptance)	11-37			
Jet pile-up	0.0-7.5			1		
Jet flavor	0.0-11					
Signal modelling on $\sigma_{ m CB}$	[%]	-				
Electron and photon energy resolution	0.5-3.4	•				
Muon – Inner detector resolution	0.0-1.2					
Muon – Muon spectrometer resolution	0.0-3.4					
Signal modelling on μ_{CB}	[%]			0.4	1.0	
Electron and photon energy scale	0.09-0.15	$\mu = 2.0 \pm 0.9$ (s	$(tat.)^+$	$\int_{0.4}^{0.4} (syst) = 2$	$2.0^{+1.0}$	
Muon momentum scale	0.0-0.03	$\mathbf{p} = \mathbf{p} = \mathbf{p} = \mathbf{p} + $		0.3 (5)500)	-0.9	
Higgs boson mass measurement	0.19					
Background modelling [number of spur	ious signal events]	Ohs (expect) sig	nifica	nce $22\sigma(1)$	2σ	
Spurious signal	1.5-39		, micu			

_

Phys. Lett. B 819 (2021) 136412

 $H \to \gamma^* \gamma \to \ell \ell \gamma$

- Sensitive to CP violation in the Higgs sector
- Dedicated trigger and reconstruction techniques for low $p_{\rm T}$ lepton pairs
- 9 event categories with different S/B

54

Vector Boson Fusion $H \rightarrow \gamma \gamma$

- High statistics sample
- Using optimal observable (00)
 - Calculated with the Higgs boson & VBF jets 4-momenta

u.25 6

0.05

- Symmetric distribution if CP conserved
- Simultaneous fit of $m_{\gamma\gamma}$ in bins of OO
- Interpretation in HIGZ /Warsaw basis
- Two BDTs used to separate gluongluon fusion Higgs production and 0.1continuous $\gamma\gamma$ production 0.1
 - Improve the results by a factor of 5

Spin/CP in associated $t\bar{t}H/tH$ production ($H \rightarrow b\bar{b}$)

- Signal regions defined based on jet multiplicity, b-tagging conditions, number of boosted top candidates
 - Reconstruction and background rejection BDTs trained per region

ATLAS double Higgs combination

- Using $b\bar{b}b\bar{b}, b\bar{b}\gamma\gamma, b\bar{b}\tau\tau$

Channel	Integrated luminosity (fb ⁻¹)
$HH ightarrow b ar{b} \gamma \gamma$	139
$HH ightarrow b ar{b} au ar{ au}$	139
$HH \rightarrow b \bar{b} b \bar{b}$	126

ATLAS HH+H combination

95% CL observed (expected) limits

Assuming all other SM couplings:

 $-0.4 < \kappa_{\lambda} < 6.3$ $(-1.9 < \kappa_{\lambda} < 7.5)$

No assumptions in other couplings

 $-1.3 < \kappa_{\lambda} < 6.1$ ($-2.1 < \kappa_{\lambda} < 7.6$)

ATLAS double Higgs combination

Table 2: Summary of κ_{λ} observed and expected constraints and corresponding observed best fit values with their uncertainties. In the first column, the coupling modifiers that are free floating in addition to κ_{λ} in the correspondent fit are reported.

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_\lambda < 6.6$	$-2.1 < \kappa_\lambda < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single- <i>H</i> combination	$-4.0 < \kappa_\lambda < 10.3$	$-5.2 < \kappa_\lambda < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
HH+H combination	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.5$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.3 < \kappa_\lambda < 6.1$	$-2.1 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

Spin/CP in associated $t\bar{t}H/tH$ production ($H \rightarrow \gamma\gamma$)

$$\mathcal{L} = -\frac{m_t}{v} \left\{ \bar{\psi}_t \kappa_t \left[\cos(\alpha) + i \sin(\alpha) \gamma_5 \right] \psi_t \right\} H$$
(P-even (SM) (P-odd)

- Semileptonic and hadronic channels
- Event categories based on background rejection BDT and CP BDT trained to separate CP-even/CP-odd components
- Simultaneous fit to all event categories

- $\mu = 1.43^{+0.33}_{-0.31}(stat.)^{+0.21}_{-0.15}(sys.)$
- $|\alpha| < 43^{\circ}$ @95% CL
- $\alpha = 90^{\circ}$ excluded at 3.9σ $(2.5\sigma)_{-0.5}$ observed (expected) -1

