On the interplay between flavour anomalies and neutrino properties

João Pedro Pino Goncalves^{1,2}

Work done in collaboration with Antonio P. Morais, Roman Pasechnik, Felipe F. Freitas and Werner Porod

Based on arXiv:2206.01674 [hep-ph]

¹Physics Department and Centre for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, Portugal. ²Department of Astronomy and Theoretical Physics, Lund university, Sweden.

Workshop on Multi-Higgs Models - IST Lisbon

Despite its successes, the SM either **fails** or is **insufficient** in tackling various observations, with **anomalous results** popping up in recent years ...

• **R**_{D/D*}

$$R_{D^{(*)}} \equiv \frac{\operatorname{Br}\left(\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau}\right)}{\operatorname{Br}\left(\bar{B} \to D^{(*)}l\bar{\nu}_{l}\right)} \quad \text{with} \quad l = \mu, e,$$

 2.3σ tension with the SM [Eur. Phys. J. C 81, 226 (2021)]; $\bullet~R_{K/K^*}$

$$R_K \equiv \frac{\operatorname{Br} (B^+ \to K^+ \mu^- \mu^+)}{\operatorname{Br} (B^+ \to K^+ e^- e^+)}, \quad R_{K^*} \equiv \frac{\operatorname{Br} (B^0 \to K^{*0} \mu^- \mu^+)}{\operatorname{Br} (B^0 \to K^{*0} e^- e^+)}$$

 3.1σ tension with the SM [Nat. Phys. 18, 277–282 (2022)];

- $a_{\mu} 4.2\sigma$ tension with the SM [Phys. Rev. Lett. 126, 141801 (2021)]. Although lattice results indicate consistency [Nature 593 (2021) 7857, 51-55].
- M_W 3.7 σ tension with the SM [2204.04204 [hep-ph]]. Tension primarily driven by the new CDF result [Science 376 (2022) 170–176].

The goal: Study the most minimal model that can simultaneously address **all** aforementioned problems while allowing for a good neutrino phenomenology

 $\mathbf{R}_{\mathsf{D}/\mathsf{D}^*} + \mathbf{R}_{\mathsf{K}/\mathsf{K}^*} + \mathbf{a}_{\boldsymbol{\mu}} + \mathbf{M}_W + \mathbf{U}_{\mathsf{PMNS}} + \mathbf{m}_{\boldsymbol{\nu}}$

The problem: Improvement of different observables will cause problems in different sectors

- Lepton number violation: $\mu \to e\gamma$, $\tau \to \mu\gamma$, $h \to \tau\mu$, ...
- Lepton number conservation: $Z^0 \rightarrow ee, \mu\mu, \tau\tau, \Gamma_Z$;
- Meson mixing: ΔM_D , ΔM_S ;
- CP sensitive observables: ϵ_K , $d_e/d_\mu/d_\tau$
- Additional B-physics observables: $R_{K/K^*}^{\nu\nu}$, $BR(B^0 \to \mu\mu)$, $BR(B_s \to \mu\mu)$

In the most minimal setup, we expect different parameters to correlate with distinct sectors. Can make for **a difficult fit to data**.

Final remarks

<u>The idea:</u> Introduce colored scalar fields to connect **leptons to quarks**, i.e. **Leptoquarks**! Neutrino mass in the same vain as the one-loop Zee model [Phys.Lett.B 95, 461 (1980)]

The model:

- One SU(2) singlet: $S \sim (\bar{\mathbf{3}}, \mathbf{1}, 1/3)^{-}$;
- One SU(2) doublet: $R \sim (\bar{\mathbf{3}}, \mathbf{2}, 1/6)^-$;
- Yukawas that generate proton decay $\rightarrow y_1 \bar{Q}^c Q S^{\dagger} + y_2 \bar{d}u S + h.c.$

$$\mathbb{Z}_2$$
 symmetry: $\mathbb{P}_B = (-1)^{3B+2S} \implies S^-, R^-, q_{L,R}^+, \ell_{L,R}^-, H^-$

Group charges and particles are emergent in a gauge-flavour unification model based on $E_6\times SU(3)_F$ [Eur. Phys. J. C 80, 1162 (2020)].

- Yukawa Lagrangian: $\mathcal{L}_Y = \Theta_{ij} \bar{Q}_j^c L_i S + \Omega_{ij} \bar{L}_i d_i R^{\dagger} + \Upsilon_{ij} \bar{u}_j^c e_i S + h.c.$
- Relevant scalar potential:

$$\begin{split} V \supset & -\mu^2 |H|^2 + \mu_S^2 |S|^2 + \mu_R^2 |R|^2 + \lambda (H^{\dagger}H)^2 + g_{HR}(H^{\dagger}H)(R^{\dagger}R) + \\ & g'_{HR}(H^{\dagger}R)(R^{\dagger}H) + g_{HS}(H^{\dagger}H)(S^{\dagger}S) + \left(a_1 R S H^{\dagger} + \text{h.c.}\right) \,. \end{split}$$

- Majorana neutrino mass and mixing generated at one-loop level. [JHEP 07, 069 (2021)]; [Phys. 5, 63 (2017),]
- Relevant operators: $\Theta_{ij}\bar{Q}_{i}^{c}L_{i}S + \Omega_{ij}\bar{L}_{i}d_{i}R^{\dagger} + a_{1}RSH^{\dagger}$
- Both Θ_{ij} and Ω_{ij} need to be generic matrices for valid PMNS. No flavour ansatz.

$$(M_{\nu})_{ij} = \frac{3}{16\pi^2 (m_{S_2^{1/3}}^2 - m_{S_1^{1/3}}^2)} \frac{va_1}{\sqrt{2}} \ln\left(\frac{m_{S_2^{1/3}}^2}{m_{S_1^{1/3}}^2}\right) \sum_{m,a} (m_d)_a V_{am}(\Theta_{im}\Omega_{ja} + \Theta_{jm}\Omega_{ia})$$

Neutrino mass and mixing proportional to down quark masses and the CKM, V. Leptoquark mixing is a necessary ingredient, since $M_{\nu} = 0$ in the limit $a_1 \rightarrow 0$.

 New contributions to R_{K/K*} generated at one-loop level. Involves all Yukawa couplings, Θ_{ij}, Ω_{ij} and Υ_{ij};

- $\begin{array}{ll} C_{9}^{bs\ell\ell}(\bar{s}\gamma^{\mu}P_{L}b)(\bar{l}\gamma_{\mu}\ell) & C_{9}^{\prime bs\mu\mu}(\bar{s}\gamma^{\mu}P_{R}b)(\bar{l}\gamma_{\mu}\ell) \\ C_{10}^{bs\ell\ell}(\bar{s}\gamma^{\mu}P_{L}b)(\bar{l}\gamma_{\mu}\gamma^{5}\ell) & C_{10}^{\prime bs\mu\mu}(\bar{s}\gamma^{\mu}P_{R}b)(\bar{l}\gamma_{\mu}\gamma^{5}\ell) \end{array}$
- Both electron and muon modes contribute. Wilson coefficients C^{bsℓℓ}_{9,10} lead to R_{K/K*} < 1, whereas C'^{bsℓℓ}_{9,10} lead to R_K < 1/R_{K*} > 1 or vice-versa [Eur. Phys. J. C. 81 (2021), 10, 952];

- Contributions for $\mathbf{R}_{\mathbf{D}/\mathbf{D}^*}$ at **tree-level**, via the exchange of the *S* leptoquark, through Θ_{ij} and Υ_{ij} ;
- $\mathbf{R}_{\mathbf{D}}$ is dominated by the scalar operator $(\bar{c}b_L)(\bar{\tau}_R\nu_{\tau}) \rightarrow \mathbf{Prefers \ real \ couplings};$ [JHEP 01 (2017) 125]
- $\mathbf{R}_{\mathbf{D}^*}$ is dominated by the pseudo-scalar operator $(\bar{c}\gamma_5 b_L)(\bar{\tau}_R \nu_{\tau}) \rightarrow \mathbf{Prefers}$ imaginary couplings; [JHEP 01 (2017) 125]

Identical diagram with $\Upsilon \to \Theta$ leads to additional contributions to $R_{K,K^*}^{\nu\nu}$ [Phys.Rev.D 96, 091101 (2017)]. **Competition** between these observables.

Corrections to the W vacuum polarization self-energy Π_{WW} through virtual LQs [JHEP 11 (2020) 094]. The T parameter scale as

$$T \sim \frac{1}{\alpha M_W^2} \frac{\ln\left(\frac{m_{S^{2/3}}}{m_{S_a^{1/3}}}\right)}{\frac{m_{S^{2/3}}}{m_{S_a^{1/3}}} - 1} \Longrightarrow m_{S^{2/3}} \neq m_{S_a^{1/3}} \text{ to have non-zero } T$$

The quartic parameters of the potential $g_{HR}(H^{\dagger}H)(R^{\dagger}R)$, $g'_{HR}(H^{\dagger}R)(R^{\dagger}H)$, and $g_{HS}(H^{\dagger}H)(S^{\dagger}S)$ lift the degeneracy

• g_{HR} , g'_{HR} and g_{HS} of $\mathcal{O}(1)$ for sizable effects

- Dominant one-loop contributions via chirality flip of the top quark [JHEP 07 (2021) 069];
- Relevant operators: $\Theta_{ij}\bar{Q}^c_jL_iS + \Upsilon_{ij}\bar{u}^c_je_iS$
- Sub-leading contribution from the R LQ: $a_{\mu} \sim (m_{\mu}^2/m_{S^{2/3}}^2) |\Omega_{\mu q}|^2.$

$$(\Delta a_{\mu}^{S^{1/3}}) \sim -\frac{N_c m_{\mu} m_t}{16\pi^2 m_{S^{1/3}}^2} \operatorname{Re} \left(\Theta_{\mu t} \Upsilon_{\mu t}^*\right) \ln \left(\frac{m_{S^{1/3}}^2}{m_t^2}\right) + \mathcal{O} \left(m_{\mu}^2 \left(\left|\Theta_{\mu t}\right|^2 + \left|\Upsilon_{\mu t}\right|^2\right)\right)$$

Other pairings induce LFV's e.g. $\Theta_{\mu t} \Upsilon_{et}^*$ induces $\mu \to e\gamma$, so there must some hiearchy in the Yukawa couplings.

Methodology and results

	Observable	Experimental measurement				
Main observables	a_{μ}	$(251 \pm 59) \times 10^{-11}$				
	Ť	$(0.88 \pm 0.14) \times 10^{-3}$				
	$R_K[1.1, 6.0]$	$0.846^{+0.042+0.013}_{-0.039-0.012}$	Observab	le	Experimental measurement	1
	$R_{K*}[1.1, 6.0]$	$0.685^{0.113+0.047}_{-0.069-0.047}$	$F_L(B^+ \rightarrow K$	(μμ)	$0.34 \pm 0.10 \pm 0.06$	
	$R_K[0.045, 1.1]$	$0.660^{0.110+0.024}_{-0.070-0.024}$	$S_3(B^+ \rightarrow K$	(μμ)	$0.14^{+0.15+0.02}_{-0.14-0.02}$	CP-averaged
	R_D	$0.340 \pm 0.027 \pm 0.013$	$S_4(B^+ \rightarrow K$	(μμ)	$-0.04^{+0.17+0.04}_{-0.16-0.04}$	er arenagea
	R_{D} .	$0.295 \pm 0.011 \pm 0.008$	$S_5(B^+ \rightarrow K$	(μμ)	$0.24^{+0.12+0.04}_{-0.15-0.04}$	angular obs.
I FVs	$BR(h \rightarrow e\mu)$	$< 6.1 \times 10^{-5}$ [95% CL]	$A_{FB}(B^+ \rightarrow A)$	<i>Κμμ</i>)	$-0.05 \pm 0.12 \pm 0.03$	angular obol
	$BR(h \rightarrow e\tau)$	$< 4.7 \times 10^{-3}$ [95% CL]	$S_7(B^+ \rightarrow K$	[μμ]	$-0.01^{+0.19+0.01}_{-0.17-0.01}$	
	$BR(h \rightarrow \mu \tau)$	$< 2.5 \times 10^{-3}$ [95% CL]	$S_8(B^+ \rightarrow K$	(μμ)	$0.21^{+0.22+0.05}_{-0.20-0.05}$	
	$BR(\mu \rightarrow e\gamma)$	$< 4.2 \times 10^{-13}$ [90% CL]	$S_9(B^+ \rightarrow K$	(μμ)	$0.28^{+0.25+0.06}_{-0.12-0.06}$	
	$BR(\mu \rightarrow eee)$	$< 1.0 \times 10^{-12}$ [90% CL]	$P_1(B^+ \rightarrow K$	(μμ)	$0.44_{-0.40-0.11}^{+0.38+0.11}$	
	$BR(\tau \rightarrow e\gamma)$	$< 3.3 \times 10^{-8}$ [90% CL]	$P_2(B^+ \rightarrow K$	(uu)	$-0.05 \pm 0.12 \pm 0.03$	
	$BR(\tau \rightarrow \mu \gamma)$	$< 4.4 \times 10^{-8}$ [90% CL]	$P_2(B^+ \rightarrow K$	(uu)	$-0.42^{+0.20+0.05}$	
	$BR(\tau \rightarrow eee)$	$< 2.7 \times 10^{-8}$ [90% CL]	$P'_{4}(B^{+} \rightarrow K$	(uu)	$-0.092^{+0.36+0.12}_{-0.021}$	
	$BR(\tau \rightarrow e\mu\mu)$	$< 2.7 \times 10^{-8}$ [90% CL]	$P'_{\tau}(B^+ \rightarrow K$	(uu)	$0.51^{+0.30+0.12}_{-0.20+0.12}$	
	$BR(\tau \rightarrow \mu ee)$	$< 1.5 \times 10^{-8}$ [90% CL]	$P'_{c}(B^{+} \rightarrow K$	(uu)	$-0.02^{+0.40+0.06}_{-0.02}$	
	$BR(Z \rightarrow \mu e)$	$< 7.5 \times 10^{-7}$ [95% CL]	$P'_{e}(B^+ \rightarrow K$	(<i>uu</i>)	$-0.45^{+0.50+0.09}$	
	$BR(Z \rightarrow \tau e)$	$< 9.8 \times 10^{-6}$ [95% CL]	$F_T(B^0 \rightarrow K$	(uu)	$0.255 \pm 0.032 \pm 0.007$	
	$BR(Z \rightarrow \mu \tau)$	$< 1.2 \times 10^{-5}$ [95% CL]	$S_2(B^0 \rightarrow K$	·uu)	$0.034 \pm 0.044 \pm 0.003$	
	$BR(\tau \rightarrow \pi e)$	$< 8.0 \times 10^{-8}$ [90% CL]	$S_4(B^0 \rightarrow K$	(uu)	$0.059 \pm 0.050 \pm 0.004$	
	$BR(\tau \rightarrow \pi \mu)$	$< 1.1 \times 10^{-7}$ [90% CL]	$S_5(B^0 \rightarrow K$	·uu)	$0.227 \pm 0.041 \pm 0.008$	
	$BR(\tau \rightarrow \phi e)$	$< 3.1 \times 10^{-8}$ [90% CL]	$A_{FP}(B^0 \rightarrow I$	Kuu)	$-0.004 \pm 0.040 \pm 0.004$	
	$BR(\tau \rightarrow \phi \mu)$	$< 8.4 \times 10^{-8}$ [90% CL]	$S_7(B^0 \rightarrow K$	·uu)	$0.006 \pm 0.042 \pm 0.002$	
	$BR(\tau \rightarrow \rho e)$	$< 1.8 \times 10^{-6}$ [90% CL]	$S_8(B^0 \rightarrow K$	· uu)	$-0.003 \pm 0.051 \pm 0.001$	
	$BR(\tau \rightarrow \rho \mu)$	$< 1.2 \times 10^{-6}$ [90% CL]	$S_9(B^0 \rightarrow K$	μμ)	$-0.055 \pm 0.041 \pm 0.002$	
FDMs		$< 1.1 \times 10^{-2.9}$ e.cm [90% CL]	$P_1(B^0 \rightarrow K$	μμ)	$0.090 \pm 0.119 \pm 0.009$	
201013	d_{μ}	$< 1.8 \times 10^{-1.9} \text{ e.cm} [95\% \text{ CL}]$	$P_2(B^0 \rightarrow K$	μμ)	$-0.003 \pm 0.038 \pm 0.003$	
	a_{τ}	$< (1.15 \pm 1.70) \times 10^{-11} \text{ e.cm} [95\% \text{ CL}]$	$P_3(B^0 \rightarrow K$	μμ)	$-0.073 \pm 0.057 \pm 0.003$	
OFVs	$BR(B^* \rightarrow \mu\mu)$	$(0.56 \pm 0.70) \times 10^{-9}$	$P'_4(B^0 \rightarrow K$	μμ)	$-0.135 \pm 0.118 \pm 0.003$	
4.05	$Br(B_s \rightarrow \mu\mu)$ $P(B_s \rightarrow \nu\mu)$	(2.95 ± 0.35) × 10	$P'_5(B^0 \rightarrow K$	μμ)	$-0.521 \pm 0.095 \pm 0.024$	
	$R(D \rightarrow \chi_{s'}\gamma)$ $D^{\nu\nu}$	4.65 [05% CI]	$P'_6(B^0 \rightarrow K$	μμ)	$-0.015 \pm 0.094 \pm 0.007$	
	n_K $D^{\nu\nu}$	4.05 [95% CL] 2.22 [05% CL]	$P'_8(B^0 \rightarrow K$	μμ)	$-0.007 \pm 0.122 \pm 0.002$	
	$ \mathbf{P}_{0}, \delta a^{e} $	2.0 × 10-4	$\epsilon_k^{\text{NP}}/\epsilon_k^{\text{SM}}$	1	1.00 ± 0.14	
LFCs	$ \text{Re } \delta g_R^e $	$\leq 2.0 \times 10$ $\leq 3.0 \times 10^{-4}$	$\Delta M_d^{NP} / \Delta M$	I_d^{SM}	1.00 ± 0.11	
	$ \text{Re } \delta g_L^{\mu} $	$\leq 1.3 \times 10^{-3}$	$\Delta M_s^{NP} / \Delta M$	I_s^{SM}	1.000 ± 0.0054	
	$ \text{Re } \delta a^{\mu}_{\mu} $	$\leq 1.1 \times 10^{-3}$			-	
	$ \text{Re } \delta a_L^\tau $	$\leq 6.2 \times 10^{-4}$				
	ID G G	X 10				

Access quality of the fit through the χ^2 function [Eur.Phys.J.C 81 (2021) 10, 952]

$$\chi^2 = (\mathcal{O}_{\mathrm{exp}} - \mathcal{O}_{\mathrm{th}})^{\mathrm{T}} (\mathbf{\Sigma}_{\mathrm{th}} + \mathbf{\Sigma}_{\mathrm{exp}})^{-1} (\mathcal{O}_{\mathrm{exp}} - \mathcal{O}_{\mathrm{th}})$$

- $\bullet\,$ The experimental correlations are also considered in $\Sigma_{\rm exp},$ if available;
- Theoretical correlations are computed from simulated data set, using Pearson's method;
- Theoretical uncertainties are assumed gaussian. Determined from experimental errors on inputs (fermion masses, PMNS and CKM).

Analysis based on three distinct scenarios:

- Both a_μ and M_W are SM-like (Scenario a);
- a_μ requires new physics but **M**_W is SM-like (Scenario b);
- \mathbf{a}_{μ} and \mathbf{M}_{W} require new physics (Scenario c).

- Scenario a): $\chi^2/28$ d.o.f = 1.78, with $m_{S_1^{1/3}} = 2.57$ TeV, $m_{S_2^{1/3}} = 2.76$ TeV and $m_{S_2^{2/3}} = 2.78$ TeV;
- Scenario b): $\chi^2/28$ d.o.f = 1.76, with $m_{S_1^{1/3}} = 2.33$ TeV, $m_{S_2^{1/3}} = 4.48$ TeV and $m_{S^{2/3}} = 4.46$ TeV;
- Scenario c): $\chi^2/28$ d.o.f = 1.83, with $m_{S_1^{1/3}} = 2.46$ TeV, $m_{S_2^{1/3}} = 2.86$ TeV and $m_{S^{2/3}} = 2.81$ TeV;

To conclude . . .

- Discussed a simple economical model and showed prefered Yukawas for solving the anomalies;
- Textures of the Yukawas imply preference for channels involving, for example, 1st/3rd or 1st/2nd generation of fermions

• Can explain B-physics, \mathbf{a}_{μ} , \mathbf{m}_{ν} and \mathbf{M}_{W} , while consistent with all relevant constraints with $\chi^{2}/28$ d.o.f = 1.83.

On the interplay between flavour anomalies and neutrino properties

Thank you for your attention Workshop on Multi-Higgs Models - IST Lisbon

Backup slides

