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Standard Model (SM) + one fermionic singlet + two Higgs doublets

• is not a new idea: [G-N] W. Grimus and H. Neufeld, Nucl. Phys. B 325 (1989) 18.
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outline of the talk

• the Grimus-Neufeld model (GNM) Lagrangian

• the Grimus-Lavoura approximation

– allowing the analytic prediction of neutrino masses

• determining Lagrangian parameters

– from masses and mixings

∗ in the Grimus-Lavoura approximation !

• the tiny seesaw scenario

– with a new parametrization of the Yukawas

– and approximate symmetries

• summary, progress, and plans
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The GNM Lagrangian

• Gauge sector LG and Fermion-Gauge sector of the SM:

– gauge group U(1)Y ⊗ SU(2)L ⊗ SU(3)color
– gauge covariant derivative Dµψ

– and the Lagrangian LG-F =
∑
ψψ̄ i /D ψ (1)

• Gauge-Higgs sector with the gauge covariant derivative Dµϕa

and the Lagrangian LG-H = (Dµϕa)
†(Dµϕa)− V (ϕa) (2)

• Higgs sector: two Higgs doublets ϕa in the Higgs potential V (ϕa)

[H-ON] H. E. Haber and D. O’Neil, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188 [hep-ph]]

• Fermion-Higgs sector with the Yukawa couplings (ignoring quarks)

LF-H = −ℓ̄0Lj ϕa Y āLjk e0Rk − ℓ̄0Lj ϕ̃ā Ỹ
a
LjN

0 + h.c. (3)

with the adjoint Higgs doublet ϕ̃ā = ϵϕ∗
a =

(
0 1

−1 0

)
·
(

(ϕ+
a )

∗

(ϕ0
a)

∗

)
=:

(
ϕ0∗
ā

−ϕ−
ā

)

• Majorana sector with the Majorana singlet N0: DµN0 = ∂µN0
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The bare GNM has parameters additionally to the ”original” SM

• the (complex) singlet Majorana mass term MR

• parameters in the Higgs sector – like a general 2HDM see [H-ON]

– we use the Higgs basis: it fixes where the vev sits

∗ distinguishes the neutrino couplings between seesaw / loop

• the neutrino Yukawa coupling of the first Higgs doublet

(Y (1)
N )j := Ỹ 1

Lj =
√
2
v (MD)j . . . the ”Dirac mass” term

– is responsible for the seesaw: y2 =
∑
j|(Y (1)

N )j|2 = 2msm4
v2

(4)

• the Yukawa couplings of the second Higgs doublet

(Y (2)
N )j := Ỹ 2

Lj to lepton doublets and neutral fermionic singlet NR

– is essential for the loop mass ⇒ we have a general 2HDM

(Y (2)
E )jk := Y 2

Ljk to lepton doublets and charged lepton singlets ℓRj

– is not restricted by neutrino data at one loop
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The GNM tree level for the neutral fermions

• the Yukawa coupling (Y (1)
N )j mixes the neutral leptons νj with NR

• the mixing gives a (3 + 1)× (3 + 1) symmetric mass matrix

Mν =


 ML M⊤

D

MD MR


 with

ML = 03×3

M⊤
D = v√

2
Y

(1)
N

(5)

– Mν has rank 2 ⇒ only two masses are non-zero

• diagonalizing Mν

U(ν)
†Mν = diag(mo=”zero”,mt=”third”,ms=”seesaw”,m4)U(ν)

⊤ =: m̂U(ν)
⊤ (6)

with mo = mt = 0 by the unitary matrix

U(ν) =




ueo uet cues −isues
uµo uµt cuµs −isuµs
uτo uτt cuτs −isuτs
0 0 −is c


 where

c2 = m4
m4+ms

s2 = ms
m4+ms

(7)

– with ukα being a unitary 3× 3-matrix
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The GNM tree level for the neutral fermions

• from U(ν)
†Mν = m̂U(ν)

⊤ and (Y (1)
N )k =

√
2
v (M⊤

D)k we get

u∗ko(Y
(1)
N )k = u∗kt(Y

(1)
N )k = 0 (8)

• the two tree level massless ”neutrinos” ν′o,t are degenerate

• use the second Higgs coupling (Y (2)
N )k to distinguish them:

u∗ko(Y
(2)
N )k = 0 and u∗kt(Y

(2)
N )k =: d ̸= 0 (9)

⇒ parametrize the Yukawa couplings as

(Y (1)
N )k = i y uks (Y (2)

N )k := d ukt+ i d′uks (10)

⇒ we can choose a basis for the neutrinos with simple Yukawas

– where the neutrino ν′o does not couple to Higgses

∗ with a 3HDM we could not guarantee the last feature

At one loop the GNM generates a loop induced mass mt ∝ d2
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determining the parameters of the GNM at tree level

• we can use physical masses and couplings

– for the Higgs sector [see Tuesdays talk of Odd Magne Ogreid]

∗ Higgs masses mh, mH, mA, mH± and Higgs-Gauge couplings

– for the neutrino sector (i.e. m4 and (Y (a)
N )k)

∗ neutrino mixing matrix UPMNS

∗ neutrino mass differences ∆m2
atm and ∆m2

sol

!! but we have only a single mass difference at tree level:

∆m2
so −∆m2

st = ∆m2
to = 0 since mo = mt = 0 (11)

inconsistent !

⇒ we need the one-loop level to determine parameters
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Including one-loop predictions:

• renormalizing the Lagrangian expressed in the mass eigenstates

– needs a counter term δctm for each non vanishing mass m

∗ we have m3 > 0 already at tree level . . .

”Trick” of Grimus and Lavoura
[G-L] W. Grimus and L. Lavoura, JHEP 0011 (2000) 042 [arXiv:hep-ph/0008179].

• renormalize the Lagrangian expressed in interaction eigenstates

⇒ the counter term structure is simpler

• reduce the problem to the ”light” neutrinos

– get an effective 1-loop improved 3× 3-mass matrix

as a function of the model parameters

∗ since the matrix is singular, it can be further reduced to a 2× 2 matrix Σ̂

– the singular values are the light neutrino masses

∗ in general this involves solving a 4th order equation
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neutrino mass eigenstates from the Grimus-Lavoura approximation

• the ”heavy” state ν′′4 ∼ ν′4 with mass m4 was ”integrated out”

• the massless state ν′′o = ν′o with mass mo = 0 was left untouched

– since it does not couple to any Higgs

• the tree level states ν′t,s were mixed into one-loop mass eigenstates ν′′2,3
– the masses mt and ms can be determined from the measured mass differences

∆m2
sol = ∆m2

21 and ∆m2
atm ≈ |∆m2

31| (12)

[SoNO2018] P. F. de Salas et al., Phys. Lett. B 782 (2018) 633

– one has to be careful with normal or inverted hierarchy: mt < ms ?

• the transformation chain: [DGKKS2022] V. Dūdėnas et al., [arXiv:2206.00661 [hep-ph]]

(
00`
3×3

v√
2
Y (1)

v√
2
Y (1)T M

)
Ṽ−→




01` 01` 01` 01`

01` 00` 00` 00`

01` 00` 00` i vy√
2

01` 00` i vy√
2

M




S̃−→




01` 01` 01` 01`

01` 01`

01` Σ̂
01`

01` 01` 01` m4 + 01`




R̃−→ m̂

= =

MF
ν Ũ∗MF

ν Ũ
†

να := {νi, N} ν ′α ≈ ν ′α ν ′′α
Y (i) Y (i′) ≈ Y (i′) Y (i′′)

1
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values for the seesaw

• the physical light masses are determined:

mo = m1 = 0 , m2 =
√
∆m2

sol , m3 =
√
∆m2

atm (13)

– but m4 is a free parameter

– implementing this model in FlexibleSUSY exhibits an instability:

∗ one loop Higgs masses are not consistent with tree-level mass values:

for stable loop level Higgs masses we are limited to m4 < 106GeV

• using the seesaw relation y2 =
∑
j|(Y (1)

N )j|2 = 2msm4
v2

(4)

– we see, that y becomes a small parameter !

⇒ motivates the definition of the tiny seesaw scenario y ≤ 10−7 (14)

sidestep: what happens when y → 0 (i.e. (Y (1)
N )j → 0) ?

• LGNM gains an additional Z2 symmetry : ϕ2 ↔ −ϕ2 , N0 ↔ −N0 (15)

⇒ the tiny seesaw scenario has an approximate Z2 symmetry
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features of the tiny seesaw scenario

• the seesaw scale becomes smaller than the EW scale : m4 < v (16)

• the loop inducing couplings d and |d′| become large

– d is determined by the determinant of the 2× 2 mass matrix Σ̂

m2m3 = mtms = det[Σ̂] = d2mtree
3 Λ (17)

with the loop function of the neutral Higgses

Λ =
m4

32π2
[B0(0,m

2
4,m

2
A)−B0(0,m

2
4,m

2
H)] ∝ m4

32π2
λ5 (18)

– but |d′| is determined by a simpler 2nd order equation for |d′d |
∗ instead of the 4th order equation in the general case

[DG2021] V. Dūdėnas and T. Gajdosik, Acta Phys. Polon. Supp. 15 (2022) no.2, 1

• it allows a more convenient parametrization of the Yukawa couplings

– determined by the elements of the 2× 2 rotation matrix R̂

that diagonalizes Σ̂
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Parametrizing the Yukawas with the rotation matrix R̂

• using Murnaghan’s parameterization

R̂ =


 R22 −R∗

32e
iϕR

R32 R∗
22e

iϕR


 , with

R22 = cos r eiω22

R32 = sin r eiω32
(19)

we parametrize the Yukawa couplings in mass eigenstates as

Y
(1)
N =

i

eiϕR

√
2m3m4

|z|v2 (0,−R32, R22) (20)

Y
(2)
N = sign(Λ)

√
m2

|zΛ|(0, R22, t32R32) (21)

where t32 = m3
m2

and z = cos2 r e2iω22 + t32 sin
2 r e2iω32 (22)

– z has to fulfill the constraint |z| = m3
mtree

3
and parametrises the relative

loop correction for the heaviest light neutrino

– we replaced the previous free parameters by r and ω22

• this rewriting simplifies the numerical input for FlexibleSUSY

and gives a minimal parameter space for the model
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parameter space for Lepton flavor violation

• in the white area the constraint for z, eq. (22) cannot be fulfilled

• points where the flavour Yukawa couplings vanish are shown:

– in these points the corresponding charged lepton does not couple to H±
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Summary of the GNM

• the GNM extends the SM with a Higgs doublet and a Majorana singlet

– the neutrinos become Majorana particles

∗ the lightest neutrino stays mass less at one loop

– neutrino oscillations determine the neutrino Yukawa coupling

∗ allows predictions of Lepton Flavor violating processes

∗ the other possible new Yukawa couplings stay free parameters

– a large seesaw scale causes numerical problems in FlexibleSUSY

• An approximate Z2 symmetry defines the tiny seesaw scenario

– motivates the suppression of the undefined (free) new Yukawas

– stabilizes the numerical renormalization in FlexibleSUSY

– the explicit but small breaking parameters y and λ5 interpolate

between seesaw and radiative neutrino masses

⇒ the GNM can be seen as generalization of Dark matter models

∗ in terms of predicting Lepton Flavor violating processes

Thomas Gajdosik summary 14



Progress in the last four years

• implementation in FlexibleSUSY is stable regarding neutrinos

– for the large seesaw a high precision package is needed

∗ Higgses have to be taken at tree-level

– tiny seesaw scenario solves also this problem

• New definition for the Yukawa couplings

– simplifies the presentation of the parameter space:

∗ clear boundaries, numerically simple

∗ no doubling of Yukawa coupling values by different parameters

∗ no reverse engineering of input parameters

• Phenomenological analysis of Lepton Flavour violating processes

– limits also for the Higgs potential

∗ see talk by V. Dūdenas in the afternoon
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Plans

• Extending the Phenomenological analysis of Lepton Flavour violation

– covering the ”corners” in the Higgs potential

• fully renormalizing the model

– see talk by S. Draukšas in the afternoon

∗ some success already, but not finished

• Exploring the Cosmology connection

– lifetime of the particles

– could there be a Dark Matter candidate ?

– what about Leptogenesis ?

∗ mostly for having themes for students . . .

? What changes if we get a third Higgs doublet ?
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Thank you

for discussion

and comments

and of course for the workshop! ,
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