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Instituto Sup. Técnico, 3rd September 2024

0-0



We have considered a New-Physics model with a scalar

sector consisting of the SM Higgs doublet H and its

conjugate H̃,

H =





a

b



 , H̃ =





b∗

−a∗



 , (1)

plus only one scalar multiplet χ with isospin J and

arbitrary hypercharge Y , and its conjugate multiplet χ̃:

χ =





















χJ

χJ−1

χJ−2

...

χ−J





















, χ̃ =





















χ∗

−J

−χ∗

1−J

χ∗

2−J

...

(−1)
2J

χ∗

J





















. (2)

(In the notation “χI ,” I is the third component of

isospin.) According to Hally, Logan, and Pilkington

(2012), there is a unitarity bound (from V V → χχ):

J cannot be higher than 7/2 and |Y | has a J-dependent

upper bound.

We have studied the unitarity (UNI) (from χχ → χχ)

and the bounded from below (BFB) constraints on this

New Physics model, with their J- and Y -dependences.
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The quartic part of the potential, V4, has three types of

terms:

• one term four-linear in H:

λ1

2
(F1)

2
, F1 ≡ |a|

2
+ |b|

2
, (3)

just as in the SM;

• two terms bilinear in both H and χ:

λ3F1F2, F2 ≡ |χJ |
2
+ |χJ−1|

2
+ · · · + |χ−J |

2
, (4)

and

λ4F4, F4 =
[(

H ⊗ H̃
)

3

⊗ (χ ⊗ χ̃)
3

]

1

; (5)

• one or more terms four-linear in χ:

λ2

2
(F2)

2
+

t
∑

i=5

λiFi, (6)

t = 5 for J = 1 and J = 3/2;

t = 6 for J = 2 and J = 5/2;

t = 7 for J = 3 and J = 7/2.
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The terms in Eq. (6) arise because (χ ⊗ χ)symmetric

contains several multiplets of SU(2):

• J = 1 ⇒ (χ ⊗ χ)symmetric = 5 ⊕ 1;

• J = 3/2 ⇒ (χ ⊗ χ)symmetric = 7 ⊕ 3;

• J = 2 ⇒ (χ ⊗ χ)symmetric = 9 ⊕ 5 ⊕ 1;

• J = 5/2 ⇒ (χ ⊗ χ)symmetric = 11 ⊕ 7 ⊕ 3;

• J = 3 ⇒ (χ ⊗ χ)symmetric = 13 ⊕ 9 ⊕ 5 ⊕ 1;

• J = 7/2 ⇒ (χ ⊗ χ)symmetric = 15 ⊕ 11 ⊕ 7 ⊕ 3.

Taking the square moduli of all the SU(2) multiplets,

one obtains various terms (two for J = 1 or J = 3/2,

three for J = 2 or J = 5/2, four for J = 3 or J = 7/2)

that are equivalent to (F2)
2 and the Fi (i = 5, . . . , t).

The term

F4 =
|a|

2
− |b|

2

2

J
∑

I=−J

I |χI |2

+ℜ

(

ab∗

J
∑

I=1−J

χ∗

IχI−1

√

J2 − I2 + J + I

)

(7)

3



is especially relevant because, when b acquires vacuum

expectation value (VEV) v—the multiplet χ is supposed

not to acquire VEV, lest there is a Goldstone boson

because Y is arbitrary and lest mW 6= cwmZ—it

generates a mass-squared splitting between any two

components of χ that have I differing by one unit:

∆m2 =

∣

∣λ4v2
∣

∣

2
. (8)

How large can |λ4|, and hence ∆m2, be? The answer

depends on the UNI but also on the BFB conditions.

Because v = 174GeV and the mass of the Higgs boson

in 125GeV, λ1 = 0.258 just as in the SM.
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In the following we neglect the terms (F2)
2 and Fi in V4.

The UNI conditions that we consider in this work arise

from the scattering of a pair of scalars to another pair of

scalars with equal total values of I and Y . From the

cases where the two scalars are either (χ0a, χ1b) or

(χ1a∗, χ0b∗) for integer J , or
(

χ
−1/2a, χ1/2b

)

or
(

χ1/2a∗, χ
−1/2b

∗

)

for half-integer J , one derives

|λ3| +
J + 1

2
|λ4| < 8π. (9)

From the case where the two scalars are

aa∗, bb∗, χJχ∗

J , χJ−1χ∗

J−1, . . . , χ−Jχ∗

−J one obtains

3 |λ1| +
√

9λ2
1 + 8 (2J + 1)λ2

3 < 16π, (10)

|λ1| +
√

λ2
1 + (2/3) J (J + 1) (2J + 1)λ2

4 < 16π. (11)

It turns out that Eqs. (9), (10) and (11) are the

strongest UNI conditions (i.e. all the other scatterings

produce weaker constraints).
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The BFB conditions are best obtained in the gauge

where b = 0. There,

V4 =
λ1

2
|a|

4
+ λ3 |a|

2
J
∑

I=−J

|χI |
2
+

λ4

2
|a|

2
J
∑

I=−J

I |χI |
2

.

(12)

This is necessarily larger than

λ1

2
|a|

4
+ λ3 |a|

2
J
∑

I=−J

|χI |
2

−
J |λ4|

2
|a|

2
J
∑

I=−J

|χI |
2

. (13)

The quantity (13) must always remain positive.

Therefore, the BFB conditions are

λ1 ≥ 0, (14)

λ3 ≥ 0, (15)

|λ4| ≤
2λ3

J
. (16)

If the terms (F2)
2
and Fi in V4 are not neglected, then

exact necessary and sufficient BFB conditions can still

be derived by generalizing a method devised, for the

special case J = 1, by Bonilla, Fonseca, and Valle

(2015).
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By putting together the UNI and the BFB conditions,

one derives the maximum allowed value of |λ4|, and the

maximum (and minimum) allowed values of λ3, given in

the following table and figure for various values of J :

J 1/2 1 3/2 2

maximum |λ4| 26.46 17.49 11.96 8.10

maximum λ3 12.37 10.10 8.75 7.82

minimum λ3 −1.46 −1.26 −1.13 −1.03

J 5/2 3 7/2

maximum |λ4| 5.97 4.65 3.76

maximum λ3 7.14 6.61 6.19

minimum λ3 −0.95 −0.89 −0.84
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In practice, if J is rather large, then |λ4| must

be—because of UNI and BFB—so small that the

multiplets are almost fully degenerate. This is

illustrated in the figure below, where we depict the

maximal mass of the heaviest particle in the multiplet

versus the mass of the lightest particle.
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The renormalization-group equations (RGEs) are of the

form

16π2µ
dλ

dµ
= βλ, (17)

where µ is the energy scale at which the dimensionless

coupling λ is measured. In order to derive the RGEs for

our model—without the terms (F2)
2
and Fi—we have

used a feature of the software SARAH.

• We had to adapt that software, which only tolerates

J through 3, in order to treat the case J = 7/2.

• The running time of the software increases

exponentially with J .

• It is inconsistent to neglect λ2 and the λi, because

they have nonzero β functions, still we have done it.

We have obtained

βg1
=

(

41

10
+

4

5
Y 2

)

g3
1 , (18a)

βg2
=

[

−
19

6
+

J (J + 1) (2J + 1)

9

]

g3
2 , (18b)

βg3
= −7g3

3 ; (18c)

βyt
=

(

9

2
y2

t −
17

20
g2
1 −

9

4
g2
2 − 8g2

3

)

yt; (19)
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βλ1
=

27

100
g4
1 +

9

10
g2
1g2

2 +
9

4
g4
2 + 12y2

t λ1

+12λ2
1 + 2 (2J + 1)λ2

3 +
J (J + 1) (2J + 1)

6
λ2
4

−

(

9

5
g2
1 + 9g2

2

)

λ1 − 12y4
t , (20a)

βλ3
=

27

25

(

Y g2
1

)2
+ 3J (J + 1) g4

2 + 6y2
t λ3

+6λ1λ3 + 4λ2
3 + J (J + 1)λ2

4

−

(

9

10
+

18

5
Y 2

)

g2
1λ3

−

[

9

2
+ 6J (J + 1)

]

g2
2λ3, (20b)

βλ4
=

36

5
Y g2

1g2
2 + 6y2

t λ4 + 2λ1λ4 + 8λ3λ4

−

(

9

10
+

18

5
Y 2

)

g2
1λ4

−

[

9

2
+ 6J (J + 1)

]

g2
2λ4. (20c)

We have integrated these equations up to the scale

µ = 1019GeV, starting from allowed values of λ3 and λ4

at the scale µ = mt. We have required that both the

UNI and BFB conditions are valid at every intermediate

energy scale; this constrains the initial λ3 and λ4 even

more strongly:
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