

Accumulating Evidence for New Higgs Bosons at the LHC

Workshop on Multi-Higgs Models **3th September 2024**

Swiss National Science Foundation

Universität Zürich

Sumit Banik Based on: arXiv:2407.06267

O Motivation

O Simplified Model Analysis

O Explaination in 2HDM-Type1

O General Aligned 2HDM

O Summary & Conclusion

• Minimality of the scalar sector of the SM not guaranteed theoretically **Full Run 2 Data**

O ATLAS recently performed Model-Independent analysis of $\gamma\gamma + X$ for SM Higgs

O Analysis involves 22 signal regions

SRs	$\geq 3b$	$\geq 4b$	$\geq 4j$	$\geq 6j$	$\geq 8j$	$H_T > 500$	$H_T > 1000$	$H_T > 1500$	ℓb	$t_{ m lep}$	
SRs	$\geq 1\ell$	2ℓ	$2\ell - Z$	$SS-2\ell$	$\geq 3\ell$	$E_{ m miss}^T > 100$	$E_{\rm miss}^T > 200$	$E_{ m miss}^T > 300$	1τ or 2τ	$m_{\gamma\gamma}^{12}$	1

O Excesses Most Pronounced: $\gamma\gamma + \ell b$, $\gamma\gamma + MET$, $\gamma\gamma + 1\tau$, $\gamma\gamma + 4j$, $\gamma\gamma + 1\ell$

[ATLAS: CERN-EP-2022-232]

O Possible new Higgs Boson?

[ATLAS-CONF-2024-005]

o No Excesses at 152 GeV in SRs: $\gamma\gamma + t_{lep}$, $\gamma\gamma + 2\ell$, $\gamma\gamma + 2\tau$,

Point towards asssociated H^{\pm}

• Hints towards DY production of new Higgs at LHC

O No excess in Inclusive Searches

Simplified Model O Two New Particles: H, H^{\pm}

- *H* produced only via DY process
- O Dominant decays of H^{\pm} : $tb, \tau\nu, WZ$
- UFO Model generated using FeynRules
- Simulation Setup: MadGraph + Pythia + Delphes
- O Log-Likelihood Fit performed using Poisson Statistics

Simplified Model Charged Higgs Decay

- $O BR(H^{\pm} \rightarrow tb \rightarrow bbW) = 100\%$
- o Dominant Effect: $\gamma\gamma + \ell b, \gamma\gamma + MET, \gamma\gamma + 1\ell, \gamma\gamma + t_{ep}$
- O Combined significance: 3.8σ

Simplified Model Charged Higgs Decay $\circ BR(H^{\pm} \to \tau \nu) = 100\%$

- O Dominant Effect: $\gamma\gamma + MET, \gamma\gamma + 1\tau, \gamma\gamma + 1\ell$
- o Combined significance: 3.8σ

Simplified Model Charged Higgs Decays

$\circ BR(H^{\pm} \rightarrow WZ) = 100\%$

- O Dominant Effect: $\gamma\gamma + MET$, $\gamma\gamma + 1\ell$, $\gamma\gamma + 2\ell$, $\gamma\gamma + 2\tau$
- O Combined significance: 3.5σ

Dominant in Triplet Model (See Talk of G. Coloretti)

Model Building Key Points O Small total production cross-section

- O Dominant DY production cross-section
- o Large BR($H^{\pm} \rightarrow tb$) and BR($H^{\pm} \rightarrow \tau\nu$)
- Small BR($H^{\pm} \rightarrow WZ$) to avoid multiple leptons
- Sizable BR($H \rightarrow \gamma \gamma$)

Explanation in 2HDM Description • Two $SU(2)_L$ doublets: ϕ_1 and ϕ_2 • Scalar potential $V(\phi_1, \phi_2) = m_{11}\phi_1^{\dagger}\phi_1 + m_{22}\phi_2^{\dagger}\phi_2 - m_{12}^2(\phi_1^{\dagger}\phi_2 + \text{h.c.})$

 $+\lambda_2(\phi_2^{\dagger}\phi_2)^2 + \lambda_3(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_3(\phi_1^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2) + \lambda_3(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2) + \lambda_3(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2) + \lambda_3(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2) + \lambda_3(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2) + \lambda_3(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2) + \lambda_3(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2) + \lambda_3(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2) + \lambda_3(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2) + \lambda_3(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2) + \lambda_3(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_$

O Scalar Particles: h, H, A, H^{\pm}

o Free Parameters: m_h, m_H, m_A, m_H

$$b_2 - m_{12}^2 (\phi_1^{\dagger} \phi_2 + \text{h.c.}) + \lambda_1 (\phi_1^{\dagger} \phi_1)^2 + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \lambda_5 ((\phi_1^{\dagger} \phi_2)^2 + \text{h.c})$$

$$_{I^{\pm}}, m_{12}^2, \tan\beta = v_2/v_1, \alpha$$

o Yukawa Sector

$Y = -\bar{Q}_{L}\phi_{2}d_{R} - \bar{Q}_{L}\phi_{2}^{c}u_{R} - \bar{L}_{L}\phi_{2}e_{R}$

- O Suppressed gluon-fusion, VBF, VH cross-section of H for large tan β
- O Dominant production channels for H

Explanation in 2HDM Type-I

- O Dominant decay modes of H^{\pm} : $\tau\nu$, tb
- **Considered Benchmark Point:**

 $m_H = 152 \text{ GeV}, m_{H\pm} = 130 \text{ GeV}, \alpha - \beta \approx \pi/2$ $m_A = 200 \text{ GeV}, \tan \beta = 20, m_{12}^2 = 1100 \text{ GeV}$

- $\circ Br(H \rightarrow \gamma \gamma)$ required at the percent level
- O Possible with Effective Operator: $F_{\mu\nu}F^{\mu\nu}\phi_1^{\dagger}\phi_2 + h.c$

Possible in composite models

General 2HDM Large $H \rightarrow \gamma \gamma$

O Large $Br(H \rightarrow \gamma \gamma)$ possible in general 2HDM

- $\mathscr{L} \in -\lambda_6 H_1^{\dagger} H_1 H_2^{\dagger} H_1 + \text{h.c.},$
- Modifies the $HH^{\pm}H^{\mp}$ vertex
- O Enhanced $Br(H \rightarrow \gamma \gamma)$ via H^{\pm} loop

 Z_2 symmetry broken

- O General 2HDM may lead to FCNC at tree-level
- o Avoided in flavour aligned 2HDM
- o If 152 GeV is CP-odd, large $Im(\lambda_6)$ required for $BR(A \rightarrow \gamma \gamma)$ $\mathscr{L} \in -\lambda_6 H_1^{\dagger} H_1 H_2^{\dagger} H_1 + \text{h.c.},$
- O Leads to additional CP-violation

- O Model-Independent analysis by ATLAS of $\gamma\gamma + X$ in 22 SRs
- O Excesses observed in some SRs
- O Hints for associated production of Neutral Higgs Boson
- Explanation possible in 2HDM + an effective operator
- Charge Br($H \rightarrow \gamma \gamma$) in general aligned 2HDM

Thank you for your attention!

