Status of the (extended) Georgi Machacek model in the light of NLO unitarity and the latest LHC data

based on [arXív: 2111.14195] with A. Kundu and P. B. Pal [2404.18996] with D. Chowdhury and S. Samanta

> Poulami Mondal IIT Kanpur

Workshop on Multi-Higgs Models

Lisbon, Portugal September 3, 2024

Beyond the Standard Model

The Standard Model provides a framework for explaining much of the observed results @ expts.

Major Issues

- *Dark Matter
- * Massive Neutrinos
- *Baryon asymmetry of the Universe (BAU)
- *Origin of electroweak (EW) symmetry breaking and the type of EWPT

Search for BSM @ forefront of particle physics research

Higgs Triplet Models (HTMS)

* Can explain EWBG, DM puzzle, neutrino oscillation

*Exciting phenomenological aspects in colliders : LHC, HL-LHC, ILC, Muon collider, FCC etc.

*Can be probed in cosmological observatories: LISA, DECIGO, PRIME, Roman Telescope etc.

HTM with Custodial Symmetry

 $\rho = \frac{m_W^2}{m_Z^2 Cos^2 \theta_W} = 1$, at tree level

Consequence of Custodial Symmetry

$$V = -m_{\phi}^{2}(\phi^{\dagger}\phi) - m_{\xi}^{2}(\xi^{\dagger}\xi) - m_{\chi}^{2}(\chi^{\dagger}\chi) + \mu_{1}(\chi^{\dagger}t_{a}\chi)\xi_{a} + \mu_{2}(\phi^{\dagger}\tau_{a}\phi)\xi_{a} + \mu_{3}\left[(\phi^{T}\epsilon\tau_{a}\phi)\tilde{\chi}_{a} + \text{h.c.}\right] + \lambda_{\phi}(\phi^{\dagger}\phi)^{2} + \lambda_{\xi}(\xi^{\dagger}\xi)^{2} + \lambda_{\chi}(\chi^{\dagger}\chi)^{2} + \tilde{\lambda}_{\chi}|\tilde{\chi}^{\dagger}\chi|^{2} + \lambda_{\phi\xi}(\phi^{\dagger}\phi)(\xi^{\dagger}\xi) + \lambda_{\phi\chi}(\phi^{\dagger}\phi)(\chi^{\dagger}\chi) + \lambda_{\chi\xi}(\chi^{\dagger}\chi)(\xi^{\dagger}\xi) + \kappa_{1}|\xi^{\dagger}\chi|^{2} + \kappa_{2}(\phi^{\dagger}\tau_{a}\phi)(\chi^{\dagger}t_{a}\chi) + \kappa_{3}\left[(\phi^{T}\epsilon\tau_{a}\phi)(\chi^{\dagger}t_{a}\xi) + \text{h.c.}\right],$$

After electro-weak symmetry breaking:

$$\langle \phi \rangle = v_{\phi}, \langle \xi \rangle = v_{\xi}, \langle \chi \rangle = v_{\chi}$$

$$\rho = \frac{v_{\phi}^2 + 4(v_{\xi}^2 + v_{\chi}^2)}{v_{\phi}^2 + 8v_{\chi}^2}, \qquad \rho = 1 \to v_{\chi} = v_{\xi}$$

Georgi Machacek Model

+ In 1985, GM model was first proposed by Georgi and Machacek as a minimal HTM with $\rho = 1$

$$V = \frac{1}{2}m_2^2 \operatorname{Tr}(\Phi^{\dagger}\Phi) + \frac{1}{2}m_3^2 \operatorname{Tr}(X^{\dagger}X) - M_1 \operatorname{Tr}(\Phi^{\dagger}\tau_a^{\dagger}\Phi\tau_b)X_{ab} - M_2 \operatorname{Tr}(X^{\dagger}t_a^{\dagger}Xt_b)X_{ab} + \lambda_1 (\operatorname{Tr}\Phi^{\dagger}\Phi)^2 + \lambda_2 (\operatorname{Tr}X^{\dagger}X)^2 + \lambda_3 \operatorname{Tr}(X^{\dagger}XX^{\dagger}X) + \lambda_4 (\operatorname{Tr}\Phi^{\dagger}\Phi) \operatorname{Tr}(X^{\dagger}X) - \lambda_5 \operatorname{Tr}(\Phi^{\dagger}\tau_a^{\dagger}\Phi\tau_b) \operatorname{Tr}(X^{\dagger}t_a^{\dagger}Xt_b),$$

On the centre stage of BSM searches @collider and cosmological expts.

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Combination of searches for singly and doubly charged Higgs bosons produced via vector-boson fusion in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

PHYSICAL REVIEW D 106, 055019 (2022)

Updated constraints on the Georgi-Machacek model and its electroweak phase transition and associated gravitational waves

Ting-Kuo Chen[®],^{1,*} Cheng-Wei Chiang[®],^{1,2,†} Cheng-Tse Huang[®],^{1,‡} and Bo-Qiang Lu^{3,§} ¹Department of Physics, National Taiwan University, Taipei, Taiwan 10617, Republic of China ²Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan 10617, Republic of China ³School of Science, Huzhou University, Huzhou, Zhejiang 313000, People's Republic of China</sup>

(Received 15 May 2022; accepted 22 August 2022; published 19 September 2022)

PHYSICAL REVIEW D 90, 015007 (2014)

The decoupling limit in the Georgi-Machacek model

Katy Hartling,^{*} Kunal Kumar,[†] and Heather E. Logan[‡] Ottawa-Carleton Institute for Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada (Received 25 April 2014; published 9 July 2014)

PHYSICAL REVIEW D 91, 015013 (2015)

Indirect constraints on the Georgi-Machacek model and implications for Higgs boson couplings

Katy Hartling,^{*} Kunal Kumar,[†] and Heather E. Logan[‡] Ottawa-Carleton Institute for Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada (Received 4 November 2014; published 15 January 2015)

Published for SISSA by 2 Springer

RECEIVED: December 19, 2018 REVISED: January 16, 2019 ACCEPTED: January 24, 2019 PUBLISHED: January 29, 2019

Electroweak phase transition and Higgs phenomenology in the Georgi-Machacek model

Ruiyu Zhou, a Wei Cheng, a Xin Deng, a Ligong $\mathrm{Bian}^{a,b,1}$ and Yongcheng Wu^c

Published for SISSA by 2 Springer

RECEIVED: November 15, 2012 ACCEPTED: December 8, 2012 PUBLISHED: January 3, 2013

Testing the custodial symmetry in the Higgs sector of the Georgi-Machacek model

Cheng-Wei Chiang^{*a,b,c*} and Kei Yagyu^{*a*}

vs.

 Scalar multiplets mass degenerate

• Divergent contribution to ρ parameter @ one-loop

• Only H^+ couples to fermions.

Scalar multiplets non mass degenerate

new decay modes open up

search for new physics @ colliders

All the counter-terms are present in the Lagrangian

Both H⁺ and F⁺couple to fermions

Much richer flavour physics phenomenology Theory Constraints on the parameter space

*** Why theory bounds are important?**

Ans: More statistically robust than expt data with errors

Theory Constraints

Higgs potential must be bounded from below

Yukawa and quartic couplings need to be in perturbative regime

• Eigenvalues of the S matrix of 2×2 scattering should satisfy NLO unitarity bounds

• NLO corrections to the LO eigenvalues should be smaller in magnitude.

Bounded From Below (BFB)

Make sure that the scalar potential must be bounded from in any direction of the field scape

$V^{(4)} = \lambda_{\phi}(\phi^{\dagger}\phi)^{2} + \lambda_{\xi}(\xi^{\dagger}\xi)^{2} + \lambda_{\chi}(\chi^{\dagger}\chi)^{2} + \tilde{\lambda}_{\chi}|\tilde{\chi}^{\dagger}\chi|^{2} + \lambda_{\phi\xi}(\phi^{\dagger}\phi)(\xi^{\dagger}\xi) + \lambda_{\phi\chi}(\phi^{\dagger}\phi)(\chi^{\dagger}\chi) + \lambda_{\chi\xi}(\chi^{\dagger}\chi)(\xi^{\dagger}\xi) + \kappa_{1}|\xi^{\dagger}\chi|^{2} + \kappa_{2}(\phi^{\dagger}\tau_{a}\phi)(\chi^{\dagger}t_{a}\chi) + \kappa_{3}\left[(\phi^{T}\epsilon\tau_{a}\phi)(\chi^{\dagger}t_{a}\xi) + \text{h.c.}\right] > 0.$

3 and all 13 nonvanishing field directions generating large overlapping parameter space

unitarity constraints

Prior to Higgs discovery :

unitarity bound @ tree level: $\lambda \le \frac{8\pi}{3}$ @ 1-loop $\lambda \le 2 - 2.5$

Lee, Quígg, Thacker '77

Dawson, Eillenbrock '89; Durand, Johnson, Lopez'92

2 loop calculation shows no revised limit Durand, Maher, Riesselmann, 92

Weakly interacting Higgs scenario

S matrix unitary : $SS^{\dagger} = 1$ **Partial wave amplitudes:**

$$\left|a_{\ell}^{2 \to 2} - \frac{1}{2}i\right|^2 + \sum_{k>2} \left|a_{\ell}^{2 \to k}\right|^2 = \frac{1}{4}.$$

 $s \gg |\lambda_i| v^2, \ s \gg |\mu_i| v, \longrightarrow$ We neglect $a_l^{2 \to k > 2}$ and set l = 0

$$|\operatorname{Re}(a_{\ell})| \leq 1/2.$$
 $(a_0)_{i,f}(s) = \frac{1}{16\pi s} \int_{-s}^{0} dt \mathcal{M}_{i\to f}(s,t),$

unitarity in eGM/GM

Goldstone boson equivalence theorem

$$\mathcal{M}(W_L^{\pm}, Z_L, h, ...) = (iC)^k \mathcal{M}(w^{\pm}, z, h, ...). \quad \sqrt{s} \gg M_W$$

Y Q	0			1/2		1		3/2	2	
0	$\phi^{0*}\phi^{0} \ \phi^+\phi^-$	$\frac{\xi^0\xi^0}{\sqrt{2}}$ $\xi^+\xi^-$	$\chi^{0*}\chi^0$ $\chi^+\chi^-$	$\phi^0 \xi^0 \ \phi^+ \xi^-$	$\phi^{0*}\chi^0 onumber \ \chi^+\phi^-$	$\frac{\phi^0\phi^0}{\sqrt{2}}$	$\chi^0 \xi^0 \ \chi^+ \xi^-$	$\phi^0 \chi^0$	$\frac{\chi^0\chi^0}{\sqrt{2}}$	Block diagonal form
1	$\phi^{0*}\phi^+$	$\xi^0 \xi^+$	$x^{++}x^{}$ $x^{0*}x^{+}$	$\phi^0 \xi^+$	$\phi^{0*}\chi^+$	$\phi^0 \phi^+$	$\xi^0 \chi^+$	$\phi^0 \chi^+$	$\chi^+\chi^0$	@ tree-level
		<u>{}^+{}^+{}^+</u>	$\chi^{-}\chi^{++}$ $\chi^{0*}\chi^{++}$	$\phi^+ \xi^0$ $\phi^+ \xi^+$	$\chi^{++}\phi^{-}$ $\phi^{0*}\chi^{++}$	$\chi^0 \xi^+$	$\chi^{++}\xi^{-}$ $\xi^{+}\chi^{+}$	$\frac{\phi^+\chi^0}{\phi^+\chi^+}$	$\chi^{0}\chi^{++}$	Does not hold beyond
2		V2				V2	$\xi^0 \chi^{++}$	$\phi^0 \chi^{++}$	$\frac{\chi^+\chi^+}{\sqrt{2}}$	hypercharge
3		X		X		$\xi^+\chi^{++}$		$\chi^+\chi^{++}$	interactions	
4	×		×		×		X	$\frac{\chi + \chi + \chi}{\sqrt{2}}$		

Tree-level Unitarity

$$\begin{split} -16\pi a_{0;1} &= 2\lambda_{\chi\xi} + \kappa_{1} , \\ -16\pi a_{0;2}^{\pm} &= \lambda_{\chi} - 2\tilde{\lambda}_{\chi} + \lambda_{\phi} \pm \sqrt{\kappa_{2}^{2} + \left(-\lambda_{\chi} + 2\tilde{\lambda}_{\chi} + \lambda_{\phi}\right)^{2}} , \\ -16\pi a_{0;3}^{\pm} &= \lambda_{\phi\chi} + \frac{\kappa_{2}}{2} , \\ -16\pi a_{0;4}^{\pm} &= 4\lambda_{\xi} + \lambda_{\chi} + 2\tilde{\lambda}_{\chi} \pm \sqrt{2\kappa_{1}^{2} + \left(-4\lambda_{\xi} + \lambda_{\chi} + 2\tilde{\lambda}_{\chi}\right)^{2}} , \\ -16\pi a_{0;6}^{\pm} &= \lambda_{\phi\xi} + \frac{\lambda_{\phi\chi}}{2} - \frac{\kappa_{2}}{4} \pm \sqrt{\kappa_{3}^{2} + \left(\frac{\kappa_{2}}{4} + \lambda_{\phi\xi} - \frac{\lambda_{\phi\chi}}{2}\right)^{2}} , \\ -16\pi a_{0;8}^{\pm} &= \lambda_{\phi\xi} + \frac{\lambda_{\phi\chi}}{2} + \frac{\kappa_{2}}{2} \pm \sqrt{4\kappa_{3}^{2} + \left(\frac{\kappa_{2}}{2} - \lambda_{\phi\xi} + \frac{\lambda_{\phi\chi}}{2}\right)^{2}} , \\ -16\pi a_{0;1}^{\pm} &= \lambda_{\chi\xi} + \lambda_{\phi} - \frac{\kappa_{1}}{2} \pm \sqrt{2\kappa_{3}^{2} + \left(\frac{\kappa_{1}}{2} - \lambda_{\chi\xi} + \lambda_{\phi}\right)^{2}} , \\ -16\pi a_{0;1}^{\pm} &= 2\lambda_{\chi} + 6\tilde{\lambda}_{\chi} , \end{split}$$

and $-16\pi a_{0;i}$ (i = 12, 13, 14) being the eigenvalues of the following matrix,

$$\begin{bmatrix} 20\lambda_{\xi} & 2\sqrt{3}\lambda_{\phi\xi} & \sqrt{2}\left(\kappa_{1}+3\lambda_{\chi\xi}\right)\\ 2\sqrt{3}\lambda_{\phi\xi} & 6\lambda_{\phi} & \sqrt{6}\lambda_{\phi\chi}\\ \sqrt{2}\left(\kappa_{1}+3\lambda_{\chi\xi}\right) & \sqrt{6}\lambda_{\phi\chi} & 8\lambda_{\chi}+4\tilde{\lambda}_{\chi} \end{bmatrix}$$

16,15,11,3,1 unique tree level eigenvalues for the Block Q = 0,1,2,3,4

19 eigenvalues are independent

[Grinstein, Murphy, Uttayarat '15; Cacchio, Chowdhury, Murphy, Eberhardt'16]

$$R_{1} = \frac{\left|a_{0}^{\text{NLO}}\right|}{\left|a_{0}^{\text{LO}} + a_{0}^{\text{NLO}}\right|}, \qquad R_{1}' = \frac{\left|a_{0}^{\text{NLO}}\right|}{\left|a_{0}^{\text{LO}}\right|},$$

Perturbative expansion is not valid at NLO when $R_1 = 1$ or $R'_1 = 1$

For a given Q and Y, S matrix element @ 1-loop

$$256\pi^3 \mathbf{a_0} = -16\pi^2 \mathbf{b_0} + (i\pi - 1)\mathbf{b_0} \cdot \mathbf{b_0} + 3\beta_{\mathbf{b_0}},$$

Higgs Signal Strength (Run 2)

Maximum Mass difference within same multiplet in eGM model is
 < 210 GeV

Status of GIM model

The maximum mass splitting for heavy Higgs boson masses > 700 GeV is 400 GeV for GM model

which is reduced $\sim 100 \,\text{GeV}$ from the literature

Allowed mass differences and quartic couplings

Summary

- Minimal two triplet extension of SM with $\rho = 1$ gives eGM model
- Quartic couplings in GM and eGM model gets strongly constrained by NLO unitarity
- Mixing angles and vevs get constrained from the latest LHC Higgs signal strength data
- Updated theory constraints (NLO unitarity, BFB) alone exclude a large part of the parameter space

Backup Slides

Higgs Signal Strength

 $\mu_i = \frac{\sigma_i}{(\sigma_i)_{\text{SM}}}, \text{ and } \mu_f = \frac{\mathcal{B}(h \to f)}{\mathcal{B}_{\text{SM}}(h \to f)},$

$$\mu_i^f = \frac{\sigma_i \times B^f}{(\sigma_i \times B^f)_{\rm SM}}$$

к framework

$$\kappa_V = c_{\alpha} c_{\beta} - \sqrt{\frac{8}{3}} s_{\alpha} s_{\beta}, \quad \text{and} \quad \kappa_f = \frac{c_{\alpha}}{c_{\beta}},$$

GM model

Mass plane of eGM model

Higgs Signal Strength

ATLAS

CMS

Signal strength	Value	Correlation matrix [\mathcal{L} $[\mathbf{fb}^{-1}]$	Source	Signal strength	Value	Correlation matrix	$\frac{\mathcal{L}}{[\mathbf{f}\mathbf{b}^{-1}]}$	Source
$\mu^{\gamma\gamma}_{ m ggF,bbh} \ \mu^{\gamma\gamma}_{ m VBF} \ \mu^{\gamma\gamma}_{ m Wh} \ \mu^{\gamma\gamma}_{ m Zh} \ \mu^{\gamma\gamma}_{ m th} \ \mu^{\gamma\gamma}_{ m Zh} \ \mu^{\gamma\gamma}_{ m th} \ \mu^{\gamma\gamma}_{ m th}$	$\begin{array}{c} 1.04 \pm 0.10 \\ 1.20 \pm 0.26 \\ 1.5 \pm 0.55 \\ -0.2 \pm 0.55 \\ 0.89 \pm 0.31 \\ 3 \pm 3.5 \end{array}$	$ \begin{vmatrix} 1 & -0.13 & 0 & 0 & 0 & 0 \\ -0.13 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -0.37 & 0 & -0.11 \\ 0 & 0 & -0.37 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -0.44 \\ 0 & 0 & -0.11 & 0 & -0.44 & 1 \end{vmatrix} $	139	[18]	$\mu_{ m ggh,bbh}^{\gamma\gamma} \ \mu_{ m VBF}^{\gamma\gamma} \ \mu_{ m Vh}^{\gamma\gamma} \ \mu_{ m Vh}^{\gamma\gamma} \ \mu_{ m th,th}^{\gamma\gamma}$	1.07 ± 0.11 1.04 ± 0.32 1.34 ± 0.34 1.35 ± 0.31		137	[11]
$\mu^{ZZ}_{ m ggF} \ \mu^{ZZ}_{ m VBF} \ \mu^{ZZ}_{ m VBF}$	$\begin{array}{c} 0.95 \pm 0.1 \\ 1.19 \pm 0.45 \\ 1.43 \pm 1.0 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	139	[4]	$\mu^{ZZ}_{ m ggh,bbh,tth,th}$ $\mu^{ZZ}_{ m VBF,Vh}$	0.95 ± 0.13 0.82 ± 0.34	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	137	[10]
$\mu^{ZZ}_{ m tth} onumber\ \mu^{ZZ}_{ m incl.}$	1.69 ± 1.45 1.0 ± 0.1	0 0 -0.18 1	139	[4]	$\mu^{WW}_{ m ggh} onumber \ \mu^{WW}_{ m VBF} onumber \ ww$	0.92 ± 0.11 0.71 ± 0.26	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120	[16]
$\mu^{WW}_{ m ggF,bbh}$ $\mu^{WW}_{ m VBF}$ $\mu^{WW}_{ m grF}$ $\mu^{WW}_{ m grF}$ $\mu^{WW}_{ m grF}$	1.15 ± 0.135 0.93 ± 0.21 1.09 ± 0.11		139	[17]	$\mu^{WW}_{ m Zh} \ \mu^{WW}_{ m Wh}$	$2.0 \pm 0.7 \\ 2.2 \pm 0.6$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	130	
$\mu_{\rm VBF}^{\tau\tau}$ $\mu_{\rm ggF,bbh}^{\tau\tau}$ $\mu_{\rm Vh}^{\tau\tau}$ $\mu_{\rm Vh}^{\tau\tau}$ $\mu_{\rm tth,th}^{\tau\tau}$	0.90 ± 0.18 0.96 ± 0.31 0.98 ± 0.60 1.06 ± 1.18	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	139	[13]	$egin{aligned} \mu^{ au au}_{ ext{incl.}} \ \mu^{ au au}_{ ext{ggh}} \ \mu^{ au au}_{ ext{qqh}} \ \mu^{ au au}_{ ext{qqh}} \ \mu^{ au au}_{ ext{Vh}} \end{aligned}$	0.93 ± 0.12 0.97 ± 0.19 0.68 ± 0.23 1.80 ± 0.44		138	[15]
$\mu^{bb}_{ m VBF} \ \mu^{bb}_{ m Wh} \ \mu^{bb}_{ m Zh} \ \mu^{bb}_{ m bb}$	0.95 ± 0.37 0.95 ± 0.26 1.08 ± 0.24		126 139 139	[9] [6] [6]	$\mu^{bb}_{ m qqh} \ \mu^{bb}_{ m ggh}$	1.59 ± 0.60 -2.7 ± 3.89	$egin{array}{cccc} 1 & -0.75 \ -0.75 & 1 \end{array}$	90.8	[19]
$\mu_{ m Vh} \ \mu_{ m tth,th}^{bb} \ \mu_{ m pp}^{\mu\mu}$	$ \begin{array}{c} 1.02 \pm 0.17 \\ 0.35 \pm 0.35 \\ 1.2 \pm 0.6 \end{array} $		139 139 139	[0] [12] [7]	$\mu^{\mu\mu}_{ m ggh,tth} \ \mu^{\mu\mu}_{ m VBF,Vh}$	0.66 ± 0.67 1.85 ± 0.86	$egin{array}{cccc} 1 & -0.24 \ -0.24 & 1 \end{array}$	137	[8]
$\mu^{Z\gamma}_{ m pp}$	2.0 ± 0.95		139	[5]	$\mu^{Z\gamma}_{ m pp}$	2.4 ± 0.9		138	[14]