Loop induced H±W±Z vertex in CP violating two Higgs doublet model

Yushi Mura (Osaka U.) Collaborator: Prof. Shinya Kanemura (Osaka U.)

arXiv:2408.06863

Workshop on Multi Higgs Models at Lisbon 2024/09/03

Ex) Electroweak baryogenesis

in two Higgs doublet model

Fromme et al., (2006); Cline et al., (2011); Dorsch et al. (2017); Enomoto, Kanemura and YM (2021), (2022); and more works

Introduction

 Higgs discovery and remaining problems e.g., baryon asymmetry of the Universe

Sakharov third conditions for baryon asymmetry

- Baryon # violation (1)
- (2)C and CP violation
- (3) Departure from thermal equilibrium

Sakharov (1967)

CP violating observables

Ex) Electron EDM

 $|d_{\rho}| < 4.1 \times 10^{-30} e \text{ cm}$

JILA, Science (2023)

In this talk

• Loop induced $H^{\pm}W^{\mp}Z$ vertex in general CPV 2HDM

MSSM. Mendez and Pomarol, Nucl.Phys.B 349 (1991) 369; CP conserving 2HDM Kanemura, Phys.Rev.D 61 (2000) 095001; and more works

New observable for custodial and CP symmetry violation

Cf.) p parameter Veltman (1977); Peskin and Takeuchi (1990), (1992); Haber and O'Neil (2011); and more works

Kuzmin, Rubakov and Shaposhnikov (1985)

General two Higgs doublet model

• Most general potential Higgs basis $H_1 = \begin{pmatrix} G^{\pm} \\ \frac{1}{\sqrt{2}}(\nu + h + iG^0) \end{pmatrix} H_2 = \begin{pmatrix} H^{\pm} \\ \frac{1}{\sqrt{2}}(h_2 + ih_3) \end{pmatrix}$

$$V = -Y_{1}^{2}H_{1}^{\dagger}H_{1} - Y_{2}^{2}H_{2}^{\dagger}H_{2} - (Y_{3}^{2}H_{1}^{\dagger}H_{2} + h.c.)$$

$$+ \frac{1}{2}Z_{1}(H_{1}^{\dagger}H_{1})^{2} + \frac{1}{2}Z_{2}(H_{2}^{\dagger}H_{2})^{2} + Z_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + Z_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1})$$

$$+ \left\{ \left(\frac{1}{2}Z_{5}H_{1}^{\dagger}H_{2} + Z_{6}H_{1}^{\dagger}H_{1} + Z_{7}H_{2}^{\dagger}H_{2} \right) H_{1}^{\dagger}H_{2} + h.c. \right\} \qquad (Y_{3}^{2}, Z_{5}, Z_{6}, Z_{7} \in \mathbb{C})$$

Most general Yukawa sector

$$\mathcal{L}_{Y} = -\sum_{k=1,2} \left(\overline{Q_{L}} Y_{k,u}^{\dagger} \widetilde{H}_{k} u_{R} + \overline{Q_{L}} Y_{k,d} H_{k} d_{R} + \overline{L_{L}} Y_{k,l} H_{k} e_{R} + \text{h.c.} \right)$$

 $Y_{1,u} = \text{diag}(y_u, y_c, y_t)$ $Y_{1,d} = \text{diag}(y_d, y_s, y_b)$ $Y_{1,l} = \text{diag}(y_e, y_\mu, y_\tau)$

• Y_2 is general complex matrix

Ex) Up type sector

$$Y_{2,u} = \begin{pmatrix} \rho_{uu} & \rho_{cu} & \rho_{tu} \\ \rho_{uc} & \rho_{cc} & \rho_{tc} \\ \rho_{ut} & \rho_{ct} & \rho_{tt} \end{pmatrix}$$

General two Higgs doublet model

Stationary conditions and mass spectra

$$\begin{aligned} \frac{\partial V}{\partial h_i} &= 0 \iff Y_1^2 = \frac{1}{2}\lambda_1 v^2, \ Y_3^2 = \frac{1}{2}\lambda_6 v^2 \end{aligned} \qquad \begin{array}{l} \text{Absorbed by phase} \\ \text{redefinition for } H_2 \end{aligned} \\ \frac{\partial^2 V}{\partial h_i \partial h_j} &= \mathcal{M}_{ij}^n = \begin{pmatrix} Z_1 v^2 & \text{Re}[Z_6]v^2 & -\text{Im}[Z_6]v^2 \\ \text{Re}[Z_6]v^2 & -Y_2^2 + \frac{1}{2}(Z_3 + Z_4 + Z_5)v^2 & -\frac{1}{2}\text{Im}[Z_5] \\ -\text{Im}[Z_6]v^2 & -\frac{1}{2}\text{Im}[Z_5] & -Y_2^2 + \frac{1}{2}(Z_3 + Z_4 - Z_5)v^2 \end{pmatrix} \end{aligned}$$

• Neutral scalar mixing by
$$Z_6$$
 ATLAS, Nature (2022);
CMS, Nature (2022);
Orthogonal matrix R $\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix}, R^T \mathcal{M}^n R = \text{diag}(m_{H_1}, m_{H_2}, m_{H_3})$

Custodial symmetry

Pomarol and Vega (1994), Gerard and Herquet (2007), Haber and O'Neil (2011);

Cf.) $(Z_6 = 0 \text{ limit})$

$$\begin{split} & Z_4 + Z_5 \propto m_{H_2}^2 - m_{H^{\pm}}^2 \\ & Z_4 - Z_5 \propto m_{H_3}^2 - m_{\mu^{\pm}}^2 \end{split}$$

Custodial

violation

CPV

Two conditions for custodial symmetric Higgs potential

(Usual)

 $Z_4 = Z_5$, $\text{Im}[Z_6] = \text{Im}[Z_7] = 0$

(Twisted) $Z_4 = -Z_5$, Re[Z_6] =

$$_{4} = -Z_{5}, \ \operatorname{Re}[Z_{6}] = \operatorname{Re}[Z_{7}] = 0$$

Relation with CP violation

For CP violating potential, at least one of $\text{Im}[Z_6^2]$, $\text{Im}[Z_7^2]$, $\text{Im}[Z_6^*Z_7]$

must be non-zero (Taking $Im[Z_5] = 0$ basis)

• $H^{\pm} \rightarrow W^{\pm}Z$ decay with $Z_6 \simeq 0$ (alignment limit)

$$\mathcal{M} \sim \frac{i \operatorname{Re}[Z_7]}{16\pi^2 v} \left(m_{H^{\pm}}^2 - m_{H_3}^2 \right) \times (\operatorname{loop functions}) \quad \leftarrow \operatorname{known part} \\ + \frac{\operatorname{Im}[Z_7]}{16\pi^2 v} \left(m_{H^{\pm}}^2 - m_{H_2}^2 \right) \times (\operatorname{loop functions}) \quad \leftarrow \operatorname{new part} \text{ (general 2HDM)}$$

• We have calculated full $H^{\pm} \rightarrow W^{\pm}Z$ decay in the most general setup of 2HDM (non-alignment, CPV, general Yukawa)

Branching ratio and CP asymmetry

- Branching ratio for $H^+ \rightarrow XY$ ($\rho_{ij} = 0$ except for ρ_{tt})
- Custodial symmetry violation $\propto m_{H_2} m_{H^{\pm}}$ and Z_7^I
- For $m_{H^{\pm}} < m_{H_2}$, main modes are $H^{\pm} \rightarrow tb$, WZ, WH_1 .
- If $m_{H^{\pm}} < m_W + m_{H_1}$, Br $(H^{\pm} \rightarrow W^{\pm}Z)$ can be large.
- Asymmetry b/w $H^+ \rightarrow W^+Z$ and $H^- \rightarrow W^-Z$ is sensitive to $\text{Im}[\rho^f Z_7]$.

Conclusion

- Additional CP violation is necessary for baryon asymmetry of the Universe
 - Insufficient CP violation in the SM
 - Enough CP violation can be introduced in 2HDM
- CP violation and custodial symmetry violation
 - CP violating 2HDM breaks custodial symmetry in the potential
 - New contributions in loop induced $H^{\pm}W^{\mp}Z$ vertex
- $H^{\pm} \rightarrow W^{\pm}Z$ decay in CP violating general 2HDM
 - We calculated $H^{\pm} \rightarrow W^{\pm}Z$ decay with the most general setup in 2HDM
 - We find CP phases cause asymmetry $b/w H^+$ and H^- decays

Back up

Impacts on collider phenomenology

Benchmark points

large ρ_{tt} small ρ_{tt}

(in GeV)	$m_{H^{\pm}}$	m_{H_2}	m_{H_3}	Z_7	$ ho_{tt}$	$\alpha_1 = -\alpha_2$
BP1	200	500	210	$1.3e^{2.0i}$	0.1	0.01
BP2	200	500	210	$1.3e^{2.0i}$	0.001	0.01

Impacts on collider phenomenology

Benchmark points

large	$ ho_{tt}$
small	$ ho_{tt}$

(in GeV)	$m_{H^{\pm}}$	m_{H_2}	m_{H_3}	Z_7	$ ho_{tt}$	$\alpha_1 = -\alpha_2$
BP1	200	500	210	$1.3e^{2.0i}$	0.1	0.01
BP2	200	500	210	$1.3e^{2.0i}$	0.001	0.01

• Production of H^{\pm} in e+e- collider

- Pair production process $e^+e^- \rightarrow H^+H^-$ S. Komamiya, Phys. Rev. D (1988)
- $\sigma(e^+e^- \rightarrow H^+H^-) \simeq 30 \text{ fb} (\text{ILC 500 GeV})$

• At BP2, almost all H^+ decay into W^+Z

- When 3 ab^{-1} integrated luminosity is assumed, $O(10^5)$ events can be expected
- Testing $H^{\pm}W^{\mp}Z$ vertex in the general 2HDM motivates future colliders

$$H^{\pm}W^{\mp}Z \text{ vertex}$$

$$V_{\mu\nu} = Fg_{\mu\nu} + \frac{G}{m_{W}^{2}}p_{Z,\mu}p_{W,\nu} + \frac{H}{m_{W}^{2}}\epsilon_{\mu\nu\rho\sigma}p_{Z}^{\rho}p_{W}^{\sigma}$$
Parity violation
$$\Gamma = \frac{m_{H^{\pm}}\lambda^{1/2}(1, w, z)}{16\pi}(|\mathcal{M}_{LL}|^{2} + |\mathcal{M}_{TT}|^{2}) \qquad w = \frac{m_{W}^{2}}{m_{H^{\pm}}^{2}}, \ Z = \frac{m_{Z}^{2}}{m_{H^{\pm}}^{2}}$$

$$|\mathcal{M}_{LL}|^{2} = \frac{g^{2}}{4z}\left[(1 - w - z)F + \frac{\lambda(1, 2, z)}{2w}G\right]^{2}$$

$$|\mathcal{M}_{TT}|^{2} = \frac{g^{2}}{4z}\left(2w|F|^{2} + \frac{\lambda(1, 2, z)}{2w}|H|^{2}\right) \qquad \Longrightarrow \frac{|\mathcal{M}_{TT}|^{2}}{|\mathcal{M}_{LL}|^{2}} \propto \frac{m_{W}^{2}m_{Z}^{2}}{m_{H^{\pm}}^{4}}$$

• Effectively,

$$\mathcal{L}_{eff} = f H^+ W^-_{\mu} Z^{\mu} + g H^+ F^{\mu\nu}_Z F^W_{\mu\nu} + h \, i \epsilon_{\mu\nu\rho\sigma} H^+ F^{\mu\nu}_Z F^{\rho\sigma}_W + \text{h.c.}$$

$$f \propto \frac{M_i^2}{v} \quad : \text{Non-decoupling effects provide leading contribution}$$

Equivalence theorem

Partition function for the Green functions

$$Z[J_L] = -i \log \int (dV_\mu \, d\phi \, ...) \, \exp\left[iS_{eff} + \int d^4x \, J_L V_L\right] \, \prod \delta(\partial^\mu V_\mu + iM\phi)$$
$$\widetilde{V_L}(k) = \epsilon_L^\mu \widetilde{V_\mu}(k) \quad \epsilon_L^\mu = \frac{1}{M}(|\mathbf{k}|, 0, 0, k_0) \qquad \qquad V: \text{(massive) gauge boson} \\ \phi: \text{NG boson}$$

Gauge fixing condition

$$\partial^{\mu}V_{\mu} + iM\phi = 0 \quad \Rightarrow \quad \frac{k^{\mu}}{M} \, \widetilde{V}_{\mu} = \widetilde{\phi}$$

$$\widetilde{V_L}(k) = \frac{k^{\mu}}{M} \widetilde{V_{\mu}} + O(M/k_0) = \widetilde{\phi} + O(M/k_0)$$

• For $M/k_0 \ll 1$, external line for longitudinal gauge boson can be replaced by NG boson

Production for H^{\pm}

Kanemura, Moretti and Odagiri, JHEP02 (2001) 011

$$W^+W^-Z \rightarrow \begin{cases} 2j + 3l + E_T (\simeq 1/25 \times \varepsilon_b) \\ 4j + 1l + E_T (\simeq 7/25 \times \varepsilon_b) \end{cases}$$

Fermion contributions

Fermion contribution

 $m_{H_2} < m_{H^{\pm}}$ scenario

• After $H^{\pm} \rightarrow W^{\pm}H_2$ open, $H^{\pm} \rightarrow W^{\pm}Z$ is suppressed

Diagrams

Z_7 dependence

Contour in Z_7 plane

Current data

ATLAS, Eur. Phys. J. C (2023) 83:633

CMS, Eur. Phys. J. C 81 (2021) 8, 723

Comparing to equivalence theorem

Supplement figures

21

Custodial symmetry

• Bi-linear form $\mathbb{M}_1 = (\widetilde{H}_1, H_1), \mathbb{M}_2 = (\widetilde{H}_2, H_2) \operatorname{diag}(e^{-i\chi}, e^{i\chi})$

Pomarol and Vega (1994)

 $SU(2)_L: \mathbb{M}_i \to U(x)\mathbb{M}_i, \quad U(1)_Y: \mathbb{M}_i \to \mathbb{M}_i \exp(-ig'Y\alpha(x)\sigma_3)$

Haber and Neil (2011)

Global transformation

$$\mathbb{M}_1 \to L \mathbb{M}_1 \mathbb{R}^+$$
$$\mathbb{M}_2 \to L \mathbb{M}_2 \mathbb{R}^+$$

• After EWSB, $\langle \mathbb{M}_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v & 0 \\ 0 & v \end{pmatrix}, \langle \mathbb{M}_2 \rangle = 0$

 $\Rightarrow \langle \mathbb{M}_1 \rangle$ and $\langle \mathbb{M}_2 \rangle$ are invariant for transformation with L = R (Custodial symmetry)

Gauge invariant quantities

 $SU(2)_L \times U(1)_Y$ inv.

$$\begin{bmatrix} \operatorname{Tr}[\mathbb{M}_{1}^{\dagger}\mathbb{M}_{1}] = 2|\mathbf{H}_{1}|^{2} \\ \operatorname{Tr}[\mathbb{M}_{2}^{\dagger}\mathbb{M}_{2}] = 2|\mathbf{H}_{2}|^{2} \\ \operatorname{Tr}[\mathbb{M}_{1}^{\dagger}\mathbb{M}_{2}] = e^{-i\chi}\mathbf{H}_{1}^{\dagger}\mathbf{H}_{2} + \text{h. c.} \\ \operatorname{Tr}[\mathbb{M}_{1}^{\dagger}\mathbb{M}_{2}\sigma_{3}] = e^{-i\chi}\mathbf{H}_{1}^{\dagger}\mathbf{H}_{2} - \text{h. c.} \end{bmatrix}$$

 $SU(2)_L \times SU(2)_R$ inv.

Custodial symmetry

$$\mathbb{M}_1 = (\widetilde{H}_1, H_1), \\ \mathbb{M}_2 = (\widetilde{H}_2, H_2) \operatorname{diag}(e^{-i\chi}, e^{i\chi})$$

- Focus on Higgs potential $\mathbb{M}_a \to L\mathbb{M}_a \mathbb{R}^{\dagger}$ ($L = \mathbb{R}$ -> Custodial symmetry) $V = (\text{global } SU(2)_L \times SU(2)_R \text{ inv. terms})$ $+i \operatorname{Im}[Y_3^2 e^{-i\chi}] \operatorname{Tr}[\mathbb{M}_1^{\dagger} \mathbb{M}_2 \sigma_3] - \frac{1}{4} (Z_4 - \operatorname{Re}[Z_5 e^{-2i\chi}]) \operatorname{Tr}[\mathbb{M}_1^{\dagger} \mathbb{M}_2 \sigma_3]^2$ $+ \frac{i}{2} \operatorname{Im}[Z_5 e^{-2i\chi}] \operatorname{Tr}[\mathbb{M}_1^{\dagger} \mathbb{M}_2] \operatorname{Tr}[\mathbb{M}_1^{\dagger} \mathbb{M}_2 \sigma_3]$ $+ \frac{i}{2} (\operatorname{Im}[Z_6 e^{-i\chi}] \operatorname{Tr}[\mathbb{M}_1^{\dagger} \mathbb{M}_1] + \operatorname{Im}[Z_7 e^{-i\chi}] \operatorname{Tr}[\mathbb{M}_2^{\dagger} \mathbb{M}_2]) \operatorname{Tr}[\mathbb{M}_1^{\dagger} \mathbb{M}_2 \sigma_3]$
- Two custodial symmetry Gerard and Herquet (2007)

Pomarol and Vega (1994) Haber and Neil (2011)

Cf.) ($Z_6 = 0$ limit)

 $Z_4 + Z_5 \propto m_{H_2}^2 - m_{H^{\pm}}^2$

 $Z_4 - Z_5 \propto m_{H_2}^2 - m_{H^{\pm}}^2$

Custodial

violation

CPV

 $\chi = 0, \pi$ $Z_4 = Z_5, \text{ Im}[Z_6] = \text{Im}[Z_7] = 0$ (Usual)

$$\chi = \pi/2, 3\pi/2$$
 $Z_4 = -Z_5, \operatorname{Re}[Z_6] = \operatorname{Re}[Z_7] = 0$ (Twisted

Relation with CP violation

For CP violating potential, at least one of $\text{Im}[Z_6^2]$, $\text{Im}[Z_7^2]$, $\text{Im}[Z_6^*Z_7]$ must be non-zero (Taking $\text{Im}[Z_5] = 0$ basis)

 $H^{\pm} \rightarrow W^{\pm}Z$ decay

• Loop induced $H^{\pm}W^{\mp}Z$ vertex

Cf.) ρ parameter $\rho_{exp} \simeq 1$ Global fit value from PDG With $m_{H_2}^2 = m_{H^{\pm}}^2$ or $m_{H_3}^2 = m_{H^{\pm}}^2$, $\Delta \rho = 0$ (1 loop level) Pomarol and Vega (1994)

• $H^{\pm} \rightarrow W^{\pm}Z$ decay with $Z_6 \simeq 0$ (alignment limit)

 $m_{H^{\pm}}^2 = m_{H_3}^2$, $\text{Im}[Z_7] = 0$ (Usual) $m_{H^{\pm}}^2 = m_{H_2}^2$, $\text{Re}[Z_7] = 0$ (Twisted)

$$\mathcal{M} \sim \frac{i \operatorname{Re}[Z_7]}{16\pi^2 v} \left(m_{H^{\pm}}^2 - m_{H_3}^2 \right) \times (\operatorname{loop} \operatorname{functions}) \leftarrow \operatorname{known} \operatorname{part} \\ + \frac{\operatorname{Im}[Z_7]}{16\pi^2 v} \left(m_{H^{\pm}}^2 - m_{H_2}^2 \right) \times (\operatorname{loop} \operatorname{functions}) \leftarrow \operatorname{new} \operatorname{part} (\operatorname{general} 2\operatorname{HDM})$$

• We have calculated full $H^{\pm} \rightarrow W^{\pm}Z$ decay in the most general setup of 2HDM (non-alignment, CPV, general Yukawa)

$H^{\pm} \rightarrow W^{\pm}Z$ decay

S. Kanemura and Y.M, work in progress

Decay amplitude

 $\mathcal{M} = \frac{i \operatorname{Re}[Z_7]}{16\pi^2 v} \left(m_{H^{\pm}}^2 - m_{H_3}^2 \right) \times (\operatorname{loop functions}) \leftarrow \operatorname{known part} \\ + \frac{\operatorname{Im}[Z_7]}{16\pi^2 v} \left(m_{H^{\pm}}^2 - m_{H_2}^2 \right) \times (\operatorname{loop functions}) \leftarrow \operatorname{new part} (\operatorname{CP violating 2HDM})$

• We have calculated full $H^{\pm} \rightarrow W^{\pm}Z$ decay in the most general setup of 2HDM (non-alignment, CPV, general Yukawa)

$H^{\pm} \rightarrow W^{\pm}Z$ decay

• Loop induced $H^{\pm}W^{\mp}Z$ vertex

Cf.) ρ parameter $ho_{\mathrm{exp}} \simeq 1$ Global fit value from PDG

With $m_{H_2}^2=m_{H^\pm}^2$ or $m_{H_3}^2=m_{H^\pm}^2$, $\Delta\rho=0$ (1 loop level) Pomarol and Vega (1994)

Analysis in CP conserving two Higgs doublet model

- S. Kanemura, Phys.Rev.D 61 (2000) 095001
- Z_i are not independent due to the softly broken Z2 symmetry
- CP is conserved, so $Im[Z_6] = Im[Z_7] = 0$

⇒ Violation of usual custodial symmetry

$$Z_4 - Z_5 \propto m_{H_3}^2 - m_{H^{\pm}}^2$$
 (If $Z_6 = 0$)

- CP violating case?
 - S. Kanemura and Y.M, work in progress

Fig. from S. Kanemura, Phys.Rev.D 61 (2000) 095001

Numerical results

- Non-zero Im[Z₇] and $Z_4 + Z_5 \propto m_{H_2}^2 m_{H^{\pm}}^2$ case (in Yukawa, only ρ_{tt} is switched on)
 - · For $m_{H^{\pm}} < m_{H_2}$, main modes are $H^{\pm} \rightarrow tb$, $W^{\pm}Z$
 - For large $Im[Z_7]$ and mass difference, branching ratio is $O(10^{-4}) O(10^{-2})$

29

Branching ratio

S. Kanemura and Y.M., arXiv:2408.06863

- Branching ratio for $H^+ \rightarrow XY$ ($\rho_{ij} = 0$ except for ρ_{tt})
 - Custodial symmetry violation $\propto m_{H_2} m_{H^{\pm}}$
 - For $m_{H^{\pm}} < m_{H_2}$, main modes are $H^{\pm} \rightarrow tb$, WZ, WH₁
 - If $m_{H^{\pm}} < m_W + m_{H_1}$, $Br(H^{\pm} \rightarrow W^{\pm}Z)$ can be large

Cf.) Mixing angle $H_1 = h_1 \cos \alpha_1 - h_2 \sin \alpha_1$ $H_2 = h_1 \sin \alpha_1 + h_2 \cos \alpha_1$

Testing CP violation

