

Universität Zürich^{UZH}

Real Higgs triplet at the LHC

Guglielmo Coloretti University of Zurich and Paul Scherrer Institut 03.09.2024

Hints for New Physics @152 GeV

No significant excess in inclusive γγ searches

in the signal regions) 137 fb⁻¹ (13 TeV) 3CMS $H \rightarrow \gamma \gamma$, m_L = 125.38 GeV All categories S/(S+B) weighted 50 Events / 2.5 GeV Data ATLAS Data 250 S+B fit $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 40 Signal+Background B component SR: $E_{T}^{miss} > 100 \text{ GeV}$ ±1σ ----- Total background 30 200 S+B fit ±2 σ Continuum background 20 150 10 100 2500 B component subtracted 2000 ATLAS 50 1500 1000 500 0 130 110 120 140 150 160 -500m_{γγ} [GeV] 130 140 160

Interesting excesses in $\gamma \gamma + X$

(additional particles

Associated production (AP) mechanism

m_{vv} (GeV)

S/(S+B) weighted events / GeV

CMS

≈152 GeV mostly produced in association (AP)

No room for NP at \approx 152 GeV in ZZ but in WW

≈152 GeV mostly produced in association (AP)	No room for NP at \approx 152 GeV in ZZ but in WW	W mass (1.4/3.5 σ over SM w/o CDFII)				
	152 GeV					
	scalar?					

≈152 GeV mostly produced in association (AP)		V mostly ced in tion (AP)	No room for NP at \approx 152 GeV in ZZ but in WW	W mass (1.4/3.5 σ over SM w/o CDFII)
	L_		•	
		$SU(2)_L$	$U(1)_Y$	
	Δ	3	0	

The Δ SM model

All relevant parameters are fixed by the model except

 P_2 1.21.0 $\sqrt{s} = 13 \text{ TeV}$ $\Delta^{\pm} \rightarrow WZ$ 1.00.8cross section [pb] 0.8branching ratios 0.6 0.60.40.4t $\Delta^{\pm} \to t b$ C.s 0.20.2120 130 150160 140120 130 150160 110 110 140 m_{Δ} [GeV] m_{Δ} [GeV]

S. Banik, GC, A. Crivellin et al.

 P_1

 $\Delta^0_{\approx 152}$

 $\Delta^{\pm}_{\approx 152}$

 $W^{\pm *}$

 \overline{q}

q

ATLAS: $H \rightarrow \gamma \gamma + X$

ATLAS search for AP with full Run2 data

 \rightarrow SM $H \rightarrow \gamma \gamma + X (m_{\gamma \gamma} = 105-160 \text{ GeV})$

 \rightarrow Multiple categories ($X = l, j, j_b, E_T^{miss}$...)

\overline{q}	$W^{\pm *} \xrightarrow{\Delta^0_{\approx 152}} \gamma$
<u>م</u>	
q	$\Delta^{\pm}_{\sim 152}$ P_1
/	$^{\approx 102}$ \checkmark
/	P_{2}

ATLAS

Target	Signal region	Detector level	Correlations
High jet activity	4j	$n_j \ge 4$	-
Тор	$\ell b \ t_{ m lep}$	$n_{\ell} \ge 1, n_{b-\text{jet}} \ge 1$ $n_{\ell=e,\mu} = 1, n_{\text{jet}} = n_{b-\text{jet}} = 1$	-
Lepton	$rac{2\ell}{1\ell}$	$ee, \mu\mu \text{ or } e\mu$ $n_{\ell} = 1, n_{t_{\text{had}}} = 0, n_{b-\text{jet}} = 0$	< 26%
Tau	$1 au_{ m had}$	$n_{\ell} = 0, n_{\tau_{\text{had}}} = 1, n_{b-\text{jet}} = 0$	_
$E_{\mathrm{T}}^{\mathrm{miss}}$	$\begin{aligned} E_{\rm T}^{\rm miss} &> 100 {\rm GeV} \\ E_{\rm T}^{\rm miss} &> 200 {\rm GeV} \end{aligned}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 100 \ \mathrm{GeV}$ $E_{\mathrm{T}}^{\mathrm{miss}} > 200 \ \mathrm{GeV}$	29%

Reduced SM background and enhanced NP sensitivity

Results: $\Delta^0 \rightarrow \gamma \gamma + X$

S. Banik, GC, A. Crivellin et al.

22 channels analyzed by ATLAS 8 relevant for a real triplet

22 channels analyzed by ATLAS 8 relevant for a real triplet

Conclusions

- Interesting hints for NP at 152 GeV (resonant di-photon searches, multi-lepton anomalies)
- 2. 152 GeV scalar mostly produced in associated production
- 3. Real Higgs triplet explains such excesses and is preferred over SM by $\approx 4\sigma$
- 4. Run3 data and HL-LHC will scrutinize such NP scenario
- 5. Δ^{\pm} suitable candidate for future colliders (FCCee) searches

BACK UP SLIDES

Scalar potential

- Vacuum stability and perturbative unitarity in slight tension with other phenomenological observables
- Pointing to additional fields at or above the EW scale

3 and 4 – leptons bounds

 Multi-lepton searches with 3 and 4 leptons as final states are not excluding a real Higgs triplet at low masses

WW analysis

- → No dedicated BSM search for $gg \rightarrow H \rightarrow WW$ with full luminosity and including 90 GeV for the range of m_H
- ightarrow CMS and ATLAS analyses available for SM Higgs (135 ${
 m fb}^{-1}$)

- Re-casting analyses to search for new scalars
- g H W^+ ℓ^+ g $W^ \ell^ \bar{\nu}$

 Simulation with MadGraph5_aMC@NLO (Pythia8, Delphes)

Leptonic decays \rightarrow jet veto

→ Observed limit is weaker than expected over the whole mass range (room for BSM $\geq 2\sigma$)

WW simulation efficiency

GC, A. Crivellin et al.

Fit:

S. Banik, GC, A. Crivellin et al.

$$f(m_{\Delta^0}$$
 , $lpha$, $m_{\Delta^\pm} - m_{\Delta^0}$, v_Δ ; ...)

For the fit, all parameters subsumed into single relevant phenomenological one

$$\mathsf{Br}[\Delta^0\to\gamma\gamma]$$

(although explicit formulae used to compute, for instance, bounds on SM $h \rightarrow \gamma \gamma$)