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Introduction

In the Standard Model (SM), the Higgs-fermion Yukawa coupling

matrices are proportional to the corresponding diagonal fermion

mass matrices.

• This is a very good feature of the SM, since experimental data reveals that

flavor-changing neutral currents (FCNC) are highly suppressed.

The absence of tree-level Higgs-mediated FCNCs is not a generic
feature of extended Higgs sectors.

• For example, it is standard practice introduce a symmetry of the two-Higgs

doublet model (2HDM) Lagrangian to provide a natural explanation for

the absence of tree-level Higgs-mediated FCNCs.



Cheng and Sher1 advocated for a mechanism that replicated the

hierarchies of the quark masses and CKM angles in the structure

of the Yukawa matrices.

• As a consequence of the Cheng-Sher ansatz, the tree-level off-diagonal

neutral Higgs–fermion couplings are suppressed (but not set to zero).2

It is sometimes asserted that the Cheng-Sher ansatz is no longer

viable in light of the most recent collider data. Joseph M. Connell

and I have revisited the Cheng-Sher ansatz in the context of the

basis-independent approach to the 2HDM3 (and a recent update

of the Fritzsch textures for the quark mass matrices).
1T.P. Cheng and M. Sher, Phys. Rev. D 35, 3484 (1987)
2The detailed phenomenology of this proposal was further investigated in a series of papers by J.L. D́ıaz-Cruz,

R. Noriega-Papaqui, and A. Rosado, Phys. Rev. D 69, 095002 (2004); 71, 015014 (2005) [with follow up works

by M.A. Arroyo-Ureña, J.L. D́ıaz-Cruz and collaborators), and in a series of papers by M. Gómez-Bock and
collaborators. Additional works by J. Hernández-Sánchez, S. Moretti, and collaborators are also noteworthy.

3H.E. Haber and D. O’Neil, Phys. Rev. D 74, 015018 (2006); D83, 055017 (2011).



Lightning review of the 2HDM

In a general 2HDM, there are only two meaningful choices for

the basis of Higgs doublet fields:

• charged Higgs basis fields H1 and H2 such that 〈H0
1〉 = v/

√
2,

where v ≡ (
√
2GF )

−1/2 ≃ 246 GeV, and 〈H0
2〉 = 0

• mass basis for the neutral Higgs bosons

Physical neutral scalars: h1, h2 and h3 obtained by diagonalizing the neutral

scalar squared-mass matrix

RM2RT = diag (m2
1 , m

2
2 , m

2
3) ,

where R ≡ R12R13R23 is the product of three rotation matrices parametrized

by θ12, θ13 and θ23, respectively.



The physical neutral mass-eigenstate scalar fields are

hk = qk1
(√

2 ReH0
1 − v

)
+

1√
2

(
q∗k2H0

2e
iθ23 + h.c.

)
,

where the qk1 and qk2 are exhibited in table below (where

sij ≡ sin θij and cij ≡ cos θij).

k qk1 qk2
1 c12c13 −s12 − ic12s13
2 s12c13 c12 − is12s13
3 s13 ic13

Without loss of generality, one can set θ23 = 0 by rephasing H0
2.



2HDM Yukawa couplings

In the Higgs basis,

−LY =
∑

i,m,m

{
(̂κU)mnH0†

1 ûmL̂unR + (̂ρU)mnH0†
2 ûmL̂unR + h.c.

}

+
{
(̂κD †)mnH0

1 d̂mL̂dnR + (̂ρD †)mnH0
2 d̂mL̂dnR + h.c.

}

+
{
(̂κE †)mnH0

1 êmL̂enR + (̂ρE †)mnH0
2 êmL̂enRh.c.

}
,

where fR ≡ 1
2(1 + γ5)f and fL ≡ 1

2(1 − γ5)f [with four-
component fermion fields f = u, d, ν, e]. The hatted fields
correspond to the fermion interaction-eigenstate fields. Setting
H0

1 = H0 †
1 = v/

√
2 yields the fermion mass matrices

(M̂U)mn =
v√
2
(κ̂U)mn , (M̂D,E)mn =

v√
2
(κ̂D,E †)mn .



The singular value decompositions of M̂U and M̂D yield:

L†
u M̂U Ru ≡ MU , L†

d M̂DRd ≡ MD

where MU and MD are diagonal up- and down-type quark mass

matrices with real and nonnegative diagonal elements, and the

unitary matrices Lf and Rf (f = u, d) relate hatted interaction-

eigenstate fermion fields with unhatted mass-eigenstate fields,

f̂mL = (Lf)mnfnL , f̂mR = (Rf)mnfnR .

The Cabibbo-Kobayashi-Maskawa (CKM) matrix is K ≡ L†
uLd.

The physical ρ-type Yukawa couplings are complex matrices that

yield off-diagonal neutral Higgs–fermion interactions,

ρU ≡ L†
u ρ̂

URu , ρD† ≡ L†
d ρ̂

D†Rd .



The corresponding Higgs–fermion interactions involving mass-

eigenstate scalar and fermion fields are given by

−LY = U

{
MU

v
qk1 +

1√
2

[
q∗k2 ρ

UPR + qk2 ρ
U†PL

]}
Uhk

+D

{
MD

v
qk1 +

1√
2

[
qk2 ρ

D†PR + q∗k2 ρ
DPL

]}
Dhk

+E

{
ME

v
qk1 +

1√
2

[
qk2 ρ

E†PR + q∗k2 ρ
EPL

]}
Ehk

+

{
U
[
KρD†PR − ρU†KPL

]
DH+ +NρE†PREH+ + h.c.

}
,

where PR ≡ 1
2(1+ γ5), PL ≡ 1

2(1− γ5), and the mass-eigenstate

fields of the down-type quarks, the up-type quarks, the charged

leptons and the neutrinos are D = (d, s, b)T, U ≡ (u, c, t)T,

E = (e, µ, τ)T, and N = (νe, νµ, ντ)
T, respectively.



Specializing to the CP-conserving 2HDM

Assume that the only source of CP-violation is the unremovable

phase of the CKM matrix. Then, there exists a real Higgs basis,

in which the all scalar potential parameters and the ρF are real

matrices. For example,

V ⊃ 1
2Z5e

−2iη(H†
1H2)

2 +
[
Z6e

−iη H†
1H1 + Z7e

−iη H†
2H2

]
H†

1H2 + h.c.

where η can be chosen such that Z5,6,7 are real. If Z6 6= 0

and/or Z7 6= 0, then the real Higgs basis is unique up to an

overall sign, H2 → −H2. For example,

ε ≡ sgnZ6 ,

changes sign when H2 → −H2.



The physical neutral Higgs bosons consist of two CP-even scalars h and H

(with mh < mH) and a CP-odd scalar A, which are related to the neutral

fields of the Higgs basis via
(
H

h

)
=

(
cβ−α −sβ−α

sβ−α cβ−α

) (√
2 Re H0

1 − v

ε
√
2Re H0

2

)
, A = ε

√
2Re H0

2 ,

and4 cβ−α = −ε|Z6|v2/
√
(m2

H −m2
h)(m

2
H − Z1v2).

h is SM-like when |cβ−α| ≪ 1

0 ≤ β − α ≤ π

k hk qk1 qk2

1 h sβ−α ε cβ−α

2 −εH −ε cβ−α sβ−α

3 εA 0 i

If |cβ−α| ≪ 1 then h is SM-like (the so-called Higgs alignment limit).
4Z1 is the coefficient of 1

2(H
†
1H1)

2 in the scalar potential.



CP-conserving neutral Higgs-fermion Yukawa couplings:

−LY = U

{[
MU

v
sβ−α +

1√
2
εcβ−α

(
ρ
U
PR + [ρ

U
]
T
PL

)]
h

+ε

[
MU

v
εcβ−α − 1√

2
sβ−α

(
ρ
UPR + [ρU ]TPL

)]
H − i√

2
ε
(
ρ
UPR − [ρU ]TPL

)
A

}
U

+
∑

F=D,E

F

{[
MF

v
sβ−α +

1√
2
εcβ−α

(
[ρ

F
]
T
PR + ρ

F
PL

)]
h

+ε

[
MF

v
εcβ−α − 1√

2
sβ−α

(
[ρF ]TPR + ρ

FPL

)]
H +

i√
2
ε
(
[ρF ]TPR − ρ

FPL

)
A

}
F .

Note that: (i) εcβ−α = −|cβ−α|; (ii) no separate tan β

dependence.

Remark: In the Higgs alignment limit, where cβ−α → 0, the

Yukawa couplings of h coincide with those of the SM (and are

hence flavor-diagonal). In contrast, H and A generically possess

flavor-nondiagonal couplings in the Higgs alignment limit.



Flavor textures

A long-standing program initiated by H. Fritzsch5 provides a

phenomenological explanation of the quark mixing hierarchy

based on a correlation with the quark mass hierarchy. Du and

Xing subsequently proposed that6

M̂F =




0 CF 0

C∗
F B̃F BF

0 B∗
F AF


 , F = U,D.

where AF , B̃F ∈ R (with no loss of generality, one can take

AF > 0). In particular, by choosing AF ≫ |BF |, |B̃F |, CF , one

can reproduce the hierarchy of quark masses and CKM angles.
5H. Fritzsch, “Calculating the Cabibbo angle,” Phys. Lett. B 70 (1977) 436.
6D.-s. Du and Z.-z. Xing, Phys. Rev. D 48, 2349 (1993).



This proposed form is called the four-zero texture of hermitian quark mass

matrices, since there are a total of four independent zeros7 in M̃F for

F = U,D.8 A previous proposal in which B̃F = 0 (the six-zero texture) is no

longer consistent with data.

Writing BF = |BF |eiφBF and defining CF = |CF |eiφCF and

PF ≡ diag
(
1 , e−iφCF , e−i

(
φBF

+φCF

))
, it is convenient to

define:

MF = P †
F M̂F PF =




0 |CF | 0

|CF | B̃F |BF |
0 |BF | AF


 .

7Due to the assumption of hermiticity, a pair of off-diagonal zeros is counted as one texture zero.
8The assertion that M̂U and M̂D are hermitian matrices with (M̂U)11 = (M̂D)11 = (M̂D)13 = 0

does not require an extra set of assumptions, since these conditions can always be achieved by an appropriately
chosen weak-basis transformation [e.g., see G.C. Branco, D. Emmanuel-Costa, and R. González Felipe,

Phys. Lett. B 477 (2000) 147 and 670 (2009) 340 (with H. Serôdio)]. The additional constraint of

(M̂U)13 = 0 is chosen to provide a good fit to the CKM matrix elements as a function of the quark masses.



Since MF is a real symmetric matrix, its eigenvalues (denoted

by λF
i ) are real numbers, denoted by λF

i (i = 1, 2, 3)

λ3 − λ2(AF + B̃F )− λ(|CF |2 + |BF |2 − B̃FAF ) + |CF |2AF

= (λ− λF
1 )(λ− λF

2 )(λ− λF
3 ) .

in a convention where |λF
1 | < |λF

2 | < |λF
3 |. The λF

i are related
to the coefficients of the characteristic equation above,

B̃F = λF
1 + λF

2 + λF
3 −AF ,

|BF | =

√
(AF − λF

1 )(AF − λF
2 )(λ

F
3 −AF )

AF
,

|CF | =

√
−λF

1 λ
F
2 λ

F
3

AF
.



Under the assumption that AF ≫ |BF |, |B̃F |, CF ,

λF
1,2 ≃ 1

2


B̃F − |BF |2

AF

±

√(
B̃F − |BF |2

AF

)2

+ 4|CF |2

 , λF

3 ≃ AF +
|BF |2

AF

,

where the maximal eigenvalue is denoted by λF
3 and terms of

O(1/A2
F ) have been dropped. Since AF > 0, it follows that

λF
1 λ

F
2 < 0 and λF

3 > AF . It is convenient to adopt a convention

where |λF
1 | < |λF

2 | < λF
3 , with ηF ≡ sgnλ2. In particular,

ηF =




+1 , if λF

1 < 0 and λF
2 > 0 =⇒ |BF |2 < AF B̃F

−1 , if λF
1 > 0 and λF

2 < 0 =⇒ |BF |2 > AF B̃F

We now introduce the matrix HF = diag
(
−ηF , ηF , 1

)
.



Hence,

QT
FP

†
FM̂FPFQFHF = diag

(
mF

1 , mF
2 , mF

3

)
,

where mF
i ≡ (−ηFλ

F
1 , ηFλ

F
2 , λF

3 ) and

QF =




√√√√√
λF2 λF3

(
AF−λF1

)

AF

(
λF2 −λF1

)(
λF3 −λF1

) ηF

√√√√√
λF1 λF3

(
λF2 −AF

)

AF

(
λF2 −λF1

)(
λF3 −λF2

)

√√√√√
λF1 λF2

(
AF−λF3

)

AF

(
λF3 −λF1

)(
λF3 −λF2

)

−ηF

√√√√√
λF1

(
λF1 −AF

)

(
λF2 −λF1

)(
λF3 −λF1

)

√√√√√
λF2

(
AF−λF2

)

(
λF2 −λF1

)(
λF3 −λF2

)

√√√√√
λF3

(
λF3 −AF

)

(
λF3 −λF1

)(
λF3 −λF2

)

ηF

√√√√√
λF1

(
AF−λF2

)(
AF−λF3

)

AF

(
λF2 −λF1

)(
λF3 −λF1

) −

√√√√√
λF2

(
AF−λF1

)(
λF3 −AF

)

AF

(
λF2 −λF1

)(
λF3 −λF2

)

√√√√√
λF3

(
AF−λF1

)(
AF−λF2

)

AF

(
λF3 −λF1

)(
λF3 −λF2

)




.

That is, the singular value decomposition of the quark mass

matrices can be achieved using

Lf = PFQF , Rf = LfHF , for f = u, d.



A detailed analysis by H. Fritzsch, Z.-z. Xing and D. Zhang,

Nucl. Phys. B 974 (2022) 115634, yields a very good fit to the

CKM mixing angles and CP-violating phase by setting AU = AD.

For example, in the case of ηU = ηD = 1, Fritzsch et al. obtain:

M̂U ≃ mt




0 0.00018 0

0.00018 0.18924 0.38787

0 0.38787 0.81444


 ,

M̂D ≃ mb




0 0.00465 0

0.00465 0.20335 0.38448

0 0.38448 0.81444


 .

with argCU − argCD = 0.53216π and argBU − argBD = 1.0313π.

We shall extend the ansatz of Fritzsch et al. by setting

AE = AU = AD .



An ansatz for the flavor structure of ρ̂F

The ρ-type Yukawa coupling matrices in the fermion mass-

eigenstate basis are given by

ρF = QT
FP

†
F ρ̂

FPFQFHF .

For simplicity we take ρF by adopting the following ansatz:

P †
F ρ̂

FPF =

√
2

v




0 cF |CF | 0

cF |CF | b̃F B̃F bF |BF |
0 bF |BF | aFAF


 .

The aF , bF , b̃F and cF are real O(1) parameters (of either sign).



Note that if aF = bF = b̃F = cF then ρF = aFκ
F , which

corresponds to the flavor-aligned 2HDM. By taking aF , bF ,

b̃F and cF unequal, we inject the hierarchical structure of the

fermion mass matrices into the ρF , as originally proposed by

T.P. Cheng and M. Sher.9

We assume that A ∼ O(m3) and m1 ≪ m2 ≪ m3 (dropping the

superscript F for convenience). To obtain accurate approximate

expressions for the ρij, the size of m3 − A is critical. Suppose

that m3 −A ∼ O(m2). In this case, we can write

A = αm3 , m3 − A = βm2 ,

where α and β are positive O(1) parameters.10

9The original Cheng-Sher ansatz was based on the six-zero texture scheme where B̃F = 0.
10These parameters should not be confused with α and β, which appear in cβ−α .



We then obtain:

ρ11 ≃
√
2 ηm1

v

[
αβ(2b − a − b̃) + η

(
2c − (1 − α)(2b − a) − αb̃

)]
,

ρ12 = −ρ21 ≃
√
2m1m2

v

[
αβ(2b − a − b̃) + η

(
c − (1 − α)b − αb̃

)]
,

ρ13 = −ηρ31 ≃
√
2m1m3

√
αβ

v

[
α(a − b) + (1 − α)(b − b̃)

]
,

ρ22 ≃
√
2 ηm2

v

[
−αβ(2b − a − b̃) + η

(
(2α − 1)̃b + 2(1 − α)b

)]
,

ρ23 = ηρ32 ≃
√
2m2m3

√
αβ

v

[
α(b − a) − (1 − α)(b − b̃)

]
,

ρ33 ≃
√
2m3

v

[
α2a + 2α(1 − α)b + (1 − α)2b̃

]
,

where terms of O(m1/m2,3) and O(m2/m3) have been

dropped.11
11Note that in an approximation where m2 ≪ m3 and β ∼ O(1), one can also drop all terms that are

proportional to 1 − α = βm2/m3.



In particular, taking β ∼ O(1) yields the Cheng-Sher ansatz

ρij = kij

√
mimj

v
, where kij ∼ O(1).

However, in light of the analysis by Fritzsch et al. previously

cited, AF/mf = 0.81444, which yields

β ≃ 0.18556m3/m2 .

Using MS quark masses evaluated at mZ and the lepton masses

yield: mt/mc ≃ 271, mb/ms ≃ 53.4, and mτ/mµ = 16.81.

Hence,

βU ≃ 50 , βD ≃ 10 , βE = 3.12 .

That is, k11, k12, k21, and k22 are enhanced by an O(β) factor,

while k13, k31, k23, and k32 are enhanced by an O(β
1/2

) factor.



The (modified) Cheng-Sher ansatz in light of

LHC Higgs data

In the absence of FCNC phenomena mediated by the scalars of

the 2HDM, one can ascertain an upper limit for |cβ−α| and lower

limits for the masses of H , A, and H±, assuming the ansatz for

the flavor structure of ρ̂F adopted above.

Preliminary results for our analysis are shown below, where we

have fixed mh = 125 GeV and mH ∼ mA ∼ mH± ∼ 800 GeV.12

12With these masses, one-loop FCNC phenomena mediated by H± (such as b → s + γ) yield only

small corrections to the corresponding contributions mediated by W± and cannot be ruled out by current
experimental data.



Constraints imposed on our parameter scans

We scan over the O(1) parameters that define the ρF and |cβ−α|
[the latter determines the parameter |Z6|) subject to the following
constraints:

• The scalar potential is bounded from below.

• Tree-level unitarity and perturbativity.

• precision electroweak constraints on S, T , and U .

• precision LHC Higgs data (h BRs and cross sections)

Constraints are checked using the public codes 2HDMC and

HiggsTools. We exclude points with ∆χ2 >∼ 6 as provided

by HiggsSignals (corresponding to a 95% CL exclusion limit

for the joint estimation of two parameters).



Experimental limits on lepton-flavor violating decays of the Higgs boson

CMS Collaboration, Phys. Rev. D 104 (2021) 032013
The observed (expected) upper limits on the branching fractions are, respectively, 
B(H→μτ)< 0.15 (0.15)% and B(H→eτ)< 0.22 (0.16)% at 95% confidence level. 

CMS Collaboration, Phys. Rev. D 108 (2023) 072004 

The observed (expected) upper limit on the e±μ∓ branching fraction for it is determined to be 4.4 (4.7) × 10−5 at 95% 
confidence level, the most stringent limit set thus far from direct searches. The largest excess of events over the expected 
background in the full mass range of the search is observed at an e±μ∓ invariant mass of approximately 146 GeV with a 
local (global) significance of 3.8 (2.8) standard deviations.

ATLAS Collaboration, JHEP 07 (2023) 166

The observed (expected) upper limits set on the branching ratios at 95% confidence level, B(H → eτ) < 0.20% (0.12%) and 
B(H → µ τ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential 
H → eτ and H → µ τ signals. The best-fit branching ratio difference, B(H → µ τ)−B(H → eτ), measured with the Symmetry 
method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ.

ATLAS Collaboration, Phys. Lett. B 801 (2020) 135148

For a Higgs boson mass of 125 GeV, the observed (expected) upper limit at the 95% confidence level on the branching 
fraction B(H → eμ) is 6.1×10−5 (5.8×10−5). This results represent an improvement by a factor of about six on the previous 
best limit on B(H → eμ).

http://dx.doi.org/10.1103/PhysRevD.104.032013
http://dx.doi.org/10.1103/PhysRevD.108.072004
https://link.springer.com/article/10.1007/JHEP07(2023)166
https://www.sciencedirect.com/science/article/pii/S0370269319308706?via=ihub




Taken from CMS Collaboration, 
Phys. Rev. D 108 (2023) 072004 

http://dx.doi.org/10.1103/PhysRevD.108.072004


Taken from CMS Collaboration, 
Phys. Rev. D 108 (2023) 072004 

http://dx.doi.org/10.1103/PhysRevD.108.072004


Flavor-changing processes mediated by neutral scalars

1. t → hc

2. h → τ±µ∓, h → τ±e∓, h → µ±e∓

3. τ± → µ±γ, τ± → e±γ, µ± → e±γ

4. τ− → µ−µ+µ−, µ−e+e−, e−µ+µ−, µ− → e−e+e−

5. K0–K̄0 mixing

6. P 0
s,d–P̄s,d mixing (P = B, D)

7. B0
s,d → µ+µ−, τ+τ−

8. b → sµ+µ−, sτ+τ−

9. µ → e conversion

All plots shown below are preliminary.
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Higgs-mediated Neutral meson mixing
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Conclusions and Future work

• The viability of the Cheng-Sher ansatz for off-diagonal neutral Higgs–

fermion Yukawa couplings should be examined. . .

– in a formalism where the unphysical parameter tanβ never appears.

– by making use of the most recent analysis of the CKM parameters based

on the Fritzsch textures for the up and down quark mass matrices.

• Phenomenological implications of (the less suppressed) flavor off-diagonal

decays of the heavy Higgs scalars should be investigated.

• Extend the analysis to allow for CP-violating phases in the ρ-type Yukawa

matrices and scalar potential.

• The Fritzsch and Cheng-Sher textures are not RG-stable. Thus, it would

be useful to construct UV completions of the 2HDM that could provide

an (approximate) explanation for the Yukawa matrix textures used here.
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