

[Higgs Physics Results from

ATLAS]

P. Conde Muíño on behalf of the ATLAS Collaboration

Probing the Higgs Boson at ATLAS

Became12 years old

The Higgs Boson

Couplings, mass, width, invisible decays, Higgs potential

EFT interpretation of Higgs measurements Search for CP-Violating Higgs couplings Lepton Flavour Violation

Searches for new Physics

Charged Higgs searches Di-Higgs resonances Dark Matter Low mass and high mass resonances

LHC schedule and ATLAS Data Taking statistics

	Center of mass energy	Period	<pp bx="" col=""></pp>	Accumulated luminosity	
Run 1	7, 8 TeV	2010-2011	20	35 fb ⁻¹	
Run 2	13 TeV	2015-2018	34	147 fb ⁻¹	
Run 3	13.6 TeV	2022-2025	52/61	146 fb ⁻¹	
HL-LHC (Run 4 and beyond)	13.6-14 TeV	2029-2040	200	3000 fb-1	

ATLAS pp Run-3: 2023

Trigger	Inner Tracker		Calorimeters		Muon Spectrometer		Magnets			
L1+HLT	Pixel	SCT	TRT	LAr	Tile	MDT	RPC	TGC	Solenoid	Toroid
97.5-99.6	99.8	99.7	100	99.5	99.6	99.7	99.9	99.8	100	100

Good for physics: 94.6%-96.5% (27.2-27.8 fb⁻¹)

Higgs Boson Mass

Fundamental parameter in the theory

Measured in the $H\to\gamma\gamma$ and $H\to ZZ^*\to 4\ell$ decay channels

- Considerable effort to improve the $e/\gamma/\mu$ calibrations in Run 2
- e/γ calibration uncertainty reduced by a factor of 2-4
- μ momentum (resolution) precision down to 0.05% (0.1%)

Currently, most precise measurement:

 $m_H = 125.11 \pm 0.09(\text{stat.}) \pm 0.06(\text{syst.}) = 125.11 \pm 0.11 \text{ GeV}$

Higgs Boson Width

SM prediction: $\Gamma_H = 4.1 \text{ MeV}$

Indirect measurement through the on-shell and off-shell

 $H \to ZZ^* \to 4\ell$ and $H \to ZZ^* \to 2\ell' 2\nu$ production cross-section

Assumes that Higgs production follows SM prediction

New off-shell Higgs production cross-section measurement

- Signal/background interference requires very good MC modelling
- Observed (expected) significance: $3.3\sigma~(2.2\sigma)$

$$\Gamma_H = 4.5^{+3.3}_{-2.5} \text{ MeV}$$

Observed (expected) 95% CL limits:

 $0.5(0.1) < \Gamma_H < 10.5(10.9) \; MeV$

Observation $t\bar{t}t\bar{t}$ production and Higgs boson width

Very complicated process

- But sensitive to new physics
- Complicated final state with many jets

Observed (expected) significance $6.1\sigma(4.3\sigma)$

- Signal strength: $\mu = 1.9 \pm 0.4(\text{stat})^{+0.7}_{-0.4}(\text{sys})$
- Cross section: $\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{4.3} (\text{stat})^{+4.6}_{-3.4} \text{sys fb}$

Determination of the Higgs width:

- Off-shell $t\bar{t}t\bar{t}$ production $\propto k_t$
- On-shell $t\bar{t}H$ production $\propto k_t/\Gamma_H$

• $\Gamma_H = 86^{+110}_{-46}$ MeV 2σ deviation from SM expectation

g_0000000

7

SUSY gluinos

Top-quark, W and Higgs mass measurements

W-boson, top-quark and Higgs Boson mass interrelated in the SM

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha(1 + \Delta r)}{G_F M_Z^2}} \right)$$

Probe the coherence of the SM results

Precise measurements needed

Top-quark mass measurement

ATLAS and CMS mass combination using 7, 8 TeV analyses in different final states

Using Best Linear Unbiased Estimator method (BLUE)

 $m_t = 172.52 \pm 0.14(\text{stat}) \pm 0.30(\text{syst}) = 172.52 \pm 0.33 \text{ GeV}$

Best top quark mass measurement up-to-date

- Precision < 0.2%</p>
- improvement of 31% in the total uncertainty relative to the most precise input measurement

W-boson mass and Width

Combined measurement of the W boson mass and width

Using Run 1, 7 TeV data

- re-analysis with an extensive list of updates to reduce the uncertainties
 - Including PDF updates, improved $p_{T}^{W} \operatorname{modelling}$ and improved fit
- $m_W = 80360 \pm 5(\text{stat}) \pm 15(\text{syst}) = 80360 \pm 16 \text{ MeV}$
 - Even closer to Standard Model expectations
- $\Gamma_W = 2195.8 \pm 32.2$ (stat.) ± 34.1 (syst.) $= 2195.8 \pm 46.8$ MeV

- Most precise Γ_W measurement

2100

80320

80340

80400

m_w [MeV]

95% CL

80380

(80355, 2088

80360

arXiv:2403.15085

ATLAS Top-quark, W and Higgs Bosons mass compatibility

Electroweak fit without m_W and m_t masses (grey) compared to the ATLAS measurements of m_W , m_t and m_H

Higgs boson couplings combination

Direct measurement of $\sigma imes BR$

Good agreement with SM expectations (p-value 72%) Improved precision: Cross section: 7-12% Branching fractions:10-12%

ATLAS Run 2 Legacy ttH measurement

Measurement of ttH production with $H \rightarrow b \bar{b}$ Sensitivity improved by a factor of 2

- Improved particle reconstruction & identification
- State-of-the-art Machine Learning: improved selection and Higgs boson reconstrution
- Improved $t \bar{t} b b$ background modelling (<u>ATL-PHYS-PUB-2022-006</u>)

Profile likelihood fit

- Expected/observed significance: $5.4\sigma/4.6\sigma$
- Dominant uncertainties: $t\bar{t}H$ and $t\bar{t}bb$ modelling

Measurement of the p_T^H distribution (STXS)

- Only analysis probing the region $p_T^H > 450\,\,{\rm GeV}$ in ttH production

ATLAS Run 2 Legacy VH(bb) and VH(cc) analysis

Associated production of the Higgs with vector bosons

- Higgs decays to $b\bar{b}$ or $c\bar{c}$ pairs
 - Simultaneous extraction of both signals
 - Definition of orthogonal signal and control regions

Analysis strategy validated searching for diboson WZ and ZZ signal (with $Z \rightarrow b\bar{b}$ or $Z \rightarrow c\bar{c}$)

 $Z \rightarrow c\bar{c}$ $Z \rightarrow bb$ ATLAS Preliminary VZ, Z→ bb/cc, vs=13 TeV, 140.0 fb ATLASPreliminary vz, z→ bb/cc, vs=13 TeV, 140.0 fb⁻¹ Observed Tot. (Stat., Syst.) -Total -Stat. -Total -Stat Tot. (Stat., Syst.) significance $(+0.48 + 0.24, +0.42) = 3.9\sigma$ WZ, $Z \rightarrow c\overline{c}$ 1.46 1.00 $^{+0.24}_{-0.20}$ $\begin{pmatrix} +0.09 \\ -0.09 \end{pmatrix}$ $, \frac{+0.22}{-0.18} \end{pmatrix} 6.4\sigma$ WZ, Z→ bb **0.71** $_{-0.24}^{+0.28}$ $\begin{pmatrix} +0.17 \\ -0.17 \end{pmatrix}, \begin{pmatrix} +0.22 \\ -0.17 \end{pmatrix}, \begin{pmatrix} -0.18 \\ -0.18 \end{pmatrix}$ 3.1 σ ZZ, Z→ cc +0.16 (+0.06 , +0.15 -0.06 , -0.12 ZZ, Z→ bb $> 10\sigma$ +0.25 (+0.13 +0.22) -0.22 (-0.13 , -0.18) Comb. VZ. $Z \rightarrow c\overline{c}$ +0.13 (+0.05 +0.12) 0.97 Comb. VZ. Z→ bb 0.91 2 2.5 3 1.5 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0.5 μ_{VZ}^{bb}

First ATLAS observation of VZ(cc) signal!

ATLAS-CONF-2024-010

Observed

 $> 5\sigma$

3.5

significance

ATLAS-CONF-2024-010

ATLAS Run 2 Legacy VH(bb) and VH(cc) analysis

15

-10

-15

-20

Sensitivity to $H \rightarrow c \bar{c}$ improved by a factor of 3

95% CL upper limit in the c-quark Yukawa coupling modifier:

 $|k_c| < 4.2$

VH signal with $H ightarrow b ar{b}$ observed with 7.8 σ (8.0 σ) observed (expected) significance

Search for Hc associated production, with $H \rightarrow \gamma \gamma$

Events / 0.5 GeV

Data/Sig+Bkg

Sensitive to the c-quark Higgs Yukawa coupling Using a Gaussian process regression to extrapolate the background from the sidebands to the signal region

Best fit value:

- Observed: $\sigma(pp \rightarrow Hc) = 5.2 \pm 3.2 \text{ pb}$
 - Significance: 1.7σ
- Expected: $\sigma(pp \rightarrow Hc) = 2.9 \pm 2.8 \text{ pb}$
 - Significance: 1σ

Eur. Phys. J. C 84 (2024) 78

Recent cross section measurements

Total and differential cross-section measurements performed in different decay channels and for different variables

Overall agreement with expectations within uncertainties

Relative sign of the HWW and HZZ couplings

Vector boson fusion production of WH pairs disfavoured by the SM due to cancellation of two different contributions

- Could be enhanced with opposite relative sign

ATLAS Search for VBF WH production with $H \rightarrow bb$

18

Relative sign of the HWW and HZZ couplings

Vector boson fusion production of WH pairs disfavoured by the SM due to cancellation of two different contributions

Could be enhanced with opposite relative sign

ATLAS Search for VBF WH production with $H \rightarrow bb$

19

Higgs self coupling

H

H

V

Di-Higgs production

 κ_t

 κ_t

H

Η

 $\kappa_V \kappa_\lambda$

Determine the shape of the Higgs potential

g ununun

 κ_V

 κ_V

 $- \cdot H$

 $- \cdot H$

 κ_t

Η

$$\frac{1}{2}m_{h}^{2}h^{2} + \lambda_{3}vh^{3} + \frac{1}{4}\lambda_{4}h^{4}$$

Η

H

H

 κ_{2V}

$$\sigma_{ggF}^{SM}(pp \to HH) = 31.05 + 1.9 - 7.1 fb$$

(Destructive interference in the SM)

ATLAS-CONF-2024-006

Di-Higgs production

Updated results in some channels:

- $b\bar{b}\gamma\gamma$: obs (exp) 95% CL limit on μ_{HH} : 4.0 (5.0)
- $b\bar{b}\tau^+\tau^-$: obs (exp) 95% CL limit on μ_{HH} : 5.9 (3.3)

ATLAS di-Higgs search combination with Run 2 data:

• Using $b\bar{b}b\bar{b}, \, b\bar{b}\gamma\gamma, \, b\bar{b}\tau\tau$, multilepton and $b\bar{b}\ell\ell\ell + E_T^{miss}$

Observed 95% CL constraints

 $-1.2 < \kappa_{\lambda} < 7.2 \\ 0.57 < k_{2V} < 1.48$

Best expected sensitivity in κ_{λ}

Probing the Higgs Boson at ATLAS

Became12 years old

The Higgs Boson

Couplings, mass, width, invisible decays, Higgs potential

EFT interpretation of Higgs measurements Search for CP-Violating Higgs couplings Lepton Flavour Violation

Searches for new Physics

EFT interpretations of the Higgs measurements

Effective Field Theory interpretation

Extend the SM Lagrangian with additional operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d=6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d=8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots,$$

 c_i = Wilson coefficients $\mathcal{O}^{(n)}$ = operator of dimension n Λ = new physics scale

- Calculate cross-sections: $\sigma_{\text{SMEFT}} = \sigma_{\text{SM}} + \sigma_{\text{int}} + \sigma_{\text{BSM}}$,
- To reduce perturbative QCD uncertainties, use ratios:

$$\sigma_{\rm SMEFT}^{i} = \sigma_{\rm SM}^{i,((N)N)\rm NLO} \times \left(1 + \frac{\sigma_{\rm int}^{i,(N)\rm LO}}{\sigma_{\rm SM}^{i,(N)\rm LO}} + \frac{\sigma_{\rm BSM}^{i,(N)\rm LO}}{\sigma_{\rm SM}^{i,(N)\rm LO}}\right)$$

ATLAS EFT interpretation:

- Measurements from 17 different papers from all channels used in the combination
- Using ~50 dimension-6 CP-even dominant coefficients

ATLAS EFT Higgs interpretation

Linearised model

Compatibility with the SM = 94.5% Most parameters still dominated by statistical uncertainties

 But systematics might go up to 50% in some cases

Searching for CP Violation in the Higgs sector

Barion asymmetry of the Universe: still a mystery Combined results demonstrated H to be mainly CP-even scalar

There is still room for CP violation in the Higgs couplings

Searching for CP-odd components in the Higgs couplings

- Using CP-sensitive observables
 - Angular variables
 - Optimal observable:

$$OO = \frac{2Re(\mathcal{M}_{SM}^* \mathcal{M}_{CP-odd})}{|\mathcal{M}_{SM}|^2}$$

$$\sigma \sim |\mathcal{M}_{SM} + \mathcal{M}_{CP-odd}|^2 = |\mathcal{M}_{SM}|^2 + |\mathcal{M}_{CP-odd}|^2 + 2Re(\mathcal{M}_{SM}^*\mathcal{M}_{CP-odd})^2 +$$

Searching for CP Violation in the Higgs sector

Couplings involving vector bosons

$H \rightarrow \gamma \gamma$

	95% (exp.)
\tilde{d} (inter. only)	[-0.055, 0.055]
\tilde{d} (inter.+quad.)	[-0.061, 0.060]
\tilde{d} from $H \to \tau \tau$	-
Combined \tilde{d}	[-0.046, 0.045]
$c_{H\tilde{W}}$ (inter. only)	[-0.94, 0.94]
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.95, 0.95]

Phys. Rev. Lett. 131 (2023) 061802

arXiv:2407.16320

Constraints on $c_{HW} \, {\rm and} \, c_{H\tilde{W}} \, {\rm from} \, {\rm VBF} \, H \to \tau \tau$

Differential measurements of H ightarrow au au in vector boson fusion production

- $c_{H\tilde{W}} = [-0.31, 0.88]$ at 95% CL —> Best limits up to date
- c_{HW} : [-1.85,0.57] at 95% CL

Searching for CP Violation in the Yukawa couplings

30

20In L

10

 $\kappa'_t \cos \alpha$

CP-violation might appear at tree level

- Typically parameterized with a mixing angle
- Using angular variables as observables $t\bar{t}H/tH$ with $H \rightarrow bb$

$$\mathcal{L} = -\frac{m_t}{v} \left\{ \bar{\psi}_t \kappa_t \left[\cos(\alpha) + i \sin(\alpha) \gamma_5 \right] \psi_t \right\} H$$
CP-even (SM)
CP-odd

Probing the Higgs Boson at ATLAS

Became12 years old

The Higgs Boson

Couplings, mass, width, invisible decays, Higgs potential

EFT interpretation of Higgs measurements Search for CP-Violating Higgs couplings Lepton Flavour Violation

Searches for new Physics

Focus on recent results

Charged Higgs searches Di-Higgs resonances Dark Matter Low mass and high mass resonances

Searches for H^+ in top quark decays

BDT training depending on

the H^+ mass

No excess found

ArXiv: 2407.10798

Combination of H^+ and H^{++} searches in VBF

The Georgi–Machacek (GM) model used as benchmark

- One real + one complex tripplet
- Quintuplet $H_5^{\pm\pm}, H_5^{\pm}, H_5^0$ degenerate in mass

Final states with boson leptonic decays

Low mass di- γ resonances

- Using a double sided Crystal Ball for the signal
- Events categories depending on number of converted photons

No significant excess observed

Boosted analysis:

Search for $X \to HH$

Combination of results including $b\bar{b}b\bar{b}, b\bar{b}\gamma\gamma$ and $b\bar{b} au au$ final states

- Largest excess at 1.1 TeV with 3.3σ local (2.1σ global) significance driven by $bar{b} au au$

<u>arXiv:2401.04742</u>

Two differen scenarios considered:

 4ℓ +MET search

- Extended 2HDM+S with a heavy scalar R (H or S)
- 2HDM-based baryogenesis scenario

Highest excess: local significance 2.5 σ , at (mA,mH) = (510, 380) GeV

Search for Dark Matter

There is compelling cosmological evidence for the existence of Dark Matter

- Yet, we don't know anything about it
- Searches at colliders are complementary to direct/indirect detection

Simplified models

- DM assumed to be a Dirac fermion $\mathsf{WIMP}\chi$
- New particle mediator coupling χ to the SM
- Minimal set of parameters $\{M_{med}, m_{\chi}, g_{\chi}, g_{q}, g_{\ell}\}$

Dark matter searches

Higgs Portal WIMP

90% CL limits from $H \rightarrow invisible$ decays

Searches involving an s-channel

Combination of $H \rightarrow \gamma \gamma_D$ searches

Combined search for a massless dark photon in Higgs decays

Includes ggF, VBF and ZH production

Best limits on Higgs decays to dark photons

Plenty of other searches in ATLAS

Sorry if I haven't covered your favourite channel

Summary and conclusions

ATLAS is exploiting the Run 1, Run 2 and Run 3 pp collisions data with a comprehensive physics programme

- Standard Model measurements
- Searches for new physics

Measurements of the Higgs Boson are probing the Standard Model prediction and constraining new physics models

Direct searches for new physics have not yet shown any evidence for new particles However

• The Run 3 and the HL-LHC period will provide a 10-fold increase in statistics

Thanks!

Acknowledgments:

Search for Lepton Flavour Universality Violation

Used $t\bar{t}$ events to select a pure sample of W bosons 2021: most precise measurement of $R_{\tau/\mu} = \frac{BR(W \to \tau \nu)}{BR(W \to \mu \nu)}$ Nat. Phys. 17, 813–818 (2021) arXiv:2403.02133 • $R_{\tau/\mu} = 0.992 \pm 0.007(\text{stat}) \pm 0.011(syst) = 0.992 \pm 0.013$ ATLAS Now: measurement of $R_{e/\mu} = \frac{BR(W \rightarrow e\nu)}{BR(W \rightarrow \mu\nu)}$ LEP2 e⁺e⁻→WW, √s=183-207 GeV ATLAS $pp \rightarrow W$, $\sqrt{s} = 7$ TeV, 4.6 fb⁻¹ LHCb • Used the known ratio of $BR(Z \rightarrow e^+e^-)/BR(Z \rightarrow \mu^+\mu^-)$ to reduce $pp \rightarrow W, \sqrt{s} = 8 \text{ TeV}, 2 \text{ fb}^{-1}$ CMS uncertainties $pp \rightarrow t\bar{t}, \sqrt{s} = 13 \text{ TeV}, 36 \text{ fb}^{-1}$ • $R_{\mu/e} = 0.9995 \pm 0.0022(\text{stat}) \pm 0.0033(\text{syst}) \pm 0.0014(\text{ext})$ PDG average ATLAS (this result) pp→tt, √s=13 TeV, 140 fb⁻¹ Confirms the SM hypothesis at 0.5% precision 0.98 0.92 0.94 0.96 1.02 $B(W \rightarrow \mu \nu)/B(W \rightarrow e \nu)$